Контрольная работа: Свойства конструкционных материалов. Свойства и классификация конструкционных материалов Конструкционные материалы делятся

При выборе материалов в первую очередь требуется всесторонне рассмотреть условия его работы и разграничить факторы, воздействующие на материал, по степени их влияния на надежность машины или механизма. Определяющие факторы должны быть учтены обязательно, менее определяющие - по возможности.

Следующим этапом выбора материала должен быть процесс определения комплекса необходимых свойств материала, обеспечивающих надежную и долговечную работу конструкций, машин и оборудования в заданных условиях эксплуатации. Так как конструкционные материалы характеризуются механическими, физикохимическими и технологическими свойствами, то рассматривать необходимо всю гамму свойств, особенно, если в конструкции должны работать разные материалы.

Более правильным является формирование технических требований к материалу на основании моделирования условий работы изделия в реальных условиях эксплуатации с использованием специальных стендов, на которых с помощью тензометрирования можно определить уровень локальных пиковых напряжений изделия. В том случае, когда не имеется возможности использовать стенд для измерения рабочего напряжения, возникающего в изделии при его эксплуатации, следует использовать расчетные методы.

Физико-химические свойства. Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. Из важных физических свойств можно выделить теплопроводность, плотность, коэффициент линейного расширения. Применение в соединениях деталей из различных материалов обусловливает необходимость учета их коэффициентов линейного расширения.

Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Детали любого изделия должны быть совместимы с рабочей средой. Коррозия, коррозионная усталость, коррозия под напряжением, водородное охрупчивание и т.д. могут вызвать повреждение в металле и привести к хрупкому разрушению конструкции. Такие химически активные металлы, как титан и его сплавы, магниевые сплавы, алюминиевые сплавы, при ударном нагружении могут самопроизвольно загораться при контакте с жидким кислородом.

Механические свойства. Основой выбора материалов для создания надежной и работоспособной техники являются их механические свойства, в первую очередь, прочностные, которые характеризуют способность материалов сопротивляться деформации и разрушению под действием различного рода нагрузок, в разных средах и при различных температурных условиях.

Расчет конструкции на прочность производят по допустимым напряжениям [о], определяемым из условий прочности при статическом нагружении или долговечности при циклическом нагружении. При статическом нагружении допускаемое напряжение равно отношению предельного для данного материала напряжения к коэффициенту безопасности , т.е. к коэффициенту запаса прочности п. Для пластичных материалов за предельное напряжение принимают предел текучести, для квазихрупких - временное сопротивление:

[ = а Т /п Т или [а] = а в /я в. (2.1)

Значение коэффициента запаса прочности зависит от многих факторов: разброса характеристик прочности; присутствия в материале дефектов, допускаемых техническими условиями; степени схематизации расчетной процедуры и т.д.

В России за допускаемое принимается минимальное напряжение, определяемое по пределу текучести или временному сопротивлению. Такая же методика принята во многих странах. Однако в некоторых странах, например в Чехии, Словакии, Германии, Польше, для определения допускаемых напряжений расчет ведется только по пределу текучести, а в Японии - только по временному сопротивлению.

Коэффициент запаса может меняться в широких пределах в зависимости от условий работы оборудования и опыта работы с данным материалом.

Для сосудов и аппаратов, работающих под давлением, коэффициент запаса по пределу текучести находится в пределах от 1,5 до 1,65, а по временному сопротивлению - от 2,35 до 4.

Однако расчеты на прочность конструкций по номинальным напряжениям с учетом коэффициентов запаса не всегда гарантируют необходимый ресурс их работы. Это связано с тем, что назначаемые запасы прочности не учитывают ряда факторов, которые способствуют возникновению повреждений и разрушений несущих элементов конструкций и машин. К этим факторам относятся: присутствие в металле дефектов типа трещин, как исходных, так и возникающих в процессе эксплуатации; наличие микро- и макронеоднородностей металла по толщине, в зонах сварных швов и т.д.; появление локальных напряжений вследствие их концентрации, а также остаточных технологических напряжений; нестабильность эксплуатационного нагружения из-за статических и импульсных перегрузок, стационарных и нестационарных циклических нагрузок. Для учета этих факторов необходим переход от расчета по номинальным напряжениям к анализу локальных напряжений, возникающих в отдельных зонах изделия.

Для высокопрочных и среднепрочных материалов расчет допустимых значений следует проводить на основе принципов механики разрушения с учетом максимальных размеров дефектов. Это связано с тем, что повышение прочности обычно сопровождается уменьшением пластичности и вязкости материала.

Пластичность характеризует способность материала к пластическому течению при превышении предела текучести, а вязкость - способность поглощать энергию внешних сил при разрушении.

У разных материалов соотношение пластичности и вязкости может очень сильно различаться. Например, алюминий имеет малую вязкость при высоком относительном удлинении. Наоборот, термообработанная (улучшенная), легированная сталь при сравнительно небольшом относительном удлинении может иметь высокую вязкость.

Пластичность и вязкость в конструкционные расчеты не входят и являются качественными показателями.

Пластичность показывает способность металла к перераспределению напряжений в зонах концентрации (пиков). Пластическая деформация как бы предохраняет металл от резких локальных перегрузок вблизи концентраторов напряжений.

Широко принятым критерием работоспособности металлических сплавов и сварных соединений, особенно используемых при низких температурах, является ударная вязкость, определенная на образцах с надрезом. При этом сложность представляет выбор необходимого уровня вязкости и вида образцов для ее оценки. В разных странах принят различный гарантированный уровень ударной вязкости. За рубежом сталь обычно допускается к эксплуатации, если ее ударная вязкость, определенная на образцах типа Шарли размером 10 х 10 х 55 мм с надрезом радиусом 0,25 мм, составляет КСУ> 0,30 МДж/м 2 .

Надежность конструкций, работающих в условиях многократного подъема и сброса давления, зависит от сопротивления материалов усталостному разрушению. Поэтому для таких изделий проводятся имитирующие циклические испытания стандартных образцов либо циклические стендовые испытания. База испытаний выбирается в зависимости от условий эксплуатации оборудования.

Металл установок или изделий, подвергаемых многократному нагреву или охлаждению, испытывается на сопротивление термической усталости.

В случае длительного нагружения конструкций при высоких температурах производятся испытания ползучести и длительной прочности материала.

При циклическом или длительном статическом нагружении номинальные эксплуатационные напряжения выбираются с введением коэффициентов запаса п а и п п по пределам длительной прочности и ползучести.

Коэффициенты Яд и л п обычно имеют значения в пределах 2,0-3,5.

Технологические свойства (литейные свойства у литейных сплавов; обрабатываемость давлением у деформируемых сплавов, обрабатываемость резанием, свариваемость) весьма важны и могут быть решающими при выборе материала для изготовления высококачественных изделий в производственных условиях. Например, нельзя изготовить литьем тонкостенные протяженные детали из сплава с низкой жидкотекучестью и плохой заполняемостью. Нельзя также изготавливать сварные конструкции из сталей с высоким содержанием углерода (высоким углеродным эквивалентом), так как в зоне сварного шва всегда будут образовываться сварные трещины.

При рассмотрении обрабатываемости материалов следует исходить из условий серийности изготавливаемого изделия и необходимости применения смягчающей термообработки. Так, при изготовлении изделий крупносерийного или массового производства следует ориентироваться на их механическую обработку с использованием станков с ЧПУ и обрабатывающих центров. В этом случае твердость обрабатываемых деталей должна быть невысокой (до 250 НВ). Для обеспечения низкой твердости для этих деталей может применяться предварительная термообработка: отжиг, нормализация, высокий отпуск.

Оценка свариваемости конструкционных материалов должна включать анализ уровня механических свойств сварного соединения и основного металла, определение склонности к образованию дефектов, прежде всего трещин в металле шва и зоне термического влияния, определение чувствительности сварного соединения к концентраторам напряжений и склонности к хрупкому разрушению. Для получения бездефектных равнопрочных сварных соединений, обладающих высоким сопротивлением хрупкому разрушению, необходима разработка специальной системы легирования сварного шва.

Приняты следующие термины, характеризующие свариваемость металлов: хорошая, удовлетворительная, ограниченная, неудовлетворительная. Хорошая свариваемость характерна для металлических материалов, не имеющих ограничений в проведении процесса сварки при температуре окружающей среды по массе и сложности конструкций. Такие материалы не требуют предварительного подогрева. При удовлетворительной свариваемости на морозе сварка не допускается и должна производиться при комнатной температуре. В сварных элементах должны отсутствовать жесткие стыки; для сложных узлов необходим предварительный сопутствующий подогрев; после сварки при большом объеме наплавленного металла необходим отпуск; при вваривании вкладышей рекомендуется проводить промежуточную термическую обработку. Ограниченная свариваемость подразумевает возможность сварки небольших деталей простой формы с подогревом до 300-400 °С и проведении отпуска после сварки; в случае жестких контуров температура подогрева должна быть увеличена до 600 °С. Неудовлетворительная свариваемость характерна для материалов, нуждающихся в отжиге перед сваркой; даже при сварке простых узлов их необходимо подогревать до температур более 450 °С с обязательным проведением высокого отпуска после сварки.

Выбранные материалы и технологии изготовления из них изделий обязательно должны быть привязаны к возможностям конкретного производства. Например, не следует ориентироваться на лазерную термообработку изделий массового производства, так как это окажется технически невыполнимым, а следует выбрать один из видов химико-термической обработки, который используется на предприятии - изготовителе изделий.

Важный этап выбора материала - оценка его стоимости и дефицитности. Выбранный материал должен быть по возможности дешевым, с учетом всех затрат, включающих как стоимость самого материала, так и стоимость изготовления из него деталей, а также эксплуатационную стойкость. Необходимо учитывать также наличие дефицитных составляющих материала. Например, в последние годы такие элементы в стали, как вольфрам, кобальт, никель являются дефицитными и их использование в качестве легирующих добавок в сталях должно быть ограничено. Однако в тех случаях, когда без них нельзя обеспечить необходимые служебные свойства, их применение оправдано (быстрорежущие стали, жаропрочные стали и сплавы).

Таким образом, основой при выборе материалов являются назначение и условия работы изделия или конструкции. При ЭТОМ КОНструктор опирается на опыт изготовления и эксплуатации изделий и конструкций данного профиля, уровень технологии производства и контроля, а также учитывает экономические соображения. При выборе материалов большую роль могут сыграть результаты стендовых и натурных испытаний изделий.

Использование при выборе материалов, ранее хорошо зарекомендовавших себя в подобных конструкциях и изделиях, вполне оправдано, но может привести, с одной стороны, к отказу от совершенствования конструкций и изделий, а с другой - к повторению уже сделанных ошибок.

Федеральное агентство по образованию

ГОУ ВПО Уральский государственный экономический университет

Кафедра инженерных дисциплин

Контрольная работа

«Свойства конструкционных материалов»

Исполнитель:

студентка I курса заочного факультета

специальности «ЭПП»

Добрынкина Л. В.

Екатеринбург 2009


Понятие конструкционных материалов

Классификация свойств конструкционных материалов

Процессы производства стали

Стеклокристаллические материалы (ситаллы)

Чугун. Классификация чугунов

Графитизация чугунов

Классификация серого чугуна

Маркировка чугуна

Библиографический список


КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ

Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами Конструкционные материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

В составе конструкционных материалов нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств конструкционных материалов связаны с синтезированием материалов из элементов, имеющих предельные значения свойств.

Классификация свойств конструкционных материалов

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность (способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних сил);

· Твердость (способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии);

· Упругость (способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения);

· Вязкость (способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения);

· Хрупкость (способность материала разрушаться под действием внешних сил, сразу после упругой деформации).

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет (способность материала отражать световые лучи с определенной длиной световой волны);

· Плотность (масса единицы объема вещества);

· Температура плавления;

· Электропроводность (способность материала хорошо и без потерь проводить электрический ток);

· Теплопроводность (способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому);

· Теплоёмктсть (способность материала поглощать определенное количество теплоты);

· Магнитные (способность материалахорошо намагничиваться);

· Коэффициент объемного и линейного расширения.

3. Технологические свойства характеризуются способностью материала подвергаться различным видам горячей и холодной обработки.

· Литейные свойства;

· Ковкость (важно при обработке давлением);

· Свариваемость (это показатель того, на сколько материал может показать свариваемые соединения);

· Обработка резанием;

· Прокаливаемость;

· Закаливаемость.

4. Эксплуатационные свойства, характеризуют способность материалов обеспечивает надежную и долговечную работу изделий в конкретных условиях и эксплуатации, базируются на механических, физических и химических свойствах.

5. Химические свойства характеризуют способность материала вступать в химическое взаимодействие с другими веществами.

· Растворимость (способность материала образовывать с одним или несколькими веществами однородные системы, называющихся растворами);

· Жаростойкость (способность материала противостоять химическому разрушению поверхности под действием воздуха или другой окислительной атмосферой при высоких температурах);

· Коррозионостойкость (способность металлических материалов противостоять разрушению в результате химического или электрохимического воздействия на их поверхности внешней агрессивной среды (аналогичное свойство для неметаллических материалов- химикостойкость ));

· Окисление (способность материалов отдавать электроны, то есть окисляться при химическом взаимодействии с окружающей средой или другой материей).

СТАЛЬ

Сталь (польск.stal , от нем. Stahl ) - деформируемый (ковкий) сплав железа с углеродом (и другими элементами), содержание углерода в котором не превышает 2,14 %, но не меньше 0,02 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

В древнерусских письменных источниках сталь именовалась специальными терминами: «Оцел», «Харолуг» и «Уклад».

Сталь - важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства.

Стали делятся на конструкционные и инструментальные.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода - на малоуглеродистые, среднеуглеродистые и высокоуглеродистые; легированные стали по содержанию легирующих элементов делятся на низколегированные, среднелегированные и высоколегированные.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Производство стали в кислородных конвертерах

Кислородно-конвертерный процесс представляет собой один из видов передела жидкого чугуна в сталь без затраты топлива путем продувки чугуна в конвертере технически чистым кислородом, подаваемым через фурму, которая вводится в металл сверху. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Впервые кислородно-конвертерный процесс в промышленном масштабе был осуществлен в Австрии в 1952 - 1953 гг. на заводах в городах Линце и Донавице (за рубежом этот процесс получил название ЛД по первым буквам городов, в нашей стране - кислородно-конвертерного).

В настоящее время работают конвертеры емкостью от 20 до 450 т, продолжительность плавки в которых составляет 30 - 50 мин.

Кислородный конвертер (рис. 1) представляет собой сосуд 1 грушевидной формы из стального листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в него под давлением 0,8...1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3...0,8 м.

Конвертеры изготовляют емкостью 100...350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50...60 м 3 .

Материалами для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом. Для наводки шлака в конвертер добавляют железную руду и известь, а для его разжижения - боксит и плавиковый шпат.

Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250...1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.

Это материалы, из которых изготавливаются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку и отличающихся износостойкостью.

Длительный период в своем развитии человеческое общество использовало для своих практических нужд ограниченный круг материалов: дерево, камень, натуральные волокна, обожженную глину, стекло, железо и др. Промышленный переворот XVIII в. и дальнейшее развитие техники, особенно создание паровых машин и двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили требования к материалам их деталей, к их прочности, температурной стойкости и т. п. В то время основными конструкционными материалами были сплавы на основе железа (см. Железо, сталь, чугун), меди (бронза, латунь), свинца и олова.

При конструировании самолетов от конструкционных материалов потребовалась высокая удельная прочность; широкое распространение получили древесные пластики (фанера), малолегированные стали, алюминиевые и магниевые сплавы. Дальнейшее развитие авиационной техники привело к созданию новых жаропрочных сплавов на основе никеля и кобальта, титановых, алюминиевых, магниевых сплавов, пригодных для длительной работы при высоких температурах.

С совершенствованием техники требования к конструкционным материалам все более усложняются. Так, судостроению необходимы стали и сплавы, хорошо поддающиеся сварке, коррозионностойкие, а химическому машиностроению - с высокой и длительной стойкостью в агрессивных средах. Ядерная энергетика использует конструкционные материалы, которые при наличии прочности должны удовлетворять еще одному требованию - малому поперечному сечению захвата нейтронов.

Существует огромное количество различных конструкционных материалов. По своей природе они подразделяются на металлические, неметаллические и композиционные.

К металлическим конструкционным материалам относится большинство марок стали. Сталь получают в конвертерах, мартеновских и электрических печах, а также способами электрошлакового переплава (см. Литье), вакуумирования и др. Чугун широко применяется в машиностроении для изготовления станин, коленчатых валов, зубчатых колес, цилиндров двигателей внутреннего сгорания и т. д.

Никелевые и кобальтовые сплавы сохраняют прочность при 1000-1100° С, выплавляются в вакуумно-дуговых, плазменных и электроннолучевых печах (см. Плазмотрон, плазменная технология, Электроннолучевая технология). Эти сплавы используются в авиационных и ракетных двигателях, паровых турбинах и др. Алюминиевые сплавы служат для изготовления корпусов самолетов, вертолетов, ракет, судов. Магниевые сплавы применяются в конструкциях летательных аппаратов, в автомобилестроении, в текстильной и полиграфической промышленности и др. Титановые сплавы, отличающиеся особенно высокой удельной прочностью и коррозийной стойкостью, используются в авиационной, химической промышленности, медицине и др. В различных отраслях техники нашли применение также сплавы на основе меди, цинка, молибдена, циркония, хрома, бериллия.

Неметаллические конструкционные материалы включают пластики, термопластичные полимеры, керамику, огнеупоры и др. Пластики на основе термореактивных, эпоксидных, фенольных смол и фторопластов, армированные (упрочненные) стеклянными, кварцевыми, асбестовыми и другими волокнами, применяются в конструкциях самолетов, ракет, энергетических и транспортных машин. Термопластичные полимерные материалы - полистиролы, полиамиды, фторопласты - используются в деталях электро- и радиооборудования и др.

Из керамических материалов изготовляют детали, работающие при высокой температуре. Резины на основе различных каучуков, упрочненные кордными тканями, применяются для производства покрышек или монолитных колес самолетов и автомобилей.

Современная техника продолжает предъявлять все новые требования к конструкционным материалам. Так, например, для уменьшения массы летательных аппаратов используются многослойные конструкции, отличающиеся одновременно легкостью, прочностью и жесткостью. Для многих областей техники необходимы материалы, сочетающие конструкционную прочность с высокими электрическими, теплоизоляционными, оптическими и другими свойствами.

В составе конструкционных материалов нашли применение почти все элементы таблицы Менделеева. Эффективность классических металлических сплавов достигается сочетанием особого легирования, высококачественной плавки и термической обработки.

В перспективе одним из методов получения эффективных конструкционных материалов будет широкое синтезирование их из элементов, имеющих предельные значения свойств, т. е. предельно прочных, предельно тугоплавких, термостабильных и т. п. Такие материалы получили название композиционных. При их изготовлении используются высокопрочные элементы (волокна, нити, нитевидные кристаллы, тугоплавкие соединения и т. п., составляющие армировку или наполнитель), связуемые матрицей из прочного и пластичного материала (металлических сплавов или полимерных материалов). Композиционные материалы по удельной прочности могут на 50- 100% превосходить стали или алюминиевые сплавы и обеспечивают экономию массы конструкции на 20-50%. Поэтому сейчас производству конструкционных материалов и улучшению их качества уделяется особое внимание.

Новые уловки телефонных мошенников, на которые может попасться каждый

Конструкционные материалы

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ - основные виды материалов, из которых изготовляются машины, оборудование, приборы, сооружаются каркасы зданий, мосты и другие конструкции и которые несут основную силовую нагрузку при их эксплуатации.

Конструкционные материалы классифицируются по широкому кругу признаков: по применяемости - в машиностроении, в строительстве; по природе образования - металлические, неметаллические, композиционные; по реакции на внешние воздействия - горючие, коррозионно-устойчивые, жаростойкие, хладостойкие; по свойствам, проявляемым при различных методах обработки,- пластичные, тугоплавкие, свариваемые, склонные к образованию трещин, закаливаемые и т. д.; по способам получения - сплавы, прессованные, катаные, тканые, формованные, пленки.

Важными показателями конструкционных материалов являются их прочностные качества - сопротивление сжатию, растяжению, работа на изгиб, выносливость при вибрационных нагрузках, а также ряд специальных свойств, учитываемых при проектировании машин, оборудования, строительных сооружений. Среди них - легкость при определенных прочностных качествах, сопротивляемость износу, электро- и теплопроводность, способность пропускать газы и др.

При выборе конструкционных материалов в процессе проектирования изделий используются их технико-экономические параметры - стоимость, коэффициент использования и трудоемкость в разных условиях обработки и т. п. В современных условиях, когда на первый план выдвинута задача кардинального повышения технического уровня и качества продукции, особенно машин и оборудования, всемерной экономии материальных ресурсов, внедрения ресурсосберегающих технологий, снижения массы конструкций при повышении их надежности, требования к качественным показателям конструкционные материалы резко возросли и усложнились.

Например, необходимы конструкционные материалы легкие и в то же время жаропрочные, сохраняющие прочность как при высоких, так и при низких температурах, пластичные и хорошо выдерживающие ударные нагрузки и т. п. Такие требования обусловили появление ряда новых конструкционных материалов. Перспективными являются сплавы на основе алюминия, титана и особенно магния.

С повышением требований к прочностным свойствам, а также к сохранению этих свойств в различных экстремальных условиях связано новое направление получения конструкционных материалов, а именно синтезирование их из элементов, имеющих предельные значения свойств - предельно прочные, тугоплавкие, термостабильные и т. д. Такие материалы составляют новый класс композиционных конструкционных материалов. В них используются различные волокна, нити, проволоки, нитевидные кристаллы, гранулы, дисперсные высокотвердые и тугоплавкие соединения, окислы, карбиды, которые составляют либо армировку, либо наполнитель композиционного конструкционного материала.

Подобные конструкционные материалы по определенным показателям могут превышать все известные исходные материалы. Новые прочностные качества конструкционных материалов получаются путем специальной обработки металлов, газотермического напыления металлических порошков и др.

Научно-технический прогресс в машиностроении и строительстве требует дальнейшего улучшения качества всех видов конструкционных материалов и развития технологии их обработки. XXVII съезд КПСС подчеркнул необходимость улучшить структуру и качество конструкционных материалов, исходя из задач создания новой, прогрессивной техники и реализации ресурсосберегающего направления в развитии экономики.

Предусматривается ускоренное развитие производства экономичных видов металлопродукции, синтетических и других прогрессивных материалов, расширение номенклатуры продукции, улучшение технико-экономических и повышение прочностных и антикоррозийных характеристик конструкционных материалов. Решение этой задачи имеет особенно важное значение в связи с растущим влиянием конструкционных материалов на ускорение научно-технического прогресса.



Физико-механические свойства конструкционных материалов подразделяются на:

  • конструкционные;
  • технологические;
  • эксплуатационные.

Конструкционные свойства

К конструкционным свойствам относятся:

  • прочность;
  • упругость;
  • пластичность;
  • твердость;
  • ударная вязкость.

Эти свойства определяют прочность и долговечность машины.

Прочность - это способность материала сопротивляться деформации и разрушению.

Деформацией называется изменение размеров и формы тела под действием внешних сил. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают после окончания действия сил, а пластические остаются.

Пластичность - способность материала деформироваться. Пластичность обеспечивает конструктивную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений - отверстий, вырезов и т. п. При пластическом деформировании металла одновременно с изменением формы изменяется ряд свойств, в частности при холодном деформировании повышается прочность, но снижается пластичность.

Большинство механических характеристик материалов определяют в результате испытания образцов на растяжение (ГОСТ 1497-84).

При растяжении образцов с площадью поперечного сечения F a и рабочей (расчетной) длиной l о строят диаграмму растяжения в координатах: нагрузка P - удлинение ∆l образца (Рисунок 3 .).

Диаграмма растяжения характеризует поведение металла при деформировании от момента начала нагружения до разрушения образца. На диаграмме выделяют три участка:

  • упругой деформации - до нагрузки P упр ;
  • равномерной пластической деформации от P упр до P max ;
  • сосредоточенной пластической деформации от P max до P k .

Если образец нагрузить в пределах P упр , а затем полностью разгрузить и замерить его длину, то никаких последствий нагружения не обнаружится.

Такой характер деформирования образца называется упругим .
При нагружении образца более P упр появляется остаточная (пластическая) деформация.
Пластическое деформирование идет при возрастающей нагрузке, так как металл упрочняется в процессе деформирования.
Упрочнение металла при деформировании называется наклепом .

При дальнейшем нагружении пластическая деформация, а вместе с ней и наклеп все более увеличиваются, равномерно распределяясь по всему объему образца.
После достижения максимального значения нагрузки P max в наиболее слабом месте появляется местное утонение образца - шейка, в которой в основном и протекает дальнейшее пластическое деформирование. В связи с развитием шейки, несмотря на продолжающееся упрочнение металла, нагрузка уменьшается от P max до P k , и при нагрузке P k происходит разрушение образца.
При этом упругая деформация образца ∆l упр исчезает, а пластическая ∆l ост остается.

При деформировании твердого тела внутри него возникают внутренние силы. Величину сил, приходящуюся на единицу площади поперечного сечения образца, называют напряжением .
Единица измерения напряжения - мегаПаскаль (МПа) .

Отмеченные выше нагрузки на кривой растяжения (P упр, P T , P max , P k ) служат для определения основных характеристик прочности (напряжений):

  • предела упругости σ у ;
  • предела текучести σ Т ;
  • временного сопротивления σ в (предела прочности) и истинного сопротивления разрушению.


Временное сопротивление (предел прочности) σ в - это напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца.

σ в = Р max /F 0 ;

где Р - максимальная нагрузка, предшествующая разрушению;
F 0 - первоначальная площадь поперечного сечения образца.

Для оценки пластичности металла служат относительное остаточное удлинение образца при растяжении δ Р и относительное остаточное сужение площади поперечного сечения образца ψ Р .

Относительное остаточное удлинение определяется по формуле:

δ Р = (lк - l 0)/l 0 ,

где lк - длина образца после испытания;
l 0 -длина образца до испытания.

Относительное остаточное сужение определяется из выражения:

ψ Р = (F к - F 0) × 100%/F 0 ,

где F 0 - начальная площадь поперечного сечения образца;
F к - площадь поперечного сечения образца в месте разрушения.

Твердость - это сопротивление материала проникновению в его поверхность стандартного тела (индентора). О твердости судят либо по глубине проникновения индентора, либо по величине отпечатка от вдавливания. Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методы определения твердости Бринелля, Роквелла, Виккерса и микротвердости.

Схемы испытаний представлены на Рисунке 4 .


Рисунок 4 . Схема определения твердости материала
по Бринеллю (а), по Роквеллу (б), по Виккерсу (в).

Твердость по Бринеллю определяют на твердомере Бринелля. В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм , в зависимости от толщины изделия.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля. Твердость определяется как отношение приложенной нагрузки P к сферической поверхности отпечатка.

Метод Роквелла основан на вдавливании в поверхность под определенной нагрузкой наконечника в виде шарика или алмазного конуса. Для мягких материалов (до НВ 230 ) используется стальной шарик диаметром 1/16” (1,6 мм ), для более твердых материалов - конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка P 0 (100 Н ) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка P 1 , в течение некоторого времени действует общая рабочая нагрузка P . После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой P 0 .

Твердость по Виккерсу определяется по величине отпечатка индентора: алмазная четырехгранная пирамида с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка.

составляет 50…1000 Н . Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонких изделий, поверхностных слоёв. Метод обеспечивает высокую точность при высокой чувствительности.

Способ микротвердости - используется для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Метод аналогичен способу Виккерса. Индентор - пирамида меньших размеров, нагрузки при вдавливании P составляют 5…500 Н .

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытания на ударную вязкость производят на маятниковых копрах. Испытуемые образцы имеют надрезы определенной формы и размеров.
Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту.

Характеристикой вязкости является ударная вязкость a н , (удельная работа разрушения).