Заземление и зануление: в чем разница и какая защита лучше. Самый скандальный вопрос - заземление (зануление) Заземление и зануления электроустановок и их частей

Говоря в общем, можно заметить, что великая и ужасная сила электричества давно описана, подсчитана, занесена в толстые таблицы. Нормативная база, определяющая пути синусоидальных электрических сигналах частоты 50 Гц способна ввергнуть любого неофита в ужас своим объемом. И, несмотря на это, любому завсегдатаю технических форумов давно известно - нет более скандального вопроса, чем заземление.

Масса противоречивых мнений на деле мало способствует установлению истины. Тем более, вопрос этот на самом деле серьезный, и требует более пристального рассмотрения.

Основные понятия

Если опустить вступление "библии электрика" (), то для понимания технологии заземления нужно обратиться (для начала) к Главе 1.7, которая так и называется "Заземление и защитные меры электробезопастности".

В п. 1.7.2. ПУЭ сказано:

Электроустановки в отношении мер электробезопасности разделяются на:

  • электроустановки выше 1 кВ (с большими токами замыкания на землю), ;
  • электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю);
  • электроустановки до 1 кВ с глухозаземленной нейтралью;
  • электроустановки до 1 кВ с изолированной нейтралью.

В подавляющем большинстве жилых и офисных домов России используется глухозаземленная нейтраль . Пункт 1.7.4. гласит:

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Термин не совсем понятный на первый взгляд - нейтраль и заземляющее устройство на каждом шагу в научно-популярной прессе не встречаются. Поэтому, ниже все непонятные места будут постепенно объяснены.

Введем немного терминов - так можно будет по крайней мере говорить на одном языке. Возможно, пункты будут казаться "вытащенными из контекста". Но не художественная литература, и такое раздельное использование должно быть вполне обоснованно - как применение отдельных статей УК. Впрочем, оригинал ПУЭ вполне доступен как в книжных магазинах, так и в сети - всегда можно обратиться к первоисточнику.

  • 1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
  • 1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения .
  • 1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.
  • 1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
  • 1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
  • 1.7.16. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.
  • 1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.
  • 1.7.18. Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока. Совмещенным нулевым защитным и нулевым рабочим проводником (РЕN) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников. В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.

Рис. 1. Отличие защитного заземления и защитного "нуля"

Итак, прямо из терминов ПУЭ следует простой вывод. Различия между "землей" и "нулем" очень небольшие... На первый взгляд (сколько копий сломано на этом месте). По крайней мере, они обязательно должны быть соединены (или даже могут быть выполнены "в одном флаконе"). Вопрос только, где и как это сделано.

Попутно отметим п. 1.7.33.

Заземление или зануление электроустановок следует выполнять:

  • при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока - во всех электроустановках (см. также 1.7.44 и 1.7.48);
  • при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока - только в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Иначе говоря, заземлять или занулять устройство, подключенное к напряжению 220 вольт переменного тока совсем не обязательно. И в этом нет ничего особо удивительного - третьего провода в обычных советских розетках реально не наблюдается. Можно сказать, что вступающий на практике в свои права Евростандарт (или близкая к нему новая редакция ПУЭ) лучше, надежнее, и безопаснее. Но по старому ПУЭ у нас в стране жили десятки лет... И что особенно важно, дома строили целыми городами.

Однако, когда речь идет о заземлении, дело не только в напряжении питания. Хорошая иллюстрация этого - ВСН 59-88 (Госкомархитектуры) "Электрооборудование жилых и общественных зданий. Нормы проектирования" Выдержка из главы 15. Заземление (зануление) и защитные меры безопасности:

15.4. Для заземления (зануления) металлических корпусов бытовых кондиционеров воздуха, стационарных и переносных бытовых приборов класса I (не имеющих двойной или усиленной изоляции), бытовых электроприборов мощностью св. 1,3 кВт, корпусов трехфазных и однофазных электроплит, варочных котлов и другого теплового оборудования, а также металлических нетоковедущих частей технологического оборудования помещений с мокрыми процессами следует применять отдельный проводник сечением, равным фазному, прокладываемый от щита или щитка, к которому подключен данный электроприемник, а в линиях питающих медицинскую аппаратуру, - от ВРУ или ГРЩ здания. Этот проводник присоединяется к нулевому проводнику питающей сети. Использование для этой цели рабочего нулевого проводника запрещается.

Получается нормативный парадокс. Одним из видимых на бытовом уровне результатов стало комплектование стиральных машин "Вятка-автомат" моточком одножильного алюминиевого провода с требованием выполнить заземление (руками сертифицированного специалиста).

И еще один интересный момент:. 1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

Практически это означает - хочешь "заземлить" - сначала "занули". Кстати, это имеет прямое отношение к знаменитому вопросу "забатареивания" - которое по совршенно непонятной причине ошибочно считается лучше зануления (заземления).

Параметры заземления

Следующий аспект, которые необходимо рассмотреть - числовые параметры заземления. Так как физически это не более чем проводник (или множество проводников), то главной его характеристикой будет сопротивление.

1.7.62. Сопротивление заземляющего устройства, к к оторому присоединены нейтрали генераторов или трансформаторов или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений нулевого провода ВЛ до 1 кВ при количестве отходящих линий не менее двух. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более: 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Для меньшего напряжения допустимо большее сопротивление. Это вполне понятно - первая цель заземления - обеспечить безопасность человека в классическом случае попадания "фазы" на корпус электроустановки. Чем меньше сопротивление, тем меньшая часть потенциала может оказаться "на корпусе" в случае аварии. Следовательно, в первую очередь нужно снижать опасность для более высокого напряжения.

Дополнительно нужно учитывать, что заземление служит и для нормальной работы предохранителей. Для этого необходимо, что бы линия при пробое "на корпус" существенно изменяла свойства (прежде всего сопротивление), иначе срабатывания не произойдет. Чем больше мощность электроустановки (и потребляемое напряжение), тем ниже ее рабочее сопротивление, и соответственно должно быть ниже сопротивление заземления (иначе при аварии предохранители не сработают от незначительного изменения суммарного сопротивления цепи).

Следующий нормируемый параметр - сечение проводников.

1.7.76. Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь размеры не менее приведенных в табл. 1.7.1 (см. также 1.7.96 и 1.7.104) .

Приводить всю таблицу не целесообразно, достаточно выдержки:

Для неизолированных медных минимальное сечение составляет 4 кв. мм, для алюминиевых - 6 кв. мм. Для изолированных, соответственно, 1,5 кв. мм и 2,5 кв. мм. Если заземляющие проводники идут в одном кабеле с силовой проводкой, их сеч ение может составлять 1 кв. мм для меди, и 2,5 кв. мм для алюминия.

Заземление в жилом доме

В обычной "бытовой" ситуации пользователи электросети (т.е. жильцы) имеют дело только с Групповой сетью (7.1.12 ПУЭ. Групповая сеть - сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников ). Хотя в старых домах, где щитки установлены прямо в квартирах, им приходится сталкиваться с частью Распределительной сети (7.1.11 ПУЭ. Распределительная сеть - сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков ). Это желательно хорошо понимать, ведь часто "ноль" и "земля" отличаются только местом соединения с основными коммуникациями.

Из этого в ПУЭ сформулировано первое правило заземления:

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего ос вещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный - L, нулевой рабочий - N и нулевой защитный - РЕ проводники). Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий. Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.

Т.е. от этажного, квартирного или группового щитка нужно прокладывать 3 (три) провода, один из которых защитный нуль (совсем не земля). Что, впрочем, вовсе не мешает использовать ее для заземления компьютера, экрана кабеля, или "хвостика" грозозащиты. Вроде бы все просто, и не совсем понятно, зачем углубляться в такие сложности.

Можно посмотреть на свою домашнюю розетку... И с вероятностью около 80% не увидеть там третьего контакта. Чем отличается нулевой рабочий и нулевой защитный проводники? В щитке они соединяются на одной шине (пусть не в одной точке). Что будет, если использовать в данной ситуации рабочий ноль в качестве защитного?

Предполагать, что нерадивый электрик перепу тает в щитке фазу и ноль, сложно. Хоть этим постоянно пугают пользователей, но ошибиться невозможно в любом состоянии (хотя бывают уникальные случаи). Однако "рабочий ноль" идет по многочисленным штробам, вероятно проходит через несколько распределительных коробочек (обычно небольшие, круглые, смонтированы в стене недалеко от потолка).

Перепутать фазу с нулем там уже намного проще (сам это делал не раз). А в результате на корпусе неправильно "заземленого" устройства окажется 220 вольт. Или еще проще - отгорит где-то в цепи контакт - и почти те же 220 пройдут на корпус через нагрузку электропотребителя (если это электроплита на 2-3 кВт, то мало не покажется).

Для функции защиты человека - прямо скажем, никуда не годная ситуация. Но для подключения заземления грозозащиты типа APC не фатальная, так как там установлена высоковольтная развязка. Впрочем, рекомендовать такой способ было бы однозначно неправильно с точки зрения безопасности. Хотя надо признать, что нарушается эта норма очень часто (и как правило без каких-либо неблагоприятных последствий).

Надо отметить, что грозозащитные возможности рабочего и защитного нуля примерно равны. Сопротивление (до соединительной шины) от личается незначительно, а это, пожалуй, главный фактор, влияющий на стекание атмосферных наводок.

Из дальнейшего текста ПУЭ можно заметить, что к нулевому защитному проводнику нужно присоединять буквально все, что есть в доме:

7.1.68. Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т.п.) к нулевому защитному проводнику.

Вообще, это проще представить следующей иллюстрацией:


Рис. 2. Схема заземления

Картина довольна необычная (для бытового восприят ия). Буквально все, что есть в доме, должно быть заземлено на специальную шину. Поэтому может возникнуть вопрос - ведь жили без этого десятки лет, и все живы-здоровы (и слава Богу)? Зачем все так серьезно менять? Ответ простой - потребителей электричества становится больше, и они все мощнее. Соответственно, риски поражения вырастают.

Но зависимость безопасности и стоимости величина статистическая, и экономию никто не отменял. Поэтому слепо класть по периметру квартиры медную полосу приличного сечения (вместо плинтуса), заводя на нее все, вплоть до металлических ножек стула, не стоит. Как не стоит ходить в шубе летом, и постоянно носить мотоциклетный шлем. Это уже вопрос адекватности.

Так же в область ненаучного подхода стоит отнести самостоятельное рытье траншей под защитный контур (в городском доме кроме проблем это заведомо ничего не принесет). А для желающих все же испытать все прелести жизни - в первой главе ПУЭ есть нормативы на изготовление этого фундаментального сооружения (в совершено прямом смысле этого слова).

Подводя итоги вышесказанному, можно сделать следующие практические выводы:

  • Если Групповая сеть выполнена тремя проводами, для заземления/зануления можно использовать защитный ноль. Он, собственно, для того и придуман.
  • Если Групповая сеть выполнена двумя проводами, желательно завести защитный нулевой провод от ближайшего щитка. Сечение провода должно быть более, чем фазного (точнее можно справиться в ПУЭ).

Вся наша жизнь неотделима от всевозможных электрических приборов. Выход из строя любого электрооборудования – это частое и вполне нормальное явление, ни одно устройство не может работать вечно и без единого сбоя. Наша задача — обезопасить этих электрических помощников от короткого замыкания или возникающих в цепи перегрузок, а себя – от повреждения организма высоким напряжением. В первом случае на помощь приходят всевозможные защитные аппараты, а вот для защиты человека применяется заземление и зануление электроустановок. Это одна из самых сложных частей электрики, но мы попробуем разобраться, в чем же различие этих работ, и в каких случаях нужно применять те или иные защитные меры.

Если автоматы, пробки и другие защитные устройства не срабатывают на возникшую неисправность, и в результате образуется пробой внутренней изоляции, на металлическом корпусе установки возникает повышенное напряжение. Касание человеком такого прибора может привести к параличу мышц (при силе тока 20-25 мА), препятствующему самостоятельному отрыву от контакта, аритмии, нарушениям тока крови (при 50-100 мА) и даже летальному исходу.

Если части электроустановки в силу технических особенностей должны находиться под напряжением, то их обязательно ограждают в соответствии с общепринятой техникой безопасности, например, специальными кожухами, барьерами или сетчатыми заграждениями. Для того чтобы предотвратить случайное поражение током при повреждении изоляционных слоев, применяется защитное заземление и зануление. Чтобы понять, чем отличается заземление от зануления, нужно знать, что они собой представляют.

Что такое заземление

Часто начинающие электрики не совсем понимают, в чем же заключается отличие зануления от заземления. Заземление – это соединение электроустановки с землей с целью снижения напряжения прикосновения до минимума. Оно применяется только в сетях с изолированной нейтралью. В результате установки заземляющего оборудования большая часть тока, поступающая на корпус, должна уйти по заземляющей части, сопротивление которой должно быть меньше остальных участков цепи.

Но это не единственная функция заземления. Защитное заземление электроустановок еще и способствует увеличению аварийного тока замыкания, как бы это ни противоречило его назначению. При использовании заземлителя с высоким значением сопротивления ток замыкания может быть слишком мал для срабатывания защитных устройств, и установка в аварийной ситуации останется под напряжением, представляя огромную опасность для человека и животных.

Заземлитель с проводниками образует заземляющее устройство, где он, по сути, и есть проводник (группа проводников), соединяющий токопроводящие части установок с землей. По назначению эти устройства разделяются на следующие группы:

  • грозозащитные, для отвода импульсного тока молнии. Применяются для заземления молниеотводов и разрядников;
  • рабочие, для поддержания необходимого режима работы электроустановок, как в нормальных, так и в аварийных ситуациях;
  • защитные, для предотвращения повреждения живых организмов электрическим током, возникающим при пробое фазного провода на металлический корпус устройства.

Все заземлители делятся на естественные и искусственные.

  1. Естественные – это трубопроводы, металлоконструкции железобетонных сооружений, обсадные трубы и другие.
  2. Искусственные заземлители – это конструкции, сооружаемые специально для этой цели, то есть стальные стержни и полосы, уголковая сталь, некондиционные трубы и другое.

Важно: для использования в качестве естественного заземления не подходят трубопроводы горючих жидкостей и газов, трубы, покрытые антикоррозийной изоляцией, алюминиевые проводники и оболочки кабелей. Категорически запрещается использовать в качестве заземляющих проводников в жилых помещениях водопроводные и отопительные трубы.

Классификация систем заземления

В зависимости от схемы соединения и количества нулевых защитных и рабочих проводником можно выделяются следующие системы заземления электроустановок:

  • TN-C;
  • TN-C-S;

Первая буква в названии системы говорит о типе заземления источника питания:

  • I – токоведущие части полностью изолированы от земли;
  • T – нейтраль источника питания соединяется с землей.

По второй букве можно определить, каким образом заземлены открытые проводящие части электроустановки:

  • N – непосредственная связь с точкой заземления источника питания;
  • T – непосредственная связь с землей.

Буквы, стоящие сразу за N, через дефис, говорят о способе устройства защитного PE и рабочего N нулевых проводников:

  • C – функции проводников обеспечиваются одним проводником PEN;
  • S – функции проводников обеспечиваются разными проводниками.

Устаревшая система TN-C

Такое заземление электроустановок используется в трехфазных четырехпроводных и однофазных двухпроводных сетях, которые преобладают в зданиях старого образца. К сожалению, эта система, несмотря на свою простоту и доступность, не позволяет достичь высокого уровня электробезопасности и на вновь строящихся зданиях не применяется.

Для модернизации старых домов TN-C-S

Защитное заземление электроустановок такого типа используется преимущественно в реконструируемых сетях, где рабочий и защитный проводники объединены во вводном устройстве схемы. Другими словами, эта система используется в том случае, если в старом здании, где эксплуатируется заземление типа TN-C, планируется расположить компьютерную технику или другие телекоммуникации, то есть для осуществления перехода к системе TN-S. Эта относительно недорогая схема отличается высоким уровнем безопасности.

Система TN-C-S позволяет перейти от устаревшей TN-C к TN-S

Специфика системы TN-S

Такая система отличается расположением нулевого и рабочего проводников. Здесь они прокладываются отдельно, причем нулевой защитный проводник PE соединяет сразу все токопроводящие части электроустановки. Чтобы избежать повторного заземления, достаточно устроить трансформаторную подстанцию, имеющую основное заземление. К тому же такая подстанция позволяет добиться минимальной длины проводника от входа кабеля в электроустановку до заземляющего устройства.

1. Заземлитель;
2. Токопроводящие части установки.

Система TT, особенности

Система, где все токоведущие открытые части непосредственно связаны с землей, причем заземлители электроустановки не имеют электрической зависимости от заземлителя нейтрали подстанции, получила название TT.

Система заземления TT отличается наличием заземлителей на каждую токопроводящую часть установки

Характерные отличия системы IT

Отличием этой системы является изоляция нейтрали источника питания от земли или ее заземление через устройства с большим сопротивлением. Такой способ позволяет максимально снизить ток утечки на корпус или в землю, поэтому его лучше использовать в зданиях, где установлены жесткие требования по электробезопасности.

Что такое зануление

Зануление – это соединение металлических частей, не находящихся под напряжением, либо с заземленной нейтралью понижающего источника трехфазного тока, либо с заземленным выводом генератора однофазного тока. Используется для того, чтобы при пробое изоляции и попадании тока на любую нетоковедущую часть устройства, происходило короткое замыкание, приводящее к быстрому срабатыванию автоматического выключателя, перегоранию плавких предохранителей или реакции прочих систем защиты. В основном применяется в электроустановках с глухозаземленной нейтралью.

Принципиальная схема зануления электроустановок

Дополнительная установка УЗО в линию приведет к его срабатыванию в результате разности сил тока в фазном и нулевом рабочем проводе. Если будут установлены и УЗО, и автоматический выключатель, то пробой приведет к срабатыванию либо обоих устройств, либо к включению более быстродействующего элемента.

Важно: При установке зануления необходимо учитывать, что ток короткого замыкания обязательно должен достигать значения плавления вставки предохранителя или отключения автоматического выключателя, иначе свободное протекание тока замыкания по цепи приведет к возникновению напряжения на всех зануленных корпусах, а не только на поврежденном участке. Причем значение этого напряжения будет равно произведению сопротивления нулевого проводника на ток замыкания, а значит чрезвычайно опасным для человеческой жизни.

За исправностью нулевого провода необходимо следить самым тщательным образом. Его обрыв приводит к появлению напряжения на всех зануленных корпусах, так как они автоматически оказываются подключенными к фазе. Именно поэтому категорически запрещается монтаж в нулевой провод любых средств защиты (выключателей или предохранителей), образующих его разрыв при срабатывании.

Для того чтобы уменьшить вероятность повреждения током при обрыве нулевого провода, через каждые 200 м линии выполняются повторные заземления. Такие же меры принимаются на концевых и вводных опорах. Сопротивление каждого повторного заземлителя не должно превышать 30 Ом, а общее сопротивление всех таких заземлений – 10 Ом.

Зануление и заземление: в чем разница?

Главная разница между занулением и заземлением заключается в том, что при заземлении безопасность обеспечивается быстрым снижением напряжения тока, а при занулении – отключением участка цепи, в котором случился пробой тока на корпус или любую другую часть электроустановки, при этом в промежуток времени между замыканием и прекращением подачи питания происходит снижение потенциала корпуса электроустановки, в противном случае через тело человека пройдет разряд электрического тока.

Электрическая схема заземления и зануления

Требования к заземлению (занулению)

Во всех электроустановках, где нейтраль изолирована, обязательно выполняется защитное заземление, а также должна предусматриваться возможность быстрого поиска замыканий на землю.

Если устройство имеет глухозаземленную нейтраль, а его напряжение менее 1000 В, то можно применять только зануление. При оснащении такой электроустановки разделяющим трансформатором, вторичное напряжение должно быть не более 380 В, понижающим – не более 42 В. При этом от разделяющего трансформатора разрешается питать только один электроприемник с номинальным током защитного устройства не более 15 А. В этом случае запрещается заземление или зануление вторичной обмотки.

Если нейтраль трехфазной сети до 1000 В изолирована, то такие электроустановки должны иметь защиту от пробоя в результате повреждения изоляции между обмотками трансформатора и пробивной предохранитель, который монтируется в нейтраль или фазу со стороны нижнего напряжения.

Что и когда необходимо заземлять

Защитное заземление и зануление электроустановок необходимо проводить в следующих случаях:

  1. При переменном номинальном напряжении свыше 42 В и постоянном номинальном свыше 110 В особо опасных и наружных установках.
  2. При переменном напряжении свыше 380 В и постоянном свыше 440 В в любых электроустановках.

Заземляются корпуса электроустановок, приводы аппаратов, каркасы и металлические конструкции распределительных шкафов и щитов, вторичные обмотки трансформаторов, металлические оболочки кабелей и проводов, кабельные конструкции, шинопроводы, короба, тросы, стальные трубы электропроводки и электрооборудование, расположенное на движущихся частях механизмов.

В жилых и общественных зданиях обязательно подлежат занулению (заземлению) электроприборы мощностью свыше 1300 Вт. Если подвесные потолки выполнены из металла, то необходимо заземлить все металлические корпуса осветительных приборов. Ванны и душевые поддоны, выполненные из металла, должны соединяться с водопроводными трубами металлическими проводниками. Делается это для выравнивания электрических потенциалов. Для заземления корпусов кондиционеров воздуха, электроплит и других электроприборов, мощность которых превышает 1300 Вт, применяется отдельный проводник, присоединяемый к нулевому проводнику сети питания. Его сечение и сечение фазного провода, проложенного от распределительного щита, должны быть равными.

Для выравнивания электрических потенциалов ванну следует обязательно замкнуть на водопроводные трубы

С полным перечнем оборудования, требующего заземления или зануления, а также устройств, где наоборот, допускается пренебречь этими защитными мероприятиями, можно ознакомиться в ПУЭ (Правилах устройства электроустановок). Здесь же можно найти все основные правила заземления электроустановок.

Устройство заземления и зануления — это весьма ответственная работа. Малейшая ошибка в расчетах или пренебрежение, казалось бы, одним незначительным требованием может привести к большой трагедии. Выполнять заземление обязаны только люди, имеющие необходимые знания и опыт работы.

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно состоит (рис. 24.6) из заземлителя 3 (металлических проводников, находящихся в земле с хорошим контактом с ней) и заземляющего проводника 2, соединяющего металлический корпус электроустановки 1 с заземлителем.

Совокупность заземлителя и заземляющих проводов называют заземляющим устройством. Защитное заземление применяют в трехфазных трехпроводных и однофазных двухпроводных сетях переменного тока напряжением до 1000 В с изолированной нейтралью (так называемая система IT), а также в сетях напряжением выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Защитное действие заземляющего устройства основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки. При попадании напряжения на корпус электроустановки человек, коснувшись ее и имея хороший контакт с землей, замыкает собой электрическую цепь: фаза С – корпус электроустановки 1 – человек – земля – емкостные Х A, X B) и активные R A, R B сопротивления связи проводов с землей, фазы А и В. По человеку пойдет ток. Несмотря на то что электрические провода сети установлены на изолированных опорах, между ними и землей существует электрическая связь. Она возникает за счет несовершенства изоляции проводов, опор и т.п. и наличия емкости между проводами и землей. При большом протяжении проводов эта связь становится значительной, а ее активное R и емкостное X сопротивления снижаются и становятся соизмеримыми с сопротивлением тела человека. Вот почему, несмотря на отсутствие видимой связи, человек, находящийся под напряжением и имеющий контакт с землей, замыкает собой электрическую цепь между различными фазами сети.

Рис. 24.6. Схема защитного заземления (система IT):

1 – электроустановка; 2 – заземляющий проводник; 3 – заземлитель

При наличии заземляющего устройства образуется дополнительная цепь: фаза С – корпус электроустановки – заземляющее устройство – земля – сопротивления Х А, R A, Х B, R B фазы A и В. В результате ток замыкания распределяется между заземляющим устройством и человеком. Так как сопротивление заземлителя (оно не должно превышать 10 Ом) во много раз меньше сопротивления человека (1000 Ом), то через тело человека будет проходить малый ток, не вызывающий его поражения. Основная часть тока пойдет по цепи через заземлитель.

Заземлители могут быть естественными и искусственными. В качестве естественных заземлителей используют металлические конструкции и арматуру зданий и сооружений, имеющие хорошее соединение с землей, проложенные в земле водопроводные, канализационные и другие трубопроводы (за исключением трубопроводов горючих жидкостей, горючих и взрывоопасных газов и трубопроводов, покрытых изоляцией для защиты от коррозии).

В качестве искусственных заземлителей применяют одиночные или соединенные в группы металлические электроды длиной 2,5-3,0 м, забитые вертикально в землю с расстоянием друг от друга 2,5-3,0 м или уложенные горизонтально в землю. Электроды изготавливают из отрезков металлических труб, угловой стали, швеллеров с толщиной стенок не менее 4 мм. Более тонкие профили вследствие коррозии быстро выходят из строя.

Вертикальные электроды в групповом заземлителе соединяют между собой с помощью сварки перемычкой, выполненной из аналогичных материалов и тех же сечений, что и сами электроды. Заземляющее устройство должно иметь вывод наружу (на поверхность земли), выполненное на сварке из таких же материалов. Оно служит для подсоединения заземляющего проводника.

Для осуществления заземляющих функций сопротивление заземляющего устройства в электроустановках напряжением до 1000 В в сети с изолированной нейтралью должно быть не более 4 Ом. При мощности генераторов и трансформаторов, питающих сеть, 100 кВ А и менее допускается сопротивление заземлителей не более 10 Ом. Необходимое сопротивление достигают установкой соответствующего количества электродов в заземлителе, определяемого расчетом. Для глинистых, влажных почв обычно бывает достаточно двух-трех электродов, на сухих песчаных или каменистых участках этого может не хватить.

Сопротивление заземляющего устройства – это отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

Различают выносное и контурное заземляющие устройства. Выносное устройство располагают за пределами площадки с заземляемым оборудованием. Его достоинство состоит в возможности выбора грунта с наименьшим удельным сопротивлением. Контурное заземление выполняют забивкой электродов по контуру заземляемого оборудования и между ним. Такая установка электродов создает дополнительный защитный эффект за счет повышения и выравнивания (более равномерного распределения) потенциалов земли в зоне нахождения человека.

Зануление – это преднамеренное электрическое соединение металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с глухозаземленной нейтралью источника тока (генератора или трансформатора).

В четырехпроводных или пятипроводных сетях с нулевым проводом и глухозаземленной нейтралью источника тока напряжением до 1000 В (так называемая система TN) зануление – основное средство защиты. Заземление в таких сетях неэффективно.

Подсоединение корпусов электроустановок к нейтрали источника тока осуществляют с помощью нулевого защитного проводника (РЕ- проводника). Его нельзя путать с нулевым рабочим проводом (N-проводником), который также соединен с нейтралью источника, но служит для питания однофазных электроустановок. Нулевой защитный проводник РЕ прокладывают по трассе фазных проводов, в непосредственной близости от них. Систему, где присутствуют нулевой рабочий провод N и нулевой защитный проводник РЕ, и они разделены на всем протяжении трассы, называют системой TN-S. Буква S означает разделение указанных проводников на всем их протяжении.

В качестве нулевого защитного проводника в сетях до 1000 В в первую очередь рекомендуется использовать нулевой рабочий проводник (кроме специально оговоренных случаев), к которым подсоединяют корпуса электроустановок. В этом случае его называют совмещенным нулевым защитным и нулевым рабочим проводником (PEN-проводником), а саму систему – системой TN-С. Это система TN , в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 24.7).

Если же функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике только в какой-то ее части, начиная от источника питания, а далее они идут раздельно (первый из них служит для защиты электроустановок, а второй – для питания однофазных электроустановок), то такую систему называют системой TN-C-S.

Согласно требованиям ПУЭ снова объединять эти разделенные проводники уже нельзя.

Рис. 24.7. Схема зануления (система TN-C ):

1 – заземлитель нейтрали трансформатора; 2 – источник тока (трансформатор); 3 – нейтраль источника тока; 4 – зануление корпуса трансформатора; 5 – нулевой рабочий (он же и нулевой защитный) провод сети; 6" – нулевой защитный провод электроустановки; 7 – предохранитель; 8 – электроустановка; 9 – повторное заземление нулевого защитного провода сети; L 2, L 3 – фазные провода; PEN – нулевой рабочий проводник и нулевой защитный проводник, совмещенные в одном

Согласно ПУЭ не допускается использовать в качестве РЕ проводников:

  • металлические оболочки изоляционных трубок и трубчатых проводов, несущие тросы при тросовой электропроводке, металлорукава, а так же свинцовые оболочки проводов и кабелей;
  • трубопроводы газоснабжения и другие трубопроводы горючих и взрывоопасных веществ и смесей, трубы канализации и центрального отопления;
  • водопроводные трубы при наличии в них изолирующих вставок.

Защитное действие зануления основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки, и последующем отключении этой установки от сети. Работает зануление следующим образом. При попадании напряжения на корпус зануленной электроустановки 8 (рис. 24.7) бо́льшая часть тока с него пойдет в сеть через нулевой защитный провод 6. Через тело человека по цепи: корпус электроустановки 8 – человек – земля – заземляющее устройство 9 – нулевой рабочий провод 5 пойдет незначительный ток, не вызывающий его поражения (ввиду более высокого сопротивления этой цепи по сравнению с сопротивлением цепи через нулевой защитный провод 6). Одновременно с этим замыкание на корпус фазного провода при такой схеме защиты автоматически превращается в однофазное короткое замыкание между фазным и нулевым рабочим проводом 5 сети, в результате чего через 0,2–7 с срабатывает токовая защита (перегорает предохранитель 7, выключается автоматический выключатель и т.п.) и электроустановка, а вместе с ней и человек, полностью обесточиваются. Таким образом, в первоначальный момент зануление работает аналогично защитному заземлению, а в последующем оно полностью прекращает действие тока на человека. Только при этом ток, проходящий через тело человека до срабатывания защиты, будет в несколько раз меньше, так как сопротивление зануляющего проводника обычно не превышает 0,3 Ом, а допустимое сопротивление заземлителя – 4 Ом.

В запуленных электроустановках до 1 кВ с глухозаземленной нейтралью с целью надежного обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания, не менее чем в три раза превышающий номинальный ток плавкого элемента ближайшего предохранителя или автоматического выключателя, имеющего расцепитель с обратнозависимой от тока характеристикой (тепловой расцепитель), в 1,4 раза – для автоматических выключателей с электромагнитными расцепителями с силой номинального тока до 100 А и в 1,25 раза – с величиной тока более 100 А.

Нулевой защитный провод 5 сети должен обеспечивать надежное соединение корпусов электроустановок с нейтралью источника. Поэтому все соединения выполняют сварными. В нем запрещается установка предохранителей и выключателей (за исключением случая одновременного отключения и фазных проводов).

Нулевой защитный провод 5 сети заземляют: у источника тока с помощью заземлителя 1; на концах воздушных линий (или ответвлений от них) длиной более 200 м; на вводах воздушной линии к электроустановкам. Повторные заземления 9 необходимы для уменьшения опасности поражения электрическим током при обрыве нулевого провода и замыкании фазы на корпус электроустановки за местом обрыва, а также для снижения напряжения на корпусе в момент срабатывания токовой защиты. Согласно ПУЭ сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, с учетом естественных и повторных заземлителей нулевого провода должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях источника трехфазного тока 660, 380 и 220 В. Сопротивление каждого повторного заземлителя в отдельности должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

В сети, где применяют зануление, нельзя заземлять корпуса электроустановок без их зануления, так как в случае замыкания фазы на корпус заземленной, но не зануленной электроустановки иод напряжением окажутся все корпуса других зануленных электроустановок. В то же время дополнительное заземление зануленных электроустановок весьма полезно. Оно повышает надежность заземления нулевого провода.

Если в помещении находится несколько электроустановок, то каждую из них заземляют или зануляют, подсоединяя к магистрали заземления (зануления), представляющей собой металлический проводник сечением не менее 100 мм2 (например, стальная полоса 40 х 4 мм), укрепленный по периметру помещения. Магистраль соединяют с заземлителем, или с нулевым защитным проводником (в зависимости от принятой системы защиты), или с тем и другим одновременно.

Последовательное заземление или зануление электроустановок (одна от другой) не разрешается (рис. 24.8).

Заземлители с магистралью зануления заземления соединяют не менее чем двумя проводниками, подсоединяя их к заземлителю в разных местах.

Присоединение заземляющих проводников к заземлителю и заземляющим конструкциям выполняют сваркой, а к главному заземляющему зажиму, корпусам аппаратов, машин и опорам ЛЭП – болтовым соединением (для обеспечения возможности производства измерений) с принятием мер против ослабления контакта и его коррозии.

Рис. 24.8.

1, 4, 5 и 6 – правильное зануление электроустановки; 2 и 3 – неправильное зануление электроустановки; 7 – магистраль заземления (зануления)

Для обеспечения надежной защиты сечения всех защитных проводников (РE-проводников) должны быть не менее приведенных в табл. 24.3 при условии выполнения их из тех же материалов, что и фазные проводники.

Таблица 24.3

Наименьшие площади поперечного сечения защитных проводников РЕ

Сечение фазных проводников, мм2

Наименьшее сечение защитных проводников (РЕ-проводннков), мм2

16 < 5 ≤ 35

Сечение РEN-проводника должно быть не менее 10 мм2 по меди или 16 мм2 – но алюминию.

Размеры заземлителей и заземляющих проводников, проложенных в земле, приведены в табл. 24.4.

Заземление или зануление электроустановок следует выполнять при номинальном напряжении:

  • выше 50 В переменного тока или выше 120 В постоянного тока – во всех электроустановках независимо от того, где они эксплуатируются;
  • выше 25 В переменного тока или выше 60 В постоянного тока – в помещениях с повышенной опасностью;
  • выше 12 В переменного тока или выше 30 В постоянного тока – в особо опасных помещениях и в наружных установках;
  • при любом напряжении переменного и постоянного тока – во взрывоопасных помещениях любого класса.

К частям, подлежащим занулению или заземлению, относятся: корпуса электрических машин (в том числе технологическое оборудование с электропитанием), корпуса трансформаторов, светильников, каркасы распределительных щитов, рубильников, щитов управления, металлические оболочки и броня электрических кабелей; металлические трубы, в которых проложена электропроводка; металлические корпуса передвижных и переносных электроприемников и др. (в соответствии с требованиями ПУЭ).

Зануление (заземление ) металлических корпусов переносных электроустановок осуществляют дополнительной жилой кабеля (проводником PEN в системе TN-C в системе, где нулевой рабочий и нулевой защитный проводники совмещены в одном PEN- проводнике): третьей жилой для однофазных и четвертой – для трехфазных электроприемников.

Если применяется система с разделенными нулевым рабочим (N ) и нулем защитным (РЕ) проводниками (система TN-S), то в питающем кабеле должно быть уже две дополнительные жилы: (N) и (РЕ). То же самое должно быть и в соединительной вилке, и в розетке. Жилы эти проводов должны быть гибкими, медными, их сечение должно быть равно сечению фазных проводников и быть не менее 1,5 мм2.

Втычные соединители (вилки и розетки) должны быть выполнены так, чтобы соединение защитных проводников происходило до соединения фазных проводников, а рассоединение – в обратной последовательности. Обычно это достигается применением у вилки более длинного штыря для защитного проводника (РЕ или PEN), чем для фазных проводов (рис. 24.9 и 24.10).

Если корпуса розетки или вилки выполнены из металла, то к ним также подсоединяют защитные проводники (PEN или РЕ, в зависимости от того, какая система защиты применяется). Во всех случаях вилку подсоединяют к электро- приемнику, розетку – к сети.

Таблица 24.4

Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле

Материал

Профиль сечения

Диаметр, мм

Площадь поперечного сечения, мм2

Толщина стенки, мм

Стать черная

для вертикальных заземлителей

Прямоугольный

Сталь оцинкованная

для вертикальных заземлителей

для горизонтальных заземлителей

Прямоугольный

Прямоугольный

Канат многопроволочный

1,8 (диаметр каждой проволоки)

Для определения технического состояния заземляющего устройства проводят визуальные осмотры его видимой части (не реже одного раза в 6 месяцев ответственным за электрохозяйство), осмотры с выборочным вскрытием грунта, измерение параметров заземляющего устройства в соответствии с нормами испытания электрооборудования.

Рис. 24.9. TN-C :

а – розетка; б – вилка

Рис. 24.10. Втычной соединитель (разъем) для подключения переносной электроустановки к электрической сети системы заземления TN-S:

а – розетка; б – вилка

Осмотры с выборочным вскрытием грунта проводят в местах, наиболее подверженных коррозии, а также вблизи мест заземления нейтралей силовых трансформаторов, присоединений разрядников и ограничителей перенапряжений не реже одного раза в 12 лет. При осмотре оценивают состояние контактных соединений, наличие антикоррозионного покрытия, отсутствие обрывов. Результаты осмотров заносят в паспорт заземляющего устройства установленной формы.

При вскрытии грунта производят инструментальную оценку состояния заземлителей и степени коррозии контактных соединений. Элемент заземлителя заменяют, если разрушено более 50% его сечения. Результаты осмотров оформляют актами.

При определении технического состояния заземляющего устройства производят:

  • измерение сопротивления заземляющего устройства;
  • измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения);
  • проверку наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;
  • измерение токов короткого замыкания электроустановки;
  • проверку состояния пробивных предохранителей;
  • измерение удельного сопротивления грунта в районе заземляющего устройства.
Подробности Просмотров: 12859

Для обеспечения защиты людей при прикосновении к металлическим нетоковедущим частям, которые могут по каким-либо причинам оказаться под напряжением, наряду с другими средствами применяются защитное заземление и зануление.

Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» защитное заземление - преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Назначение защитного заземления - устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т. е. при замыкании на корпус.

Защитному заземлению подлежат металлические нетоковедущие части электрооборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей и животных.

Принцип действия защитного заземления - снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения.

Следует отметить, что в техническом кодексе установившейся практики «Электроустановки на напряжение до 750 кВ. Линии электропередачи воздушные и токопроводы, устройства распределительные и трансформаторные подстанции, установки электросиловые и аккумуляторные, электроустановки жилых и общественных зданий. Правила устройства и защитные меры электробезопасности. Учет электроэнергии. Нормы приемо-сдаточных испытаний», утвержденном постановлением Министерства энергетики Республики Беларусь от 23 августа 2011 г. № 44, дается определение не только термину «заземление», но и производным от него терминам:

заземление - преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством;

заземление защитное - заземление, выполненное в целях электробезопасности;

заземление функциональное (рабочее, технологическое) - заземление точки или точек системы, или установки, или электрооборудования в целях, отличных от целей электробезопасности.

Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» зануление - преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение зануления - устранение опасности поражения людей током при пробое на корпус.

Принцип действия зануления - превращение замыкания на корпус в однофазное короткое замыкание (т. е. замыкание между фазным и нулевым проводами) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети. Такой защитой могут быть плавкие предохранители, магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловыми реле, автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки.

Занулению подлежат металлические конструктивные нетоковедущие части электрооборудования, которые должны быть заземлены: корпуса машин, аппаратов и др. В сети с занулением корпус приемника нельзя заземлять, не присоединив его к нулевому защитному проводу.

Наверняка каждый электрик-новичок слышал о таком способе защиты от поражения током, как заземлении электроприборов. Монтаж трехпроводной электросети является обязательным моментом при строительстве современного дома. Но что делать, если Вы живете в старой квартире, в которой при строительстве еще не применялась такая система защиты? В этом случае нужно сделать так называемое зануление электропроводки. О том, что собой представляют обе системы и в чем разница зануления и заземления, читайте далее!

Основные отличия

Как первая, так и вторая система защиты выполняет одну и ту же функцию – защита человека от поражения электричеством при прикосновении к оголенному проводу либо электроприбору, на котором происходит . Разница лишь в том, что зануление провоцирует моментальное отключение электроэнергии при опасном контакте человека и провода, а заземление мгновенно отводит опасное напряжение на землю. Это и есть их общее отличие друг от друга, если говорить в двух словах.

Если рассматривать вопрос более подробно, то нужно остановиться на том, какой принцип действия у каждого варианта защиты, на основании чего сразу же будет видна разница альтернативных вариантов. Заземление работает следующим образом: к корпусу опасных электроприборов и подключается заземляющий провод, который идет на соответствующую шину в распределительном щитке. Оттуда общий земляной провод выходит к главному заземляющему контуру – металлической конструкции, вкопанной в землю рядом с домом (как показано на фото). Если произойдет пробой тока на корпус прибора либо контакт с оголенной токоведущей жилой, опасность минует человека.

Что касается зануления, оно собой представляет соединение корпуса электроприбора с нейтральным проводом сети – нулем. В результате образуется замкнутый контур, как показано на схеме ниже. При возникновении опасной ситуации произойдет и автоматические выключатели на вводном щитке моментально отключат электроэнергию.
Наглядно увидеть разницу между занулением и заземлением Вы можете на данной схеме:

Надеемся, теперь Вам стало понятно, чем отличаются обе защитные системы и что не менее важно – как они работают. Рекомендуем также просмотреть разницу между ними на наглядном видео примере:

Отличие альтернативных вариантов

Что лучше?

Чтобы Вы полностью усвоили материал, для начала предоставим отличия в использовании каждой системы, на основании чего и сделаем собственный вывод.

  • Заземление дома можно запросто сделать своими руками, имея под рукой сварочный аппарат и немного металла. В то же время для создания зануления требуются определенные знания, связанные с расчетами и выбором оптимальной точки подключения провода к нейтрали.
  • Если произойдет в распределительном щитке, система зануления не будет работать, и Вы можете стать жертвой поражения электрическим током. В этом плане с системой защитного заземления проще, т.к. в отличие от нуля провод PE не отгорает и практически не отваливается, если хотя бы раз в год подтягивать клемму. Хотя насчет этого можно сказать, что контур «земли» из-за того, что находится на улице, также может со временем повредиться, особенно в местах сварки электродов. Опять-таки, если Вы делаете ежегодную ревизию, проблем не будет.
  • Исходя из этого, можно сделать такой вывод – не сложно сделать своими руками и к тому же такая система более долговечная, а значит и безопасная. Что касается зануления, для его создания нужен вызов мастера и в то же время более частый осмотр целостности нулевого провода, что является огромным минусом при сравнении отличий. Такой вариант не рекомендуется использовать, лучше подключить УЗО для защиты. Надеемся, что теперь Вы поняли, в чем разница зануления и заземления, как работают обе системы и какая более эффективная для дома и квартиры.

    Отличительные признаки — часть 1