Что значит "конструкционные материалы". Конструкционные материалы Конструкционными называют материалы



Физико-механические свойства конструкционных материалов подразделяются на:

  • конструкционные;
  • технологические;
  • эксплуатационные.

Конструкционные свойства

К конструкционным свойствам относятся:

  • прочность;
  • упругость;
  • пластичность;
  • твердость;
  • ударная вязкость.

Эти свойства определяют прочность и долговечность машины.

Прочность - это способность материала сопротивляться деформации и разрушению.

Деформацией называется изменение размеров и формы тела под действием внешних сил. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают после окончания действия сил, а пластические остаются.

Пластичность - способность материала деформироваться. Пластичность обеспечивает конструктивную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений - отверстий, вырезов и т. п. При пластическом деформировании металла одновременно с изменением формы изменяется ряд свойств, в частности при холодном деформировании повышается прочность, но снижается пластичность.

Большинство механических характеристик материалов определяют в результате испытания образцов на растяжение (ГОСТ 1497-84).

При растяжении образцов с площадью поперечного сечения F a и рабочей (расчетной) длиной l о строят диаграмму растяжения в координатах: нагрузка P - удлинение ∆l образца (Рисунок 3 .).

Диаграмма растяжения характеризует поведение металла при деформировании от момента начала нагружения до разрушения образца. На диаграмме выделяют три участка:

  • упругой деформации - до нагрузки P упр ;
  • равномерной пластической деформации от P упр до P max ;
  • сосредоточенной пластической деформации от P max до P k .

Если образец нагрузить в пределах P упр , а затем полностью разгрузить и замерить его длину, то никаких последствий нагружения не обнаружится.

Такой характер деформирования образца называется упругим .
При нагружении образца более P упр появляется остаточная (пластическая) деформация.
Пластическое деформирование идет при возрастающей нагрузке, так как металл упрочняется в процессе деформирования.
Упрочнение металла при деформировании называется наклепом .

При дальнейшем нагружении пластическая деформация, а вместе с ней и наклеп все более увеличиваются, равномерно распределяясь по всему объему образца.
После достижения максимального значения нагрузки P max в наиболее слабом месте появляется местное утонение образца - шейка, в которой в основном и протекает дальнейшее пластическое деформирование. В связи с развитием шейки, несмотря на продолжающееся упрочнение металла, нагрузка уменьшается от P max до P k , и при нагрузке P k происходит разрушение образца.
При этом упругая деформация образца ∆l упр исчезает, а пластическая ∆l ост остается.

При деформировании твердого тела внутри него возникают внутренние силы. Величину сил, приходящуюся на единицу площади поперечного сечения образца, называют напряжением .
Единица измерения напряжения - мегаПаскаль (МПа) .

Отмеченные выше нагрузки на кривой растяжения (P упр, P T , P max , P k ) служат для определения основных характеристик прочности (напряжений):

  • предела упругости σ у ;
  • предела текучести σ Т ;
  • временного сопротивления σ в (предела прочности) и истинного сопротивления разрушению.


Временное сопротивление (предел прочности) σ в - это напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца.

σ в = Р max /F 0 ;

где Р - максимальная нагрузка, предшествующая разрушению;
F 0 - первоначальная площадь поперечного сечения образца.

Для оценки пластичности металла служат относительное остаточное удлинение образца при растяжении δ Р и относительное остаточное сужение площади поперечного сечения образца ψ Р .

Относительное остаточное удлинение определяется по формуле:

δ Р = (lк - l 0)/l 0 ,

где lк - длина образца после испытания;
l 0 -длина образца до испытания.

Относительное остаточное сужение определяется из выражения:

ψ Р = (F к - F 0) × 100%/F 0 ,

где F 0 - начальная площадь поперечного сечения образца;
F к - площадь поперечного сечения образца в месте разрушения.

Твердость - это сопротивление материала проникновению в его поверхность стандартного тела (индентора). О твердости судят либо по глубине проникновения индентора, либо по величине отпечатка от вдавливания. Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методы определения твердости Бринелля, Роквелла, Виккерса и микротвердости.

Схемы испытаний представлены на Рисунке 4 .


Рисунок 4 . Схема определения твердости материала
по Бринеллю (а), по Роквеллу (б), по Виккерсу (в).

Твердость по Бринеллю определяют на твердомере Бринелля. В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм , в зависимости от толщины изделия.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля. Твердость определяется как отношение приложенной нагрузки P к сферической поверхности отпечатка.

Метод Роквелла основан на вдавливании в поверхность под определенной нагрузкой наконечника в виде шарика или алмазного конуса. Для мягких материалов (до НВ 230 ) используется стальной шарик диаметром 1/16” (1,6 мм ), для более твердых материалов - конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка P 0 (100 Н ) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка P 1 , в течение некоторого времени действует общая рабочая нагрузка P . После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой P 0 .

Твердость по Виккерсу определяется по величине отпечатка индентора: алмазная четырехгранная пирамида с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка.

составляет 50…1000 Н . Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонких изделий, поверхностных слоёв. Метод обеспечивает высокую точность при высокой чувствительности.

Способ микротвердости - используется для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Метод аналогичен способу Виккерса. Индентор - пирамида меньших размеров, нагрузки при вдавливании P составляют 5…500 Н .

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытания на ударную вязкость производят на маятниковых копрах. Испытуемые образцы имеют надрезы определенной формы и размеров.
Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту.

Характеристикой вязкости является ударная вязкость a н , (удельная работа разрушения).



Федеральное агентство по образованию

ГОУ ВПО Уральский государственный экономический университет

Кафедра инженерных дисциплин

Контрольная работа

«Свойства конструкционных материалов»

Исполнитель:

студентка I курса заочного факультета

специальности «ЭПП»

Добрынкина Л. В.

Екатеринбург 2009


Понятие конструкционных материалов

Классификация свойств конструкционных материалов

Процессы производства стали

Стеклокристаллические материалы (ситаллы)

Чугун. Классификация чугунов

Графитизация чугунов

Классификация серого чугуна

Маркировка чугуна

Библиографический список


КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ

Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами Конструкционные материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

В составе конструкционных материалов нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств конструкционных материалов связаны с синтезированием материалов из элементов, имеющих предельные значения свойств.

Классификация свойств конструкционных материалов

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность (способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних сил);

· Твердость (способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии);

· Упругость (способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения);

· Вязкость (способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения);

· Хрупкость (способность материала разрушаться под действием внешних сил, сразу после упругой деформации).

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет (способность материала отражать световые лучи с определенной длиной световой волны);

· Плотность (масса единицы объема вещества);

· Температура плавления;

· Электропроводность (способность материала хорошо и без потерь проводить электрический ток);

· Теплопроводность (способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому);

· Теплоёмктсть (способность материала поглощать определенное количество теплоты);

· Магнитные (способность материалахорошо намагничиваться);

· Коэффициент объемного и линейного расширения.

3. Технологические свойства характеризуются способностью материала подвергаться различным видам горячей и холодной обработки.

· Литейные свойства;

· Ковкость (важно при обработке давлением);

· Свариваемость (это показатель того, на сколько материал может показать свариваемые соединения);

· Обработка резанием;

· Прокаливаемость;

· Закаливаемость.

4. Эксплуатационные свойства, характеризуют способность материалов обеспечивает надежную и долговечную работу изделий в конкретных условиях и эксплуатации, базируются на механических, физических и химических свойствах.

5. Химические свойства характеризуют способность материала вступать в химическое взаимодействие с другими веществами.

· Растворимость (способность материала образовывать с одним или несколькими веществами однородные системы, называющихся растворами);

· Жаростойкость (способность материала противостоять химическому разрушению поверхности под действием воздуха или другой окислительной атмосферой при высоких температурах);

· Коррозионостойкость (способность металлических материалов противостоять разрушению в результате химического или электрохимического воздействия на их поверхности внешней агрессивной среды (аналогичное свойство для неметаллических материалов- химикостойкость ));

· Окисление (способность материалов отдавать электроны, то есть окисляться при химическом взаимодействии с окружающей средой или другой материей).

СТАЛЬ

Сталь (польск.stal , от нем. Stahl ) - деформируемый (ковкий) сплав железа с углеродом (и другими элементами), содержание углерода в котором не превышает 2,14 %, но не меньше 0,02 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

В древнерусских письменных источниках сталь именовалась специальными терминами: «Оцел», «Харолуг» и «Уклад».

Сталь - важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства.

Стали делятся на конструкционные и инструментальные.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода - на малоуглеродистые, среднеуглеродистые и высокоуглеродистые; легированные стали по содержанию легирующих элементов делятся на низколегированные, среднелегированные и высоколегированные.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Производство стали в кислородных конвертерах

Кислородно-конвертерный процесс представляет собой один из видов передела жидкого чугуна в сталь без затраты топлива путем продувки чугуна в конвертере технически чистым кислородом, подаваемым через фурму, которая вводится в металл сверху. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Впервые кислородно-конвертерный процесс в промышленном масштабе был осуществлен в Австрии в 1952 - 1953 гг. на заводах в городах Линце и Донавице (за рубежом этот процесс получил название ЛД по первым буквам городов, в нашей стране - кислородно-конвертерного).

В настоящее время работают конвертеры емкостью от 20 до 450 т, продолжительность плавки в которых составляет 30 - 50 мин.

Кислородный конвертер (рис. 1) представляет собой сосуд 1 грушевидной формы из стального листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в него под давлением 0,8...1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3...0,8 м.

Конвертеры изготовляют емкостью 100...350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50...60 м 3 .

Материалами для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом. Для наводки шлака в конвертер добавляют железную руду и известь, а для его разжижения - боксит и плавиковый шпат.

Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250...1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.

Общие требования, предъявляемые к конструкционным материалам

Конструкционными называют мате­риалы, предназначенные для изготовления деталей машин, приборов, инже­нерных конструкций, подвергающиеся механическим нагрузкам. Делали машин и приборов характеризуются большим разнообразием форм, размеров, условий эксплуатации. Они работают при стати­ческих, циклических и ударных нагруз­ках, при низких и высоких температу­рах, в контакте с различными средами. Эти факторы определяют требования к конструкционным материалам, ос­новные из которых эксплуатационные, технологические и экономические.

Эксплуатационные требования имеют первостепенное значение. Для того, чтобы обеспечить работоспособность конкретных машин и приборов, кон­струкционный материал должен иметь высокую конструкционную прочность.

Конструкционной прочностью назы­вается комплекс механических свойств, обеспечивающих надежную и длитель­ную работу материала в условиях экс­плуатации.

Механические свойства, определяю­щие конструкционную прочность и вы­бор конструкционного материала, рас­смотрены ниже. Требуемые характеристики механических свойств материала для конкретного изделия за­висят не только от силовых факторов, но и воздействия на него рабочей среды и температуры.

Среда - жидкая, газообразная, ионизи­рованная, радиационная, в которой ра­ботает материал, оказывает существен­ное и преимущественно отрицательное влияние на его механические свойству, снижая работоспособность деталей. В частности, рабочая среда может вы­зывать повреждение поверхности вслед­ствие коррозионного растрескивания, окисления и образования окалины, из­менение химического состава поверх­ностного слоя в результате насыщения нежелательными элементами. Кроме того, возможны разбухание и местное разрушение материала в ре­зультате ионизационного и радиацион­ного облучения. Для того чтобы проти­востоять рабочей среде, материал дол­жен обладать не только механическими, но и определенными физико-химически­ми свойствами: стойкостью к электро­химической коррозии, жаростойкостью, радиационной стойкостью, влагостойкостью, способ­ностью работать в условиях вакуума и др.

В некоторых случаях важно так­же требование определенных маг­нитных, электрических, тепловых свойств, высокой стабильности разме­ров деталей (особенно высокоточных деталей приборов).

Технологические требования направлены на обеспечение наименьшей трудоемкости изготовления деталей и конструкций. Технологичность материала характери­зуют возможные методы его обработки. Она оценивается обрабатываемостью резанием, давлением, свариваемостью, способностью к литью, а также прокаливаемостью, склонностью к деформа­ции и короблению при термической обработке. Технологичность материала имеет важное значение, так как от нее зависят производительность и качество изготовления деталей.



Экономические требования сводятся к тому, чтобы материал имел невысо­кую стоимость и был доступным. Стали и сплавы по возможности должны со­держать минимальное количество леги­рующих элементов. Использование ма­териалов, содержащих легирующие эле­менты, должно быть обосновано повы­шением эксплуатационных свойств дета­лей. Экономические требования, так же как и технологические, приобретают особое значение при массовом масшта­бе производства.

Таким образом, качественный кон­струкционный материал должен удовле­творять комплексу требований.

Прочность конструкционных материалов и критерии ее оценки

Конструкционная прочность - ком­плексная характеристика, включающая сочетание критериев прочности, надеж­ности и долговечности.

Критерии прочности материала выби­рают в зависимости от условий его ра­боты. Критериями прочности при стати­стических нагрузках являются времен­ное сопротивление или предел теку­чести, характеризующие сопро­тивление материала пластической деформации. Поскольку при работе большинства деталей пластическая деформация недопустима, то их несущую способность, как правило, определяют по пределу текучести. Для приближен­ной оценки статической прочности ис­пользуют твердость НВ.

Большинство деталей машин испыты­вает длительные циклические нагрузки. Критерий их прочности - предел вынос­ливости. По величине выбранных критериев прочности рассчитывают допустимые рабочие напряжения. При этом, чем больше прочность материала, тем боль­ше допустимые рабочие напряжения и тем самым меньше размеры и масса детали. Однако повышение уровня прочности материала и, как следствие, рабочих на­пряжений сопровождается увеличением упругих деформаций.

Для ограничения упругой деформации материал должен обладать высоким мо­дулем упругости (или сдвига), являю­щимся критерием его жесткости. Имен­но критерии жесткости, а не прочности обусловливают размеры станин стан­ков, корпусов редукторов и других дета­лей, от которых требуется сохранение точных размеров и формы.

Возможно и противоположное требо­вание. Для пружин, мембран и других чувствительных упругих элементов при­боров, наоборот, важно обеспечить большие упругие перемещения. Для материалов, используемых в авиационной и ракетной технике, важ­ное значение имеет эффективность мате­риала по массе.

Таким образом, в качестве критериев конструкционной прочности выбирают те характеристики, которые наиболее полно отражают прочность в условиях эксплуатации.

Надежность - свойство материала противостоять хрупкому разрушению. Хрупкое разрушение вызывает вне­запный отказ деталей в условиях эксплуатации. Оно считается наиболее опасным из-за протекания с большой скоростью при напряжениях ниже расчетных, а также возможных аварийных последствий.

Для предупреждения хрупкого разру­шения конструкционные материалы должны обладать достаточной пластич­ностью и ударной вязкостью. Однако эти параметры надежности, определенные на небольших лабо­раторных образцах без учета условий эксплуатации конкретной детали, доста­точно показательны лишь для мягких малопрочных материалов. Необходимо также учитывать то, что в условиях эксплуатации действуют факторы, дополнительно снижающие их пластичность, вязкость и увеличивающие опасность хрупкого разрушения. К таким факторам отно­сятся концентраторы напряжений (над­резы), понижение температуры, динами­ческие нагрузки, увеличение размеров деталей.

Для того чтобы избежать внезапных поломок в условиях эксплуатации, необ­ходимо учитывать трещиностойкость материала. Трещиностойкость - группа параметров надежности, характеризую­щих способность материала тормозить развитие трещины.

Количественная оценка трещиностойкости основывается на линейной механике разрушения. В соответствии с ней очагами разру­шения высокопрочных материалов служат небольшие трещины эксплуатационного или технологического происхождения. Трещины являются острыми концентраторами напряжений, местные (ло­кальные) напряжения, в вершине которых мо­гут во много раз превышать средние рас­четные напряжения.

Долговечность - свойство материала сопротивляться развитию постепенного разрушения, обеспечивая работоспособность деталей в течение заданного времени. Причины потери работоспособности разнообразны: развитие процессов усталости, изнаши­вания, ползучести, коррозии, радиацион­ного разбухания и пр. Эти процессы вызывают постепенное накопление не­обратимых повреждений в материале и его разрушение. Обеспечение долговечности материала означает уменьше­ние до требуемых значений скорости его разрушения.

Для большинства деталей машин долговечность определяется сопротивлением материала усталост­ным разрушениям (циклической долго­вечностью) или сопротивлением изна­шиванию. Поэтому эти причины потери работоспособности материала требуют подробного рассмо­трения.

Циклическая долговечность характе­ризует работоспособность материала в условиях многократно повторяющих­ся циклов напряжений. Цикл напряже­ния - совокупность изменения напряже­ния между двумя его предельными значениями σ max и σ min в течение перио­да Т.

Процессы постепенного накопления повреждений в материале под дей­ствием циклических нагрузок, приводя­щие к изменению его свойств, образова­нию трещин, их развитию и разруше­нию, называют усталостью, а свойство противостоять усталостивыносли­востью.

Износостойкость - свойство материа­ла оказывать в определенных условиях трения сопротивление изнашиванию. Изнашивание - процесс постепенного разрушения поверхностных слоев мате­риала путем отделения его частиц под влиянием сил трения. Результат изна­шивания называют износом. Его опре­деляют по изменению размеров, уменьшению объема или массы. Износостойкость материала оцени­вают величиной, обратной скорости изнашивания.

Классификация конструкционных материалов

Перечень конструкционных материа­лов, применяемых в машино- и прибо­ростроении, велик, и классифицировать их можно по разным признакам. Боль­шинство из них, такие, как стали, чугуны, сплавы на основе меди и легких металлов, являются универсальными. Они обладают многочисленными достоинствами и используются в раз­личных деталях и конструкциях.

Наряду с универсальными применяют конструкционные материалы определен­ного функционального назначения: жа­ропрочные, материалы с высокими упругими свойствами, износостойкие, коррозионно- и жаростойкие.

Классификация подраз­деляет конструкционные материалы по свойствам, определяющим выбор мате­риала для конкретных деталей кон­струкций. Каждая группа материалов оценивается соответствующими крите­риями, обеспечивающими работоспособность в эксплуатации. Универ­сальные материалы рассматриваются в нескольких группах, если возможность применения их определяется различны­ми критериями. В соответствии с выбранным принци­пом классификации все конструк­ционные материалы подразделяют на следующие группы:

1. Материалы, обеспечивающие жест­кость, статическую и циклическую про­чность

2. Материалы с особыми технологическими свойствами

3. Износостойкие материалы

4. Материалы с высокими упругими свойствами

5. Материалы с малой плотностью

6. Материалы с высокой удельной прочностью

7. Материалы, устойчивые к воздей­ствию температуры и рабочей среды

Стали, обеспечивающие жесткость, статическую и циклическую прочности

Детали машин и приборов, передаю­щих нагрузку, должны обладать жест­костью и прочностью, достаточными для ограничения упругой и пластиче­ской деформации, при гарантированной надежности и долговечности. Из много­образия материалов в наибольшей сте­пени этим требованиям удовлетворяют сплавы на основе железа - чугуна и осо­бенно стали. Стали обладают высоким наследуемым от железа модулем упру­гости и тем самым высокой жесткостью, уступая в этом лишь бору, вольфраму, молибдену, бе­риллию, которые из-за высокой стои­мости используются только в специаль­ных случаях. Высокая жесткость и дос­тупность обусловливают широкое при­менение сталей для изготовления строи­тельных металлоконструкций, корпус­ных деталей, ходовых винтов станков, валов и многих других деталей машин.

Высокую жесткость стали сочетают с достаточной статической и цикличе­ской прочностью, значение которой можно регулировать в широком диапа­зоне изменением концентрации углеро­да, легирующих элементов и технологии термической и химико-термической обработки.

Применяемые в технике сплавы на ос­нове меди, алюминия, магния, титана, а также пластмассы уступают стали по жесткости, прочности или надежности. Кроме комплекса этих важных для ра­ботоспособности деталей свойств, стали могут обладать и рядом других ценных качеств, делающих их универсальным ма­териалом. При соответствующем легировании и технологии термической обра­ботки сталь становится износостойкой, либо коррозионно-стойкой, либо жаростойкой и жаропрочной, а также при­обретает особые магнитные, тепловые или упругие свойства. Стали свой­ственны также хорошие технологические свойства. К тому же она сравни­тельно недорога. Вследствие этих достоинств сталь - основной металлический материал промышленности.

Классификация конструкционных сталей

Стали классифицируют по химическо­му составу, качеству, степени раскисле­ния, структуре и прочности.

По химическому составу стали класси­фицируют на углеродистые и легиро­ванные. По концентрации углерода те и другие подразделяют на низкоуглеро­дистые (< 0,3 % С), среднеуглеродистые (0,3-0,7% С) и высокоуглеродистые (> 0,7% С). Легированные стали в зави­симости от введенных элементов под­разделяют на хромистые, марганцо­вистые, хромоникелевые, хромокремнемарганцевые и многие другие. По коли­честву введенных элементов их разде­ляют на низко-, средне- и высоколегиро­ванные. В низколегированных сталях количество легирующих элементов не превышает 5%, в среднелегированных содержится от 5 до 10%, в высоколеги­рованных - более 10%.

По качеству стали классифицируют на стали обыкновенного качества, каче­ственные, высококачественные и особовысококачественные.

Под качеством стали понимают сово­купность свойств, определяемых металлургическим процессом ее производ­ства. Однородность химического соста­ва, строения и свойств стали, а также ее технологичность во многом зависят от содержания газов (кислорода, водорода, азота) и вредных примесей - серы и фос­фора. Газы являются скрытыми, количественно трудно определяемыми примесями, по­этому нормы содержания вредных при­месей служат основными показателями для разделения сталей по качеству. Стали обыкновенного качества содержат до 0,055% S и 0,045% Р, качественные - не более 0,04% S и 0,035% Р, высоко­качественные - не более 0,025% S и 0,025% Р, особовысококачественные - не более 0,015% S и 0,025% Р.

По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие. Раскисление - процесс удаления из жидкого металла кислорода, прово­димый для предотвращения хрупкого разрушения стали при горячей деформа­ции.

Спокойные стали раскисляют марган­цем, кремнием и алюминием. Они со­держат мало кислорода и затвердевают спокойно без газовыделения. Кипящие стали раскисляют только марганцем. Перед разливкой в них содержится по­вышенное количество кислорода, который при затвердевании, частично взаимодействуя с углеродом, удаляется в виде СО. Выделение пузырей СО соз­дает впечатление кипения стали, с чем и связано ее название. Кипящие слали дешевы, их производят низкоуглеродистыми и практически без кремния (Si < 0,07%), но с повышенным количе­ством газообразных примесей.

Полуспокойные стали по степени рас­кисления занимают промежуточное по­ложение между спокойными и кипящи­ми.

При классификации стали по структу­ре учитывают особенности ее строения в отожженном и нормализованном со­стояниях. По структуре в отожженном (равновесном) состоянии конструк­ционные стали разделяют на четыре класса: 1) доэвтектоидные, имеющие в структуре избыточный феррит; 2) эвтектоидные, структура которых состоит из перлита; 3) аустенитные; 4) ферритные. Углеродистые стали могут быть первых двух классов, легированные - всех классов.

Влияние углерода и постоянных примесей на свойства стали

Сталь - сложный по составу железо­углеродистый сплав. Кроме железа и углерода - основных компонентов, а также возможных легирующих эле­ментов, сталь содержит некоторое количество постоянных и случайных приме­сей, влияющих на ее свойства.

Углерод, концентрация которого в конструкционных сталях достигает 0,8%, оказывает определяющее влияние на их свойства. Степень его влияния за­висит от структурного состояния стали, ее термической обработки.

После отжига углеродистые конструк­ционные стали имеют ферритно-перлитную структуру, состоящую из двух фаз - феррита и цементита. Количество цементита, который отличается высокой твердостью и хрупкостью, увеличивает­ся пропорционально концентрации угле­рода. В связи с этим, по мере повыше­ния содержания углерода, увеличивают­ся прочность и твердость, но снижаются пластичность и вязкость стали.

Влияние углерода еще более значи­тельно при неравновесной структуре стали. После закалки на мартенсит вре­менное сопротивление легированных сталей интенсивно растет по мере уве­личения содержания углерода и дости­гает максимума при 0,4%С. При большей концентрации углерода становится нестабильным из-за хруп­кого разрушения стали, о чем свиде­тельствуют низкие значения ударной вязкости. При низком отпуске механиче­ские свойства полностью определяются концентрацией углерода в твердом рас­творе.

Углерод изменяет и технологические свойства стали. При увеличении его со­держания снижается способность сталей деформироваться в горячем и особенно в холодном состояниях, затрудняется свариваемость.

Постоянные примеси в стали : марганец, кремний, сера, фосфор, а также газы: кислород, азот, водород.

Марганец - полезная примесь; вводится в сталь для раскисления и остается в ней в количестве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Кремний - полезная примесь; вводится в сталь в качестве активного раскислителя и остается в ней в количестве до 0,4%, оказывая упрочняющее действие.

Сера - вредная примесь, вызывающая красноломкость стали - хрупкость при горя­чей обработке давлением. В стали она нахо­дится в виде сульфидов. Красноломкость связана с наличием сульфидов, которые образуют с железом эвтектику, отличаю­щуюся низкой температурой плавления (988 °С) и располагающуюся по границам зе­рен. При горячей деформации границы зерен оплавляются, и сталь хрупко разрушается. От красноломкости сталь предохраняет марганец, который связывает серу в суль­фиды, исключающие образование лег­коплавкой эвтектики. Устраняя красноломкость, сульфиды, так же как и другие неметаллические вклю­чения (оксиды, нитриды и т. п.), служат кон­центраторами напряжений, снижают пла­стичность и вязкость стали. Содержание серы в стали строго ограничивают. Положи­тельное влияние серы проявляется лишь в улучшении обрабатываемости резанием.

Фосфор - вредная примесь. Он растворяет­ся в феррите, упрочняет его, но вызывает хладноломкость - снижение вязкости по мере понижения температуры. Сильное охрупчивающее действие фосфора выражается в по­вышении порога хладноломкости. Каждая 0,01 % Р повышает порог хладно­ломкости на 25 °С. Хрупкость стали, вызы­ваемая фосфором, тем выше, чем больше в ней углерода.

Фосфор - крайне нежелательная примесь в конструкционных сталях. Однако современные методы выплавки и переплавки не обеспечивают его полного удаления. Основной путь его снижения - повышение качества шихты.

Кислород, азот и водород - вредные скры­тые примеси. Их влияние наиболее сильно проявляется в снижении пластичности и повышении склонности стали к хрупкому разрушению. Кислород и азот растворяются в феррите в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (окси­дами, нитридами). Кислородные включения вызывают красно- и хладноломкость, сни­жают прочность. Повышенное содержание азота вызывает деформационное старение.

Водород находится в твердом растворе или скапливается в порах и на дислокациях. Хрупкость, обусловленная водородом, про­является тем резче, чем выше прочность материала и меньше его растворимость в кри­сталлической решетке.

Случайные примеси - элементы, попадаю­щие в сталь из вторичного сырья или руд отдельных месторождений. Из скрапа в сталь попадает сурьма, олово и ряд других цветных металлов. Сталь, выплавленная из уральских руд, содержит медь, из керчен­ских - мышьяк. Случайные примеси в боль­шинстве случаев оказывают отрицательное влияние на вязкость и пластичность стали.

Диаграмма состояния железоуглеродистых сплавов

Среди диаграмм состояния металли­ческих сплавов самое большое значение имеет диаграмма состояния системы железо-углерод. Это объясняется тем, что в технике наиболее широко приме­няют железоуглеродистые сплавы.

Имеются две диаграммы состояния железоуглеродистых сплавов: метастабильная, характеризующая превращения в системе железо-карбид железа (це­ментит), и стабильная, характеризую­щая превращение в системе железо - графит.

На то, что система железо - графит является более стабильной, чем система железо-цементит, указывает тот факт, что при нагреве до высоких температур цементит распадается на железо и гра­фит, т. е. переходит в более стабильное состояние.

Все конструкционные материалы можно условно разделить на однородные икомпозиционные, металлические и неметаллические (Рисунок 6.1).

Металлы – химические элементы, образующие в свободном состоянии простые вещества с металлической связью между атомами.

Сплавы – твердые вещества, образованные сплавлением двух или более компонентов. Сплав образуется в результате как чисто физических процессов (растворение, перемешивание), так и в результате химического взаимодействия между элементами. Разнообразие состава типов межатомной связи и кристаллических структур сплавов обуславливает значительное различие их физико-химических, электрических, магнитных, механических, оптических и других свойств. Сплавы на основе железа называютсячерными , на основе других металловцветными .

Неметаллические материалы – неорганические и органические материалы, композиционные материалы на неметаллической основе, клеи, герметики, лакокрасочные покрытия, графит, стекло, керамика и т.д.

Полимеры – вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры.

Композиционные материалы – гетерофазные (состоящие из различных по физическим и химическим свойствам фаз) системы, полученные из двух и более компонентов с сохранением индивидуальности каждого отдельного компонента.

При этом:

      материал является однородным в макромасштабе и неоднородным в микромасштабе (компоненты различаются по свойствам, между ними существует явная граница раздела);

      один из компонентов, обладающий непрерывностью по всему объему, является матрицей; компонент прерывистый, разделенный в объеме композиции, считается усиливающим или армирующим.

В приборостроении большое применение находят различные неметаллические материалы, такие как пластмассы, резина, стекло, керамика, лакокрасочные и клеевые материалы, причем с развитием химии и новых технологий доля неметаллических материалов в приборостроении постоянно увеличивается.

Выбор пластмасс определяется назначением детали и характерной особенностью ее получения (прессование, литье и другие способы), причем особенности строения, механические и физические свойства пластмасс существенно влияют на конструкцию детали и способ ее изготовления.

Применение порошковых материалов определяется необходимостью изготовления изделий с особыми свойствами и структурой, которые недостижимы другими методами производства, либо изделий с обычным составом, структурой и свойствами, но при значительно более выгодных экономических показателях производства.

Свойства конструкционных материалов подразделяются на:

      механические;

      технологические;

      эксплуатационные.

К механическим свойствам относятся:

      прочность;

      упругость;

      пластичность;

      твердость;

      ударная вязкость.

Эти свойства определяют прочность и долговечность конструкции.

Прочность – это способность материала сопротивляться деформации и разрушению.

Деформацией называется изменение размеров и формы тела под действием внешних сил. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают после окончания действия сил, а пластические остаются.

Пластичность – способность материала деформироваться. Пластичность обеспечивает конструктивную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений – отверстий, вырезов и т.п. При пластическом деформировании металла одновременно с изменением формы изменяется ряд свойств, в частности при холодном деформировании повышается прочность, но снижается пластичность.

Большинство механических характеристик материалов определяют в результате испытания образцов на растяжение (ГОСТ 1497-84).

При растяжении образцов с площадью поперечного сечения S 0 и рабочей (расчетной) длиной l о строят диаграмму растяжения в координатах: нагрузкаP– удлинение ∆lобразца (рисунок 6.2).

Рисунок 6.2 – Диаграмма растяжения

Диаграмма растяжения характеризует поведение металла при деформировании от момента начала нагружения до разрушения образца. На диаграмме выделяют три участка:

      упругой деформации – до нагрузки Р упр;

      равномерной пластической деформации от Р упр до Р мах;

      и сосредоточенной пластической деформации от Р мах до Р к.

Если образец нагрузить в пределах Р упр, а затем полностью разгрузить и замерить его длину, то никаких последствий нагружения не обнаружится.

Закон Гука для линейного участка диаграммы: σ = Е ε, где Е – называется модулем упругости или модулем Юнга. Е имеет размерность кг/см 2 и является одной из физических констант материала. Модуль упругости при растяжении численно равен тангенсу угла наклона диаграммы напряжений к оси абсцисс.

Между относительной поперечной деформацией и относительной продольной деформацией при простом растяжении и сжатии в пределах применимости закона Гука существует постоянное соотношение, абсолютная величина которого называется коэффициентом Пуассона μ = ε 1 /ε – безразмерная величина и для всех изотропных материалов лежит в пределах 0 – 0,5 (0 для пробки, 0,5 для каучука, для стали 0,3).

При нагружении образца более Р упр появляетсяостаточная (пластическая) деформация. Пластическое деформирование идет при возрастающей нагрузке, так как металл упрочняется в процессе деформирования. Упрочнение металла при деформировании называетсянаклепом .

При дальнейшем нагружении пластическая деформация, а вместе с ней и наклеп все более увеличиваются, равномерно распределяясь по всему объему образца. После достижения максимального значения нагрузки Р мах в наиболее слабом месте появляется местное утонение образца – шейка, в которой в основном и протекает дальнейшее пластическое деформирование. В связи с развитием шейки, несмотря на продолжающееся упрочнение металла, нагрузка уменьшается отР мах до Р к, и при нагрузке Р к происходит разрушение образца. При этом упругая деформация образца исчезает, а пластическая ∆l ост остается.

При деформировании твердого тела внутри него возникают внутренние силы. Величину сил, приходящуюся на единицу площади поперечного сечения образца, называют напряжением . Размерность напряжения МПа.

Пользуясь указанными характеристиками, и зная площадь сечения образца S 0 , определяют основные характеристики прочности материала:

σ пц = Р пц /S 0 - предел пропорциональности; σ уп = Р уп /S 0 - предел упругости; σ т = Р т /S 0 - предел текучести; σ в = Р мах /S 0 - предел прочности или временной сопротивление; σ к = Р к /S 0 - напряжение в момент разрыва.

Поскольку диаграмма растяжения металлов характеризует не только свойства металлов, но и размеры образца, то ее принято перестраивать в относительных координатах σ – ε, такая диаграмма называется диаграммой напряжений.

Пластичность характеризуется относительным удлинениеми относительным сужением:

где l 0 ,S 0 - начальные длина и площадь поперечного сечения образца;l k ,S k - конечная длина и площадь в месте разрыва.

Допустимые значения напряжений в расчетах выбирают меньше в 1,5 - 2,5 раза.

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора). О твердости судят либо по глубине проникновения индентора, либо по величине отпечатка от вдавливания. Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методыопределения твердости Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на Рисунке 3.4.

Рисунок 6.3 – Схема определения твердости материала по Бринеллю (а), по Роквеллу (б), по Виккерсу (в).

Твердость по Бринеллю определяют на твердомере Бринелля. В качестве индентора используется стальной закаленный шарик диаметром Д = 2,5; 5; 10 мм, в зависимости от толщины изделия.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля. Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка.

Метод Роквелла основан на вдавливании в поверхность под определенной нагрузкой наконечника в виде шарика или алмазного конуса. Для мягких материалов (до НВ 230) используется стальной шарик диаметром 1/16” (1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка Р 0 (100 н) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р 1 , в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечникаhпод нагрузкойP.

Твердость по Виккерсу определяется по величине отпечатка индентора: алмазная четырехгранная пирамида с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки Р к площади поверхности отпечатка.

Нагрузка Р составляет 50…1000 н. Диагональ отпечатка dизмеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонких изделий, поверхностных слоёв. Метод обеспечивает высокую точность при высокой чувствительности.

Способ микротвердости – используется для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Метод аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливанииPсоставляют 5…500 н.

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытания на ударную вязкость производят на маятниковых копрах. Испытуемые образцы имеют надрезы определенной формы и размеров. Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту. Ее определяют по ГОСТ как удельную работу разрушения призматического образца с концентратором (надрезом) посередине одним ударом маятникового копра: КС = К/S, где К - работа разрушения;S- площадь поперечного сечения образца в месте концентратора. Измеряется в МДж/м 2 .ОбозначаютKCU,KCV,KCT,U,V,T- вид концентратора (U,V- образный; Т - трещина усталости).

Технологические свойства конструкционных материалов.

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

К технологическим свойствам металлов и сплавов относятся:

      литейные свойства;

      деформируемость;

      свариваемость;

      обрабатываемость режущим инструментом.

Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.

Литейные свойства характеризуют способность материала к получению из него качественных отливок.

Литейные свойства определяются способностью расплавленного металла или сплава к заполнению литейной формы (жидкотекучесть), степенью химической неоднородности по сечению полученной отливки (ликвация), а также величиной усадки – сокращением линейных размеров при кристаллизации и дальнейшем охлаждении.

Способность материала к обработке давлением – это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь (обработка без снятия стружки). Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб. Критерием годности материала является отсутствие дефектов после испытания.

Свариваемость – это способность материала образовывать неразъемные соединения требуемого качества при сварке. Свойство оценивается по качеству сварного шва.

Обрабатываемость резанием – характеризует способность материала поддаваться обработке режущим инструментом. Оценивается по стойкости инструмента и по качеству обработанной поверхности.

Технологические свойства часто определяют выбор материала для конструкции. Разрабатываемые материалы могут быть внедрены в производство только в том случае, если их технологические свойства удовлетворяют необходимым требованиям.

Современное автоматизированное производство, предъявляет к технологическим свойствам материала особые требования: проведение сварки на больших скоростях, ускоренное охлаждение отливок, обработка резанием на повышенных режимах и т. п. при обеспечении необходимого условиявысокого качества получаемой продукции.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях:

      износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения;

      коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных и щелочных сред;

      жаростойкость – способность материала сопротивляться окислению в газовой среде при высокой температуре;

      жаропрочность – это способность материала сохранять прочность и твердость при высоких температурах;

      хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах;

      антифрикционность – способность материала прирабатываться к другому материалу.

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий. При выборе материала для создания конструкции необходимо учитывать конструкционные, технологические и эксплуатационные свойства.