Технические характеристики конструкционных материалов. Материаловедение Что такое конструктивные материалы

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ, материалы, предназначенные для изготовления конструкций (деталей машин или механизмов, приборов, сооружений, транспортных средств и др.), воспринимающих механические нагрузки. Конструкционные материалы (в отличие от других технических материалов - оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и пр.) должны иметь высокую конструкционную прочность, обеспечивающую их надёжную и длительную работу в условиях эксплуатации. К основным критериям качества конструкционных материалов относятся параметры сопротивления внешним (статическим, циклическим и ударным) нагрузкам - прочность, удельная прочность (особенно для конструкционных материалов, используемых в авиа- и ракетостроении), жаропрочность, выносливость и вязкость разрушения (сопротивление материала образованию трещин). В ряде случаев важными характеристиками конструкционных материалов также являются износо-, термо- и коррозионная стойкость, свариваемость, прокаливаемость и др. На механические свойства конструкционных материалов оказывает влияние (преимущественно негативное) рабочая среда, вызывая повреждение поверхности вследствие коррозионного растрескивания или изменение химического состава поверхностного слоя в результате насыщения нежелательными элементами (например, водородом, вызывающим охрупчивание металлических конструкций). Конструкционные материалы эксплуатируются в широком температурном диапазоне - от -269 до 2500 °С; для обеспечения работоспособности при высокой температуре материал должен обладать жаропрочностью, при низкой - хладостойкостью. От технологичности конструкционных материалов (их обрабатываемости резанием, давлением, способности к литью и др.) зависит качество изготовления деталей.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы, по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и др.); по условиям эксплуатации - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и др.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности и высокопрочные с умеренным запасом пластичности.

Наибольшее распространение среди металлических конструкционных материалов получили конструкционная сталь и чугун. Конструкционные стали характеризуются широким диапазоном предела прочности - 200-3000 МПа; применяются в строительстве, авто-, авиа-, тракторо-, судостроении и др. Предел прочности чугунов в зависимости от легирования колеблется от 110 МПа (чугаль) до 1350 МПа (чугун, легированный магнием). Чугуны широко используются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительной среде, и др. Сплавы на основе цветных металлов также широко применяются в различных областях техники. Никелевые сплавы и кобальтовые сплавы сохраняют прочность и жаропрочность до 1000-1100 °С, интерметаллидные сплавы на основе соединения Ni 3 Al - до 1200 °С; применяются в авиационных и ракетных двигателях, паровых и газовых турбинах, аппаратах, работающих в агрессивных средах, и др. Алюминиевые сплавы по удельной жёсткости значительно превосходят стали, предел прочности деформируемых сплавов составляет до 750 МПа, литейных - до 550 МПа; служат для изготовления корпусов самолётов, вертолётов, ракет, судов и др. Магниевые сплавы отличаются малой плотностью (в 4 раза меньше, чем у стали), имеют предел прочности до 400 МПа и выше; применяются преимущественно в виде литых деталей в конструкциях ЛА, в автомобилестроении, в полиграфической промышленности и др. Титановые сплавы (предел прочности до 1600 МПа и более) превосходят стали и алюминиевые сплавы по удельной прочности, коррозионной стойкости и жёсткости; служат для изготовления компрессоров авиационных двигателей, аппаратов нефтеперерабатывающей и химической промышленности и др. Циркониевые сплавы, наряду с малым поперечным сечением поглощения тепловых нейтронов, обладают прочностью, пластичностью и коррозионной стойкостью в агрессивных средах; используются в ядерной энергетике для элементов конструкции активной зоны реакторов АЭС. Повышение эксплуатационных свойств металлических конструкционных материалов, получаемых традиционными методами, связано с использованием легированных и нанокристаллических металлических порошков.

Неметаллические конструкционные материалы включают полимерные материалы, керамику, огнеупоры, стёкла, резины, древесину. Термопласты (полистирол, полиметилметакрилат, полиамиды, фторопласты), а также реактопласты используются в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе в химически активных: топливах, маслах и др. Стёкла (силикатные, кварцевые, органические) и триплексы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Огнеупоры применяются преимущественно в чёрной и цветной металлургии при изготовлении огнеупорных футеровок в агрегатах, работающих в условиях высоких температур (более 900 °С). Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений. Древесина используется в качестве шпал, крепи для угольной и горнорудной промышленности, для производства строительных конструкций, домов и др.

Композиционные конструкционные материалы по удельной прочности и удельному модулю упругости на 50-100% превосходят стали или алюминиевые сплавы и обеспечивают снижение массы конструкций на 20-50%. Композиционные конструкционные материалы (углепластики, органопластики, органотекстолиты, алюмостеклопластики и др.) широко применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др.

Получение новых конструкционных материалов с улучшенными (по сравнению с традиционными конструкционными материалами) свойствами связано с синтезом материалов с субмикроскопической структурой из элементов, имеющих предельные значения свойств (предельно прочных, тугоплавких, термостабильных), а также с применением специальных методов изготовления (значительно повышающих прочность и долговечность материалов). Например, для металлических конструкционных материалов используется направленная кристаллизация сталей и сплавов для получения литых деталей со столбчатой структурой зёрен, монокристаллических деталей из никелевых сплавов с определённой кристаллографической ориентацией относительно действующих напряжений (лопатки газовых турбин); для неметаллических конструкционных материалов применяются методы ориентации линейных макромолекул полимерных материалов, модифицирование наночастицами (фуллеренами, нанотрубками, нановолокнами), создание полимерных нанокомпозитов.

Лит.: Машиностроение: Энциклопедия. М., 2001. Т. 2/3: Цветные металлы и сплавы. Композиционные металлические материалы / Ред.-сост. И. Н. Фридляндер; Болтон У. Конструкционные материалы: металлы, сплавы, полимеры, керамика, композиты. 2-е изд. М., 2007.

Конструкционные материалы

материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами К. м. являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества К. м. относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Длительный период в своём развитии человеческое общество использовало для своих нужд (орудия труда и охоты, утварь, украшения и др.) ограниченный круг материалов: дерево, камень, волокна растительного и животного происхождения, обожжённую глину, стекло, бронзу, железо. Промышленный переворот 18 в. и дальнейшее развитие техники, особенно создание паровых машин и появление в конце 19 в. двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили и дифференцировали требования к материалам их деталей, которые стали работать при сложных знакопеременных нагрузках, повышенных температурах и др. Основой К. м. стали металлические сплавы на основе железа (Чугун ы и стали (См. Сталь)), меди (бронзы (См. Бронза) и латуни (См. Латунь)), свинца и олова.

При конструировании самолётов, когда главным требованием, предъявляемым к К. м., стала высокая удельная прочность, широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники потребовало создания новых жаропрочных сплавов (См. Жаропрочные сплавы) на никелевой и кобальтовой основах, сталей, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах. Совершенствование техники на каждом этапе развития предъявляло новые, непрерывно усложнявшиеся требования к К. м. (температурная стойкость, износостойкость, электрическая проводимость и др.). Например, судостроению необходимы стали и сплавы с хорошей свариваемостью и высокой коррозионной стойкостью, а химическому машиностроению - с высокой и длительной стойкостью в агрессивных средах. Развитие атомной энергетики связано с применением К. м., обладающих не только достаточной прочностью и высокой коррозионной стойкостью в различных теплоносителях, но и удовлетворяющих новому требованию - малому поперечному сечению захвата нейтронов.

К. м. подразделяются: по природе материалов - на металлические, неметаллические и Композиционные материалы , сочетающие положительные свойства тех и др. материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Отдельные классы К. м., в свою очередь, делятся на многочисленные группы. Например, металлические сплавы различают: по системам сплавов - алюминиевые, магниевые, титановые, медные, никелевые, молибденовые, ниобиевые, бериллиевые, вольфрамовые, на железной основе и др.; по типам упрочнения - закаливаемые, улучшаемые, стареющие, цементируемые, цианируемые, азотируемые и др.; по структурному составу - стали аустенитные и ферритные, латуни и т.д.

Неметаллические К. м. подразделяют по изомерному составу, технологическому исполнению (прессованные, тканые, намотанные, формованные и пр.), по типам наполнителей (армирующих элементов) и по характеру их размещения и ориентации. Некоторые К. м., например сталь и алюминиевые сплавы, используются как строительные материалы и, наоборот, в ряде случаев строительные материалы, например Железобетон , применяются в конструкциях машиностроения.

Технико-экономические параметры К. м. включают: технологические параметры - обрабатываемость металлов давлением, резанием, литейные свойства (жидкотекучесть, склонность к образованию горячих трещин при литье), свариваемость, паяемость, скорость отверждения и текучесть полимерных материалов при нормальных и повышенных температурах и др.; показатели экономической эффективности (стоимость, трудоёмкость, дефицитность, коэффициент использования металла и т.п.).

К металлическим К. м. относится большинство выпускаемых промышленностью марок стали. Исключение составляют стали, не используемые в силовых элементах конструкций: инструментальные стали (См. Инструментальная сталь), для нагревательных элементов, для присадочной проволоки (при сварке) и некоторые другие с особыми физическими и технологическими свойствами. Стали составляют основной объём К. м., используемых техникой. Они отличаются широким диапазоном прочности - от 200 до 3000 Мн/м 2 (20-300 кгс/мм 2 ), пластичность сталей достигает 80%, вязкость - 3 МДж/м 2 . Конструкционные (в т. ч. нержавеющие) стали выплавляются в конверторах, мартеновских и электрических печах. Для дополнительной рафинировки применяются продувка аргоном и обработка синтетическим шлаком в ковше. Стали ответственного назначения, от которых требуется высокая надёжность, изготовляются вакуумно-дуговым, вакуумно-индукционным и электрошлаковым переплавом, вакуумированием, а в особых случаях - улучшением кристаллизации (на установках непрерывной или полунепрерывной разливки) вытягиванием из расплава.

Чугуны широко применяются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительных средах, и др. Прочность чугунов в зависимости от легирования колеблется от 110 Мн/м 2 (чугаль) до 1350 Мн/м 2 (легированный магниевый чугун).

Никелевые сплавы и Кобальтовые сплавы сохраняют прочность до 1000-1100 °С. Выплавляются в вакуумно-индукционных и вакуумно-дуговых, а также в плазменных и электроннолучевых печах (См. Электроннолучевая печь). Применяются в авиационных и ракетных двигателях, паровых турбинах, аппаратах, работающих в агрессивных средах, и др. Прочность алюминиевых сплавов (См. Алюминиевые сплавы) составляет: деформируемых до 750 Мн/м 2 , литейных до 550 Мн/м 2 , по удельной жёсткости они значительно превосходят стали. Служат для изготовления корпусов самолётов, вертолётов, ракет, судов различного назначения и др. Магниевые сплавы отличаются высоким удельным объёмом (в 4 раза выше, чем у стали), имеют прочность до 400 Мн/м 2 и выше; применяются преимущественно в виде литья в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др. Титановые сплавы начинают успешно конкурировать в ряде отраслей техники со сталями и алюминиевыми сплавами, превосходя их по удельной прочности, коррозионной стойкости и по жёсткости. Сплавы имеют прочность до 1600 Мн/м 2 и более. Применяются для изготовления компрессоров авиационных двигателей, аппаратов химической и нефтеперерабатывающей промышленности, медицинских инструментов и др.

Неметаллические К. м. включают пластики, термопластичные полимерные материалы (см. Полимеры), керамику (См. Керамика), Огнеупоры , стекла (См. Стекло), резины (См. Резина), древесину (См. Древесина). Пластики на основе термореактивных, эпоксидных, фенольных, кремнийорганических термопластичных смол и фторопластов (См. Фторопласты), армированные (упрочнённые) стеклянными, кварцевыми, асбестовыми и др. волокнами, тканями и лентами, применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др. Термопластичные полимерные материалы - Полистирол , полиметилметакрилат, полиамиды, фторопласты, а также реактопласты используют в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе химически активных: топливах, маслах и т.п.

Стекла (силикатные, кварцевые, органические), Триплекс ы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений.

Развитие техники предъявляет новые, более высокие требования к существующим К. м., стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком (См. Стеклопластики) позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы К. м., сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

Т. к. в составе К. м. нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств К. м. связаны с синтезированием материалов из элементов, имеющих предельные значения свойств, например предельно прочных, предельно тугоплавких, термостабильных и т.п. Такие материалы составляют новый класс композиционных К. м. В них используются высокопрочные элементы (волокна, нити, проволока, нитевидные кристаллы, гранулы, дисперсные высокотвёрдые и тугоплавкие соединения, составляющие армировку или наполнитель), связуемые матрицей из пластичного и прочного материала (металлических сплавов или неметаллических, преимущественно полимерных, материалов). Композиционные К. м. по удельной прочности и удельному модулю упругости могут на 50-100% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкций на 20-50%.

Наряду с созданием композиционных К. м., имеющих ориентированную (ортотропную) структуру, перспективным путём повышения качества К. м. является регламентация структуры традиционных К. м. Так, путём направленной кристаллизации сталей и сплавов получают литые детали, например лопатки газовых турбин, состоящие из кристаллов, ориентированных относительно основных напряжений таким образом, что границы зёрен (слабые места у жаропрочных сплавов) оказываются ненагруженными. Направленная кристаллизация позволяет увеличить в несколько раз пластичность и долговечность. Ещё более прогрессивным методом создания ортотропных К. м. является получение монокристальных деталей с определённой кристаллографической ориентацией относительно действующих напряжений. Весьма эффективно используются методы ориентации в неметаллических К. м. Так, ориентация линейных макромолекул полимерных материалов (ориентация стекол из полиметилметакрилата) значительно повышает их прочность, вязкость и долговечность.

При синтезировании композиционных К. м., создании сплавов и материалов с ориентированной структурой используются достижения материаловедения.

Лит.: Киселев Б. А., Стеклопластики, М., 1961; Конструкционные материалы, т. 1- 3, М., 1963-65; Тугоплавкие материалы в машиностроении. Справочник, под ред. А. Т. Туманова и К. И. Портного, М., 1967; Конструкционные свойства пластмасс, пер. с англ., М., 1967; Резина - конструкционный материал современного машиностроения. Сб. ст., М., 1967; Материалы в машиностроении. Выбор и применение. Справочник, под ред. И. В. Кудрявцева, т. 1-5, М., 1967-69; Химушин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969; Современные композиционные материалы, пер. с англ., М., 1970; Алюминиевые сплавы. Сб. ст., т. 1-6, М., 1963-69.

А. Т. Туманов, Н. С. Скляров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Конструкционные материалы" в других словарях:

    Материалы, из которых изготовляются различные конструкции, детали машин, элементы сооружений, воспринимающих силовую нагрузку. Определяющими параметрами таких материалов являются механические свойства, что отличает их от других технических… … Википедия

    КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ - материалы, применяемые для изготовления узлов и деталей машин и механизмов, зданий, транспортных средств и сооружений, приборов, аппаратов и др. технических объектов. Наряду с конструкционной сталью и др. сплавами в современной технике в качестве …

    конструкционные материалы - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN materials of construction …

    Материалы, применяемые для изготовления конструкций (деталей машин и механизмов, зданий, трансп. средств, сооружений, приборов, аппаратов и т. п.), воспринимающих силовую нагрузку. К. м. подразделяют на металлич. (сплавы на основе железа, никеля … Большой энциклопедический политехнический словарь

    Материалы, используемые для изготовления конструкций, воспринимающих силовую нагрузку (деталей машин и механизмов, зданий, транспортных средств, приборов, аппаратов и т. п.). Подразделяются на металлические (металлы и сплавы), неметаллические… … Энциклопедия техники

    расплав активной зоны ядерного реактора, включающий Corium-А и конструкционные материалы корпуса реактора - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Corium A+R … Справочник технического переводчика

    МАТЕРИАЛЫ - (1) необработанные вещества (сырьё), из которых изготовляют разного рода смеси, массы, заготовки, изделия и др., а также предметы, вещества и информационные данные, используемые в различных технологических процессах с целью получения необходимых… … Большая политехническая энциклопедия

    Материалы органические - – материалы, полученные из живой природы: растительного или животного мира. В области строительства применяют конструкционные материалы из дерева и пластмассы, вяжущие из битума, дегтя и полимеров, наполнители из отходов древесины и других… … Энциклопедия терминов, определений и пояснений строительных материалов

    Понятие конструкционных и строительных материалов охватывает множество различных материалов, применяемых для изготовления деталей конструкций, зданий, мостов, дорог, транспортных средств, а также бесчисленных других сооружений, машин и… … Энциклопедия Кольера

    МАТЕРИАЛЫ СУДОСТРОИТЕЛЬНЫЕ - технические материалы, показатели свойств которых отвечают требованиям классификационных норм и правил к материалам для строительства судов или требованиям норм и стандартов (ТУ, ОСТ, ГОСТ) к материалам, используемым в технологических процессах… … Морской энциклопедический справочник

Книги

  • Конструкционные материалы: металлы, сплавы, полимеры, керамика, композиты , Болтон Уильям , 320 стр В справочнике представлен весь спектр материалов, применяемых в машиностроении и электротехнике: железо, алюминий, медь, магний, никель, титан, сплавы на их основе, полимерные,… Категория:

При выборе материалов в первую очередь требуется всесторонне рассмотреть условия его работы и разграничить факторы, воздействующие на материал, по степени их влияния на надежность машины или механизма. Определяющие факторы должны быть учтены обязательно, менее определяющие - по возможности.

Следующим этапом выбора материала должен быть процесс определения комплекса необходимых свойств материала, обеспечивающих надежную и долговечную работу конструкций, машин и оборудования в заданных условиях эксплуатации. Так как конструкционные материалы характеризуются механическими, физикохимическими и технологическими свойствами, то рассматривать необходимо всю гамму свойств, особенно, если в конструкции должны работать разные материалы.

Более правильным является формирование технических требований к материалу на основании моделирования условий работы изделия в реальных условиях эксплуатации с использованием специальных стендов, на которых с помощью тензометрирования можно определить уровень локальных пиковых напряжений изделия. В том случае, когда не имеется возможности использовать стенд для измерения рабочего напряжения, возникающего в изделии при его эксплуатации, следует использовать расчетные методы.

Физико-химические свойства. Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. Из важных физических свойств можно выделить теплопроводность, плотность, коэффициент линейного расширения. Применение в соединениях деталей из различных материалов обусловливает необходимость учета их коэффициентов линейного расширения.

Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Детали любого изделия должны быть совместимы с рабочей средой. Коррозия, коррозионная усталость, коррозия под напряжением, водородное охрупчивание и т.д. могут вызвать повреждение в металле и привести к хрупкому разрушению конструкции. Такие химически активные металлы, как титан и его сплавы, магниевые сплавы, алюминиевые сплавы, при ударном нагружении могут самопроизвольно загораться при контакте с жидким кислородом.

Механические свойства. Основой выбора материалов для создания надежной и работоспособной техники являются их механические свойства, в первую очередь, прочностные, которые характеризуют способность материалов сопротивляться деформации и разрушению под действием различного рода нагрузок, в разных средах и при различных температурных условиях.

Расчет конструкции на прочность производят по допустимым напряжениям [о], определяемым из условий прочности при статическом нагружении или долговечности при циклическом нагружении. При статическом нагружении допускаемое напряжение равно отношению предельного для данного материала напряжения к коэффициенту безопасности , т.е. к коэффициенту запаса прочности п. Для пластичных материалов за предельное напряжение принимают предел текучести, для квазихрупких - временное сопротивление:

[ = а Т /п Т или [а] = а в /я в. (2.1)

Значение коэффициента запаса прочности зависит от многих факторов: разброса характеристик прочности; присутствия в материале дефектов, допускаемых техническими условиями; степени схематизации расчетной процедуры и т.д.

В России за допускаемое принимается минимальное напряжение, определяемое по пределу текучести или временному сопротивлению. Такая же методика принята во многих странах. Однако в некоторых странах, например в Чехии, Словакии, Германии, Польше, для определения допускаемых напряжений расчет ведется только по пределу текучести, а в Японии - только по временному сопротивлению.

Коэффициент запаса может меняться в широких пределах в зависимости от условий работы оборудования и опыта работы с данным материалом.

Для сосудов и аппаратов, работающих под давлением, коэффициент запаса по пределу текучести находится в пределах от 1,5 до 1,65, а по временному сопротивлению - от 2,35 до 4.

Однако расчеты на прочность конструкций по номинальным напряжениям с учетом коэффициентов запаса не всегда гарантируют необходимый ресурс их работы. Это связано с тем, что назначаемые запасы прочности не учитывают ряда факторов, которые способствуют возникновению повреждений и разрушений несущих элементов конструкций и машин. К этим факторам относятся: присутствие в металле дефектов типа трещин, как исходных, так и возникающих в процессе эксплуатации; наличие микро- и макронеоднородностей металла по толщине, в зонах сварных швов и т.д.; появление локальных напряжений вследствие их концентрации, а также остаточных технологических напряжений; нестабильность эксплуатационного нагружения из-за статических и импульсных перегрузок, стационарных и нестационарных циклических нагрузок. Для учета этих факторов необходим переход от расчета по номинальным напряжениям к анализу локальных напряжений, возникающих в отдельных зонах изделия.

Для высокопрочных и среднепрочных материалов расчет допустимых значений следует проводить на основе принципов механики разрушения с учетом максимальных размеров дефектов. Это связано с тем, что повышение прочности обычно сопровождается уменьшением пластичности и вязкости материала.

Пластичность характеризует способность материала к пластическому течению при превышении предела текучести, а вязкость - способность поглощать энергию внешних сил при разрушении.

У разных материалов соотношение пластичности и вязкости может очень сильно различаться. Например, алюминий имеет малую вязкость при высоком относительном удлинении. Наоборот, термообработанная (улучшенная), легированная сталь при сравнительно небольшом относительном удлинении может иметь высокую вязкость.

Пластичность и вязкость в конструкционные расчеты не входят и являются качественными показателями.

Пластичность показывает способность металла к перераспределению напряжений в зонах концентрации (пиков). Пластическая деформация как бы предохраняет металл от резких локальных перегрузок вблизи концентраторов напряжений.

Широко принятым критерием работоспособности металлических сплавов и сварных соединений, особенно используемых при низких температурах, является ударная вязкость, определенная на образцах с надрезом. При этом сложность представляет выбор необходимого уровня вязкости и вида образцов для ее оценки. В разных странах принят различный гарантированный уровень ударной вязкости. За рубежом сталь обычно допускается к эксплуатации, если ее ударная вязкость, определенная на образцах типа Шарли размером 10 х 10 х 55 мм с надрезом радиусом 0,25 мм, составляет КСУ> 0,30 МДж/м 2 .

Надежность конструкций, работающих в условиях многократного подъема и сброса давления, зависит от сопротивления материалов усталостному разрушению. Поэтому для таких изделий проводятся имитирующие циклические испытания стандартных образцов либо циклические стендовые испытания. База испытаний выбирается в зависимости от условий эксплуатации оборудования.

Металл установок или изделий, подвергаемых многократному нагреву или охлаждению, испытывается на сопротивление термической усталости.

В случае длительного нагружения конструкций при высоких температурах производятся испытания ползучести и длительной прочности материала.

При циклическом или длительном статическом нагружении номинальные эксплуатационные напряжения выбираются с введением коэффициентов запаса п а и п п по пределам длительной прочности и ползучести.

Коэффициенты Яд и л п обычно имеют значения в пределах 2,0-3,5.

Технологические свойства (литейные свойства у литейных сплавов; обрабатываемость давлением у деформируемых сплавов, обрабатываемость резанием, свариваемость) весьма важны и могут быть решающими при выборе материала для изготовления высококачественных изделий в производственных условиях. Например, нельзя изготовить литьем тонкостенные протяженные детали из сплава с низкой жидкотекучестью и плохой заполняемостью. Нельзя также изготавливать сварные конструкции из сталей с высоким содержанием углерода (высоким углеродным эквивалентом), так как в зоне сварного шва всегда будут образовываться сварные трещины.

При рассмотрении обрабатываемости материалов следует исходить из условий серийности изготавливаемого изделия и необходимости применения смягчающей термообработки. Так, при изготовлении изделий крупносерийного или массового производства следует ориентироваться на их механическую обработку с использованием станков с ЧПУ и обрабатывающих центров. В этом случае твердость обрабатываемых деталей должна быть невысокой (до 250 НВ). Для обеспечения низкой твердости для этих деталей может применяться предварительная термообработка: отжиг, нормализация, высокий отпуск.

Оценка свариваемости конструкционных материалов должна включать анализ уровня механических свойств сварного соединения и основного металла, определение склонности к образованию дефектов, прежде всего трещин в металле шва и зоне термического влияния, определение чувствительности сварного соединения к концентраторам напряжений и склонности к хрупкому разрушению. Для получения бездефектных равнопрочных сварных соединений, обладающих высоким сопротивлением хрупкому разрушению, необходима разработка специальной системы легирования сварного шва.

Приняты следующие термины, характеризующие свариваемость металлов: хорошая, удовлетворительная, ограниченная, неудовлетворительная. Хорошая свариваемость характерна для металлических материалов, не имеющих ограничений в проведении процесса сварки при температуре окружающей среды по массе и сложности конструкций. Такие материалы не требуют предварительного подогрева. При удовлетворительной свариваемости на морозе сварка не допускается и должна производиться при комнатной температуре. В сварных элементах должны отсутствовать жесткие стыки; для сложных узлов необходим предварительный сопутствующий подогрев; после сварки при большом объеме наплавленного металла необходим отпуск; при вваривании вкладышей рекомендуется проводить промежуточную термическую обработку. Ограниченная свариваемость подразумевает возможность сварки небольших деталей простой формы с подогревом до 300-400 °С и проведении отпуска после сварки; в случае жестких контуров температура подогрева должна быть увеличена до 600 °С. Неудовлетворительная свариваемость характерна для материалов, нуждающихся в отжиге перед сваркой; даже при сварке простых узлов их необходимо подогревать до температур более 450 °С с обязательным проведением высокого отпуска после сварки.

Выбранные материалы и технологии изготовления из них изделий обязательно должны быть привязаны к возможностям конкретного производства. Например, не следует ориентироваться на лазерную термообработку изделий массового производства, так как это окажется технически невыполнимым, а следует выбрать один из видов химико-термической обработки, который используется на предприятии - изготовителе изделий.

Важный этап выбора материала - оценка его стоимости и дефицитности. Выбранный материал должен быть по возможности дешевым, с учетом всех затрат, включающих как стоимость самого материала, так и стоимость изготовления из него деталей, а также эксплуатационную стойкость. Необходимо учитывать также наличие дефицитных составляющих материала. Например, в последние годы такие элементы в стали, как вольфрам, кобальт, никель являются дефицитными и их использование в качестве легирующих добавок в сталях должно быть ограничено. Однако в тех случаях, когда без них нельзя обеспечить необходимые служебные свойства, их применение оправдано (быстрорежущие стали, жаропрочные стали и сплавы).

Таким образом, основой при выборе материалов являются назначение и условия работы изделия или конструкции. При ЭТОМ КОНструктор опирается на опыт изготовления и эксплуатации изделий и конструкций данного профиля, уровень технологии производства и контроля, а также учитывает экономические соображения. При выборе материалов большую роль могут сыграть результаты стендовых и натурных испытаний изделий.

Использование при выборе материалов, ранее хорошо зарекомендовавших себя в подобных конструкциях и изделиях, вполне оправдано, но может привести, с одной стороны, к отказу от совершенствования конструкций и изделий, а с другой - к повторению уже сделанных ошибок.

Это материалы, из которых изготавливаются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку и отличающихся износостойкостью.

Длительный период в своем развитии человеческое общество использовало для своих практических нужд ограниченный круг материалов: дерево, камень, натуральные волокна, обожженную глину, стекло, железо и др. Промышленный переворот XVIII в. и дальнейшее развитие техники, особенно создание паровых машин и двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили требования к материалам их деталей, к их прочности, температурной стойкости и т. п. В то время основными конструкционными материалами были сплавы на основе железа (см. Железо, сталь, чугун), меди (бронза, латунь), свинца и олова.

При конструировании самолетов от конструкционных материалов потребовалась высокая удельная прочность; широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники привело к созданию новых жаропрочных сплавов на основе никеля и кобальта, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах.

С совершенствованием техники требования к конструкционным материалам все более усложняются. Так, судостроению необходимы стали и сплавы, хорошо поддающиеся сварке, коррозионностойкие, а химическому машиностроению - с высокой и длительной стойкостью в агрессивных средах. Ядерная энергетика использует конструкционные материалы, которые при наличии прочности должны удовлетворять еще одному требованию - малому поперечному сечению захвата нейтронов.

Существует огромное количество различных конструкционных материалов. По своей природе они подразделяются на металлические, неметаллические и композиционные.

К металлическим конструкционным материалам относится большинство марок стали. Сталь получают в конвертерах, мартеновских и электрических печах, а также способами электрошлакового переплава (см. Литье), вакуумирования и др. Чугун широко применяется в машиностроении для изготовления станин, коленчатых валов, зубчатых колес, цилиндров двигателей внутреннего сгорания и т. д.

Никелевые и кобальтовые сплавы сохраняют прочность при 1000-1100° С, выплавляются в вакуумно-дуговых, плазменных и электроннолучевых печах (см. Плазмотрон, плазменная технология, Электроннолучевая технология). Эти сплавы используются в авиационных и ракетных двигателях, паровых турбинах и др. Алюминиевые сплавы служат для изготовления корпусов самолетов, вертолетов, ракет, судов. Магниевые сплавы применяются в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др. Титановые сплавы, отличающиеся особенно высокой удельной прочностью и коррозийной стойкостью, используются в авиационной, химической промышленности, медицине и др. В различных отраслях техники нашли применение также сплавы на основе меди, цинка, молибдена, циркония, хрома, бериллия.

Неметаллические конструкционные материалы включают пластики, термопластичные полимеры, керамику, огнеупоры и др. Пластики на основе термореактивных, эпоксидных, фенольных смол и фторопластов, армированные (упрочненные) стеклянными, кварцевыми, асбестовыми и другими волокнами, применяются в конструкциях самолетов, ракет, энергетических и транспортных машин. Термопластичные полимерные материалы - полистиролы, полиамиды, фторопласты - используются в деталях электро- и радиооборудования и др.

Из керамических материалов изготовляют детали, работающие при высокой температуре. Резины на основе различных каучуков, упрочненные кордными тканями, применяются для производства покрышек или монолитных колес самолетов и автомобилей.

Современная техника продолжает предъявлять все новые требования к конструкционным материалам. Так, например, для уменьшения массы летательных аппаратов используются многослойные конструкции, отличающиеся одновременно легкостью, прочностью и жесткостью. Для многих областей техники необходимы материалы, сочетающие конструкционную прочность с высокими электрическими, теплоизоляционными, оптическими и другими свойствами.

В составе конструкционных материалов нашли применение почти все элементы таблицы Менделеева. Эффективность классических металлических сплавов достигается сочетанием особого легирования, высококачественной плавки и термической обработки.

В перспективе одним из методов получения эффективных конструкционных материалов будет широкое синтезирование их из элементов, имеющих предельные значения свойств, т. е. предельно прочных, предельно тугоплавких, термостабильных и т. п. Такие материалы получили название композиционных. При их изготовлении используются высокопрочные элементы (волокна, нити, нитевидные кристаллы, тугоплавкие соединения и т. п., составляющие армировку или наполнитель), связуемые матрицей из прочного и пластичного материала (металлических сплавов или полимерных материалов). Композиционные материалы по удельной прочности могут на 50- 100% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкции на 20-50%. Поэтому сейчас производству конструкционных материалов и улучшению их качества уделяется особое внимание.

Общие требования, предъявляемые к конструкционным материалам

Конструкционными называют мате­риалы, предназначенные для изготовления деталей машин, приборов, инже­нерных конструкций, подвергающиеся механическим нагрузкам. Делали машин и приборов характеризуются большим разнообразием форм, размеров, условий эксплуатации. Они работают при стати­ческих, циклических и ударных нагруз­ках, при низких и высоких температу­рах, в контакте с различными средами. Эти факторы определяют требования к конструкционным материалам, ос­новные из которых эксплуатационные, технологические и экономические.

Эксплуатационные требования имеют первостепенное значение. Для того, чтобы обеспечить работоспособность конкретных машин и приборов, кон­струкционный материал должен иметь высокую конструкционную прочность.

Конструкционной прочностью назы­вается комплекс механических свойств, обеспечивающих надежную и длитель­ную работу материала в условиях экс­плуатации.

Механические свойства, определяю­щие конструкционную прочность и вы­бор конструкционного материала, рас­смотрены ниже. Требуемые характеристики механических свойств материала для конкретного изделия за­висят не только от силовых факторов, но и воздействия на него рабочей среды и температуры.

Среда - жидкая, газообразная, ионизи­рованная, радиационная, в которой ра­ботает материал, оказывает существен­ное и преимущественно отрицательное влияние на его механические свойству, снижая работоспособность деталей. В частности, рабочая среда может вы­зывать повреждение поверхности вслед­ствие коррозионного растрескивания, окисления и образования окалины, из­менение химического состава поверх­ностного слоя в результате насыщения нежелательными элементами. Кроме того, возможны разбухание и местное разрушение материала в ре­зультате ионизационного и радиацион­ного облучения. Для того чтобы проти­востоять рабочей среде, материал дол­жен обладать не только механическими, но и определенными физико-химически­ми свойствами: стойкостью к электро­химической коррозии, жаростойкостью, радиационной стойкостью, влагостойкостью, способ­ностью работать в условиях вакуума и др.

В некоторых случаях важно так­же требование определенных маг­нитных, электрических, тепловых свойств, высокой стабильности разме­ров деталей (особенно высокоточных деталей приборов).

Технологические требования направлены на обеспечение наименьшей трудоемкости изготовления деталей и конструкций. Технологичность материала характери­зуют возможные методы его обработки. Она оценивается обрабатываемостью резанием, давлением, свариваемостью, способностью к литью, а также прокаливаемостью, склонностью к деформа­ции и короблению при термической обработке. Технологичность материала имеет важное значение, так как от нее зависят производительность и качество изготовления деталей.



Экономические требования сводятся к тому, чтобы материал имел невысо­кую стоимость и был доступным. Стали и сплавы по возможности должны со­держать минимальное количество леги­рующих элементов. Использование ма­териалов, содержащих легирующие эле­менты, должно быть обосновано повы­шением эксплуатационных свойств дета­лей. Экономические требования, так же как и технологические, приобретают особое значение при массовом масшта­бе производства.

Таким образом, качественный кон­струкционный материал должен удовле­творять комплексу требований.

Прочность конструкционных материалов и критерии ее оценки

Конструкционная прочность - ком­плексная характеристика, включающая сочетание критериев прочности, надеж­ности и долговечности.

Критерии прочности материала выби­рают в зависимости от условий его ра­боты. Критериями прочности при стати­стических нагрузках являются времен­ное сопротивление или предел теку­чести, характеризующие сопро­тивление материала пластической деформации. Поскольку при работе большинства деталей пластическая деформация недопустима, то их несущую способность, как правило, определяют по пределу текучести. Для приближен­ной оценки статической прочности ис­пользуют твердость НВ.

Большинство деталей машин испыты­вает длительные циклические нагрузки. Критерий их прочности - предел вынос­ливости. По величине выбранных критериев прочности рассчитывают допустимые рабочие напряжения. При этом, чем больше прочность материала, тем боль­ше допустимые рабочие напряжения и тем самым меньше размеры и масса детали. Однако повышение уровня прочности материала и, как следствие, рабочих на­пряжений сопровождается увеличением упругих деформаций.

Для ограничения упругой деформации материал должен обладать высоким мо­дулем упругости (или сдвига), являю­щимся критерием его жесткости. Имен­но критерии жесткости, а не прочности обусловливают размеры станин стан­ков, корпусов редукторов и других дета­лей, от которых требуется сохранение точных размеров и формы.

Возможно и противоположное требо­вание. Для пружин, мембран и других чувствительных упругих элементов при­боров, наоборот, важно обеспечить большие упругие перемещения. Для материалов, используемых в авиационной и ракетной технике, важ­ное значение имеет эффективность мате­риала по массе.

Таким образом, в качестве критериев конструкционной прочности выбирают те характеристики, которые наиболее полно отражают прочность в условиях эксплуатации.

Надежность - свойство материала противостоять хрупкому разрушению. Хрупкое разрушение вызывает вне­запный отказ деталей в условиях эксплуатации. Оно считается наиболее опасным из-за протекания с большой скоростью при напряжениях ниже расчетных, а также возможных аварийных последствий.

Для предупреждения хрупкого разру­шения конструкционные материалы должны обладать достаточной пластич­ностью и ударной вязкостью. Однако эти параметры надежности, определенные на небольших лабо­раторных образцах без учета условий эксплуатации конкретной детали, доста­точно показательны лишь для мягких малопрочных материалов. Необходимо также учитывать то, что в условиях эксплуатации действуют факторы, дополнительно снижающие их пластичность, вязкость и увеличивающие опасность хрупкого разрушения. К таким факторам отно­сятся концентраторы напряжений (над­резы), понижение температуры, динами­ческие нагрузки, увеличение размеров деталей.

Для того чтобы избежать внезапных поломок в условиях эксплуатации, необ­ходимо учитывать трещиностойкость материала. Трещиностойкость - группа параметров надежности, характеризую­щих способность материала тормозить развитие трещины.

Количественная оценка трещиностойкости основывается на линейной механике разрушения. В соответствии с ней очагами разру­шения высокопрочных материалов служат небольшие трещины эксплуатационного или технологического происхождения. Трещины являются острыми концентраторами напряжений, местные (ло­кальные) напряжения, в вершине которых мо­гут во много раз превышать средние рас­четные напряжения.

Долговечность - свойство материала сопротивляться развитию постепенного разрушения, обеспечивая работоспособность деталей в течение заданного времени. Причины потери работоспособности разнообразны: развитие процессов усталости, изнаши­вания, ползучести, коррозии, радиацион­ного разбухания и пр. Эти процессы вызывают постепенное накопление не­обратимых повреждений в материале и его разрушение. Обеспечение долговечности материала означает уменьше­ние до требуемых значений скорости его разрушения.

Для большинства деталей машин долговечность определяется сопротивлением материала усталост­ным разрушениям (циклической долго­вечностью) или сопротивлением изна­шиванию. Поэтому эти причины потери работоспособности материала требуют подробного рассмо­трения.

Циклическая долговечность характе­ризует работоспособность материала в условиях многократно повторяющих­ся циклов напряжений. Цикл напряже­ния - совокупность изменения напряже­ния между двумя его предельными значениями σ max и σ min в течение перио­да Т.

Процессы постепенного накопления повреждений в материале под дей­ствием циклических нагрузок, приводя­щие к изменению его свойств, образова­нию трещин, их развитию и разруше­нию, называют усталостью, а свойство противостоять усталостивыносли­востью.

Износостойкость - свойство материа­ла оказывать в определенных условиях трения сопротивление изнашиванию. Изнашивание - процесс постепенного разрушения поверхностных слоев мате­риала путем отделения его частиц под влиянием сил трения. Результат изна­шивания называют износом. Его опре­деляют по изменению размеров, уменьшению объема или массы. Износостойкость материала оцени­вают величиной, обратной скорости изнашивания.

Классификация конструкционных материалов

Перечень конструкционных материа­лов, применяемых в машино- и прибо­ростроении, велик, и классифицировать их можно по разным признакам. Боль­шинство из них, такие, как стали, чугуны, сплавы на основе меди и легких металлов, являются универсальными. Они обладают многочисленными достоинствами и используются в раз­личных деталях и конструкциях.

Наряду с универсальными применяют конструкционные материалы определен­ного функционального назначения: жа­ропрочные, материалы с высокими упругими свойствами, износостойкие, коррозионно- и жаростойкие.

Классификация подраз­деляет конструкционные материалы по свойствам, определяющим выбор мате­риала для конкретных деталей кон­струкций. Каждая группа материалов оценивается соответствующими крите­риями, обеспечивающими работоспособность в эксплуатации. Универ­сальные материалы рассматриваются в нескольких группах, если возможность применения их определяется различны­ми критериями. В соответствии с выбранным принци­пом классификации все конструк­ционные материалы подразделяют на следующие группы:

1. Материалы, обеспечивающие жест­кость, статическую и циклическую про­чность

2. Материалы с особыми технологическими свойствами

3. Износостойкие материалы

4. Материалы с высокими упругими свойствами

5. Материалы с малой плотностью

6. Материалы с высокой удельной прочностью

7. Материалы, устойчивые к воздей­ствию температуры и рабочей среды

Стали, обеспечивающие жесткость, статическую и циклическую прочности

Детали машин и приборов, передаю­щих нагрузку, должны обладать жест­костью и прочностью, достаточными для ограничения упругой и пластиче­ской деформации, при гарантированной надежности и долговечности. Из много­образия материалов в наибольшей сте­пени этим требованиям удовлетворяют сплавы на основе железа - чугуна и осо­бенно стали. Стали обладают высоким наследуемым от железа модулем упру­гости и тем самым высокой жесткостью, уступая в этом лишь бору, вольфраму, молибдену, бе­риллию, которые из-за высокой стои­мости используются только в специаль­ных случаях. Высокая жесткость и дос­тупность обусловливают широкое при­менение сталей для изготовления строи­тельных металлоконструкций, корпус­ных деталей, ходовых винтов станков, валов и многих других деталей машин.

Высокую жесткость стали сочетают с достаточной статической и цикличе­ской прочностью, значение которой можно регулировать в широком диапа­зоне изменением концентрации углеро­да, легирующих элементов и технологии термической и химико-термической обработки.

Применяемые в технике сплавы на ос­нове меди, алюминия, магния, титана, а также пластмассы уступают стали по жесткости, прочности или надежности. Кроме комплекса этих важных для ра­ботоспособности деталей свойств, стали могут обладать и рядом других ценных качеств, делающих их универсальным ма­териалом. При соответствующем легировании и технологии термической обра­ботки сталь становится износостойкой, либо коррозионно-стойкой, либо жаростойкой и жаропрочной, а также при­обретает особые магнитные, тепловые или упругие свойства. Стали свой­ственны также хорошие технологические свойства. К тому же она сравни­тельно недорога. Вследствие этих достоинств сталь - основной металлический материал промышленности.

Классификация конструкционных сталей

Стали классифицируют по химическо­му составу, качеству, степени раскисле­ния, структуре и прочности.

По химическому составу стали класси­фицируют на углеродистые и легиро­ванные. По концентрации углерода те и другие подразделяют на низкоуглеро­дистые (< 0,3 % С), среднеуглеродистые (0,3-0,7% С) и высокоуглеродистые (> 0,7% С). Легированные стали в зави­симости от введенных элементов под­разделяют на хромистые, марганцо­вистые, хромоникелевые, хромокремнемарганцевые и многие другие. По коли­честву введенных элементов их разде­ляют на низко-, средне- и высоколегиро­ванные. В низколегированных сталях количество легирующих элементов не превышает 5%, в среднелегированных содержится от 5 до 10%, в высоколеги­рованных - более 10%.

По качеству стали классифицируют на стали обыкновенного качества, каче­ственные, высококачественные и особовысококачественные.

Под качеством стали понимают сово­купность свойств, определяемых металлургическим процессом ее производ­ства. Однородность химического соста­ва, строения и свойств стали, а также ее технологичность во многом зависят от содержания газов (кислорода, водорода, азота) и вредных примесей - серы и фос­фора. Газы являются скрытыми, количественно трудно определяемыми примесями, по­этому нормы содержания вредных при­месей служат основными показателями для разделения сталей по качеству. Стали обыкновенного качества содержат до 0,055% S и 0,045% Р, качественные - не более 0,04% S и 0,035% Р, высоко­качественные - не более 0,025% S и 0,025% Р, особовысококачественные - не более 0,015% S и 0,025% Р.

По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие. Раскисление - процесс удаления из жидкого металла кислорода, прово­димый для предотвращения хрупкого разрушения стали при горячей деформа­ции.

Спокойные стали раскисляют марган­цем, кремнием и алюминием. Они со­держат мало кислорода и затвердевают спокойно без газовыделения. Кипящие стали раскисляют только марганцем. Перед разливкой в них содержится по­вышенное количество кислорода, который при затвердевании, частично взаимодействуя с углеродом, удаляется в виде СО. Выделение пузырей СО соз­дает впечатление кипения стали, с чем и связано ее название. Кипящие слали дешевы, их производят низкоуглеродистыми и практически без кремния (Si < 0,07%), но с повышенным количе­ством газообразных примесей.

Полуспокойные стали по степени рас­кисления занимают промежуточное по­ложение между спокойными и кипящи­ми.

При классификации стали по структу­ре учитывают особенности ее строения в отожженном и нормализованном со­стояниях. По структуре в отожженном (равновесном) состоянии конструк­ционные стали разделяют на четыре класса: 1) доэвтектоидные, имеющие в структуре избыточный феррит; 2) эвтектоидные, структура которых состоит из перлита; 3) аустенитные; 4) ферритные. Углеродистые стали могут быть первых двух классов, легированные - всех классов.

Влияние углерода и постоянных примесей на свойства стали

Сталь - сложный по составу железо­углеродистый сплав. Кроме железа и углерода - основных компонентов, а также возможных легирующих эле­ментов, сталь содержит некоторое количество постоянных и случайных приме­сей, влияющих на ее свойства.

Углерод, концентрация которого в конструкционных сталях достигает 0,8%, оказывает определяющее влияние на их свойства. Степень его влияния за­висит от структурного состояния стали, ее термической обработки.

После отжига углеродистые конструк­ционные стали имеют ферритно-перлитную структуру, состоящую из двух фаз - феррита и цементита. Количество цементита, который отличается высокой твердостью и хрупкостью, увеличивает­ся пропорционально концентрации угле­рода. В связи с этим, по мере повыше­ния содержания углерода, увеличивают­ся прочность и твердость, но снижаются пластичность и вязкость стали.

Влияние углерода еще более значи­тельно при неравновесной структуре стали. После закалки на мартенсит вре­менное сопротивление легированных сталей интенсивно растет по мере уве­личения содержания углерода и дости­гает максимума при 0,4%С. При большей концентрации углерода становится нестабильным из-за хруп­кого разрушения стали, о чем свиде­тельствуют низкие значения ударной вязкости. При низком отпуске механиче­ские свойства полностью определяются концентрацией углерода в твердом рас­творе.

Углерод изменяет и технологические свойства стали. При увеличении его со­держания снижается способность сталей деформироваться в горячем и особенно в холодном состояниях, затрудняется свариваемость.

Постоянные примеси в стали : марганец, кремний, сера, фосфор, а также газы: кислород, азот, водород.

Марганец - полезная примесь; вводится в сталь для раскисления и остается в ней в количестве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Кремний - полезная примесь; вводится в сталь в качестве активного раскислителя и остается в ней в количестве до 0,4%, оказывая упрочняющее действие.

Сера - вредная примесь, вызывающая красноломкость стали - хрупкость при горя­чей обработке давлением. В стали она нахо­дится в виде сульфидов. Красноломкость связана с наличием сульфидов, которые образуют с железом эвтектику, отличаю­щуюся низкой температурой плавления (988 °С) и располагающуюся по границам зе­рен. При горячей деформации границы зерен оплавляются, и сталь хрупко разрушается. От красноломкости сталь предохраняет марганец, который связывает серу в суль­фиды, исключающие образование лег­коплавкой эвтектики. Устраняя красноломкость, сульфиды, так же как и другие неметаллические вклю­чения (оксиды, нитриды и т. п.), служат кон­центраторами напряжений, снижают пла­стичность и вязкость стали. Содержание серы в стали строго ограничивают. Положи­тельное влияние серы проявляется лишь в улучшении обрабатываемости резанием.

Фосфор - вредная примесь. Он растворяет­ся в феррите, упрочняет его, но вызывает хладноломкость - снижение вязкости по мере понижения температуры. Сильное охрупчивающее действие фосфора выражается в по­вышении порога хладноломкости. Каждая 0,01 % Р повышает порог хладно­ломкости на 25 °С. Хрупкость стали, вызы­ваемая фосфором, тем выше, чем больше в ней углерода.

Фосфор - крайне нежелательная примесь в конструкционных сталях. Однако современные методы выплавки и переплавки не обеспечивают его полного удаления. Основной путь его снижения - повышение качества шихты.

Кислород, азот и водород - вредные скры­тые примеси. Их влияние наиболее сильно проявляется в снижении пластичности и повышении склонности стали к хрупкому разрушению. Кислород и азот растворяются в феррите в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (окси­дами, нитридами). Кислородные включения вызывают красно- и хладноломкость, сни­жают прочность. Повышенное содержание азота вызывает деформационное старение.

Водород находится в твердом растворе или скапливается в порах и на дислокациях. Хрупкость, обусловленная водородом, про­является тем резче, чем выше прочность материала и меньше его растворимость в кри­сталлической решетке.

Случайные примеси - элементы, попадаю­щие в сталь из вторичного сырья или руд отдельных месторождений. Из скрапа в сталь попадает сурьма, олово и ряд других цветных металлов. Сталь, выплавленная из уральских руд, содержит медь, из керчен­ских - мышьяк. Случайные примеси в боль­шинстве случаев оказывают отрицательное влияние на вязкость и пластичность стали.

Диаграмма состояния железоуглеродистых сплавов

Среди диаграмм состояния металли­ческих сплавов самое большое значение имеет диаграмма состояния системы железо-углерод. Это объясняется тем, что в технике наиболее широко приме­няют железоуглеродистые сплавы.

Имеются две диаграммы состояния железоуглеродистых сплавов: метастабильная, характеризующая превращения в системе железо-карбид железа (це­ментит), и стабильная, характеризую­щая превращение в системе железо - графит.

На то, что система железо - графит является более стабильной, чем система железо-цементит, указывает тот факт, что при нагреве до высоких температур цементит распадается на железо и гра­фит, т. е. переходит в более стабильное состояние.