Выключатель автоматический тип расцепителя электромагнитный. Расцепитель автоматического выключателя: основные виды и их особенности. Силовые контакты и дугогасительная камера

Тепловой расцепитель - обеспечивает защиту только от перегрузок по току.

Электромагнитный расцепитель - обеспечивает защиту только от коротких замыканий.

Термо-магнитный (магнитотермический, комбинированный) расцепитель - состоит из двух типов расцепителей - теплового и электромагнитного. Обеспечивает защиту как от перегрузки по току так и от коротких замыканий.

Термо-магнитный (магнитотермический, комбинированный) расцепитель, с защитой от токов утечек - кроме защиты от перегрузок и коротких замыканий обеспечивает защиту людей и электроустановок от замыкания на землю.

Электронный расцепитель (электронный блок защиты - Overcurrent Release) - (в зависимости от исполнения) обеспечивает максимальное количество типов защит.

Устройство расцепителей

Тепловой расцепитель

Тепловой расцепитель представляет собой биметаллическую пластину, которая при нагревании изгибается и воздействует на механизм свободного расцепления. Биметаллическую пластину изготавливают методом механического соединения двух металлических лент. Выбираются два материала с разными коэффициентами температурного расширения и соединяются между собой с помощью спаивания, заклёпывания или свариваются.

Преимущества:

  • нет подвижных частей;
  • нетребовательность к загрязнениям;
  • простота конструкции;
  • низкая цена.

Недостатки:

  • высокое собственное потребление энергии;
  • чувствительны к изменениям температуры окружающей среды;
  • при нагреве от сторонних источников могут вызывать ложные срабатывания.
Электромагнитный расцепитель

Электромагнитный расцепитель является устройством мгновенного действия. Представляет собой соленоид, сердечник которого воздействует на механизм свободного расцепления. При протекании по обмотке соленоида сверхтока, создаётся магнитное поле, которое перемещает сердечник, с преодолением сопротивления возвратной пружины.

ЭМ расцепитель может настраиваться (на заводе производителе или потребителем) на срабатывание при токах КЗ значениями от 2 до 20 In. Погрешность настройки варьируется около ±20% от заданного значения силы тока для выключателей в литом корпусе.
Для силовых автоматических выключателей уставку срабатывания при коротком замыкании (значение тока, при котором инициируется расцепление) могут указывать как значением в амперах, так и в кратности номинальному току.
Встречаются уставки: 3,5In; 7In, 10In; 12In и другие.

Достоинства:

  • простота конструкции;

Недостатки:

  • создаёт магнитное поле.
Термомагнитный расцепитель

Тепловой расцепитель - это биметаллическая пластина, состоящая из двух слоев сплавов с различными коэффициентами термического расширения. При прохождении электрического тока пластина нагревается и изгибается в сторону слоя с меньшим коэффициентом термического расширения. При превышении заданного значения силы тока, изгиб пластины достигает величины, достаточной для приведения в действие механизма расцепления, и цепь размыкается, отсекая защищаемую нагрузку.

Электромагнитный расцепитель состоит из соленоида с подвижным стальным сердечником, удерживаемым пружиной. При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки соленоида, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления. В нормальном режиме работы в катушке также наводится магнитное поле, но его силы недостаточно, чтобы преодолеть сопротивление пружины и втянуть сердечник.

Как работает автомат в режиме перегрузки

Режим перегрузки возникает, когда ток в подключенной к автомату цепи превышает номинальное значение, на которое рассчитан автоматический выключатель. При этом повышенный ток, проходящий через тепловой расцепитель, вызывает повышение температуры биметаллической пластины и, соответственно, увеличение ее изгиба вплоть до срабатывания механизма расцепления. Автомат отключается и размыкает цепь.

Срабатывание тепловой защиты не происходит мгновенно, поскольку на разогрев биметаллической пластины потребуется некоторое время. Это время может варьироваться в зависимости от величины превышения номинального значения тока от нескольких секунд до часа.

Такая задержка позволяет избежать отключения питания при случайных и непродолжительных повышениях тока в цепи (например, при включении электродвигателей которые имеют большие пусковые токи).

Минимальное значение тока, при котором должен сработать тепловой расцепитель, устанавливается при помощи регулировочного винта на заводе-изготовителе. Обычно это значение в 1,13-1,45 раз превышает номинал, указанный на маркировке автомата.

На величину тока, при котором сработает тепловая защита, влияет и температура окружающей среды. В жарком помещении биметаллическая пластина прогреется и изогнется до срабатывания при меньшем токе. А в помещениях с низкими температурами ток, при котором сработает тепловой расцепитель, может оказаться выше допустимого.

Причиной перегрузки сети является подключение к ней потребителей, суммарная мощность которых превышает расчетную мощность защищаемой сети. Одновременное включение различных видов мощной бытовой техники (кондиционер, электрическая плита , стиральная и посудомоечная машина, утюг, электрочайник и т.д.) - вполне может привести к срабатыванию теплового расцепителя.

В этом случае определитесь, какие из потребителей можно отключить. И не спешите снова включать автомат. Вы все равно не сможете взвести его в рабочее положение, пока он не остынет, а биметаллическая пластина расцепителя не вернется в свое исходное состояние. Теперь вы знаете как работает автоматический выключатель при перегрузках

Как работает автомат в режиме короткого замыкания

В случае короткого замыкания принцип работы автоматического выключателя иной. При коротком замыкании ток в цепи резко и многократно возрастает до значений, способных расплавить проводку, а точнее изоляцию электропроводки. Для того чтобы предотвратить такое развитие событий необходимо мгновенно разорвать цепь. Электромагнитный расцепитель именно так и срабатывает.

Электромагнитный расцепитель представляет собой катушку соленоида, внутри которой расположен стальной сердечник, удерживаемый в фиксированном положении пружиной.

Многократное возрастание тока в обмотке соленоида, происходящее при коротком замыкании в цепи, приводит к пропорциональному возрастанию магнитного потока, под действием которого сердечник втягивается в катушку соленоида, преодолевая сопротивление пружины, и нажимает на спусковую планку механизма расцепления. Силовые контакты автомата размыкаются, прерывая питание аварийного участка цепи.

Таким образом, срабатывание электромагнитного расцепителя защищает от возгорания и разрушения электропроводку, замкнувший электроприбор и сам автомат. Время его срабатывания составляет порядка 0,02 секунды, и электропроводка не успевает разогреться до опасных температур.

В момент размыкания силовых контактов автомата, когда по ним проходит большой ток, между ними возникает электрическая дуга, температура которой может достигать 3000 градусов.

Чтобы защитить контакты и другие детали автомата от разрушительного воздействия этой дуги, в конструкции автомата предусмотрена дугогасительная камера. Дугогасительная камера представляет собой решетку из набора металлических пластин, которые изолированы друг от друга.

Дуга возникает в месте размыкания контакта, а затем один ее конец движется вместе с подвижным контактом, а второй скользит сначала по неподвижному контакту, а потом по соединенному с ним проводнику, ведущему к задней стенке дугогасительной камеры.

Там она делится (дробится) на пластинах дугогасительной камеры, слабеет и гаснет. В нижней части автомата предусмотрены специальные отверстия для отвода газов, образующихся при горении дуги.

В случае отключения автомата при срабатывании электромагнитного расцепителя, вы не сможете пользоваться электричеством до тех пор пока не найдете и не устраните причину короткого замыкания. Вероятнее всего причина в неисправности одного из потребителей.

Отключите все потребители и попробуйте включить автомат. Если вам это удалось и автомат не выбивает, значит, действительно - виноват один из потребителей и вам осталось выяснить какой именно. Если же автомат и с отключенными потребителями снова выбивает, значит все гораздо сложнее, и мы имеем дело с пробоем изоляции проводки. Придется искать, где это произошло.

Вот таков принцип работы автоматического выключателя в условиях различных аварийных ситуаций.

Если отключение автоматического выключателя стало для вас постоянной проблемой, не пытайтесь решить ее установкой автомата с большим номинальным током.

Автоматы устанавливаются с учетом сечения вашей проводки, и, значит, больший ток в вашей сети просто не допускается. Найти решение проблемы можно только после полного обследования системы электроснабжения вашего жилища профессионалами.

Критерий выбора автоматических выключателей

Основными показателями на которые ссылаются при выборе автоматов являются:

Количество полюсов;

Номинальное напряжение;

Максимальный рабочий ток;

Отключающая способность (ток короткого замыкания).

Количество полюсов

Количество полюсов автомата определяется из числа фаз сети. Для установки в однофазной сети используют однополюсные или двухполюсные. Для трехфазной сети применяют трех- и четырехполюсные (сети с системой заземления нейтрали TN-S). В бытовых секторах обычно используют одно- или двухполюсные автоматы.

Номинальное напряжение

Номинальное напряжение автомата это напряжение на которое рассчитан сам автомат. Не зависимо от места установки напряжение автоматадолжно быть равным или большим сети:

Максимальный рабочий ток

Максимальный рабочий ток. Выбор автоматов по максимальному рабочему току заключается в том чтобы номинальный ток автомата (номинальный ток расцепителя)был больше или равен максимальному рабочему (расчетному) токукоторый может длительно проходить по защищаемому участку цепи с учетом возможных перегрузок:

Чтобы узнать максимальный рабочий ток для участка сети (например для квартиры) нужно найти суммарную мощность. Для этого суммируем мощность всех приборов, которые будут подключатся через данный автомат (холодильник, телевизор, св-печь и т.п.).Величину тока из полученной мощности можно найти двумя способами: методом сопоставления или по формуле.

Для сети 220 В при нагрузке в 1 кВт, ток составляет 5 А. В сети с напряжением 380 В величина тока для 1 кВт мощности составляет 3 А. С помощью такого варианта сопоставления можно найти ток через известную мощность. К примеру, суммарная мощность в квартире получилась 4.6 кВт, ток при этом равен примерно 23 А. Для более точного нахождения тока можно воспользоваться известной формулой:

Для бытовых электроприборов.

Отключающая способность

Отключающая способность. Выбор автомата по номинальному току отключения сводится к тому, чтобы ток который автомат способен отключитьбыл больше тока короткого замыканияв точке установки аппарата: Номинальный ток отключения это наибольший ток к.з. который автомат способен отключить при номинальном напряжении.

При выборе автоматов промышленного назначения их дополнительно проверяют на:

Электродинамическую стойкость:

Термическую стойкость:

Автоматические выключатели выпускаются с такой шкалой номинальных токов : 4, 6, 10, 16, 25, 32, 40, 63, 100 и 160 А.

В жилых секторах (дома, квартиры) как правило устанавливают двухполюсные автоматы с номиналом в 16 или 25 А и током отключения 3 кА.

Что такое время токовые характеристики автоматических выключателей

При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток . Однако если сила тока по каким-либо причинам превысила номинальные значения , происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.

Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.

Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.

Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний - в этом и заключается важность данной характеристики.

В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.

При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.

По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем - 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.

Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».

Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой

Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.

Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.

Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления - происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.

Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.

Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.

Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата - наименьший ток при котором автомат отключится мгновенно.

Автоматы имеют несколько характеристик, самыми распространенными из которых являются:

B - от 3 до 5 ×In;

C - от 5 до 10 ×In;

D - от 10 до 20 ×In.

Что означают цифры указанные выше?

Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.

Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3...5)=48...80А. Для С16 диапазон токов мгновенного срабатывания 16*(5...10)=80...160А.

При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).

В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.

Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.

Что защищает автоматический выключатель

Прежде чем подбирать автомат, стоит разобраться, как он работает и что он защищает. Многие люди считают, что автомат защищает бытовые приборы . Однако это абсолютно не так. Автомату нет никакого дела до приборов, которые вы подключаете к сети - он защищает электропроводку от перегрузки.

Ведь при перегрузке кабеля или возникновении короткого замыкания возрастает сила тока, что приводит к перегреву кабеля и даже возгоранию проводки.

Особенно сильно возрастает сила тока при коротком замыкании. Величина силы тока может возрасти до нескольких тысяч ампер. Конечно, никакой кабель не способен долго продержаться при такой нагрузке. Тем более, кабель сечением 2,5 кв. мм, который часто используют для прокладки электропроводки в частных домовладениях и квартирах. Он попросту загорится, как бенгальский огонь. А открытый огонь в помещении может привести к пожару.

Поэтому правильный расчет автоматического выключателя играет очень большую роль. Аналогичная ситуация возникает при перегрузках - автоматический выключатель защищает именно электропроводку.

Когда нагрузка превышает допустимое значение, сила тока резко возрастает, что приводит к нагреванию провода и оплавлению изоляции. В свою очередь, это может привести к возникновению короткого замыкания. А последствия такой ситуации предсказуемы - открытый огонь и пожар!

По каким токам производят расчет автоматов

Функция автоматического выключателя состоит в защите электропроводки, подключенной после него. Основным параметром, по которому производят расчет автоматов, является номинальный ток. Но номинальный ток чего, нагрузки или провода?

Исходя из требований ПУЭ 3.1.4, токи уставок автоматических выключателей которые служат для защиты отдельных участков сети, выбираются по возможности меньше расчетных токов этих участков или по номинальному току приемника.

Расчет автомата по мощности (по номинальному току электроприемника) производят, если провода по всей длине на всех участках электропроводки рассчитаны на такую нагрузку. То есть допустимый ток электропроводки больше номинала автомата.

Например, на участке, где используется провод сечением 1 кв. мм, величина нагрузки составляет 10 кВт. Выбираем автомат по номинальному току нагрузки - устанавливаем автомат на 40 А. Что произойдет в этом случае? Провод начнет греться и плавиться, поскольку он рассчитан на номинальный ток 10-12 ампер, а сквозь него проходит ток в 40 ампер. Автомат отключится лишь тогда, когда произойдет короткое замыкание. В результате может выйти из строя проводка и даже случиться пожар.

Поэтому определяющей величиной для выбора номинального тока автомата является сечение токопроводящего провода. Величина нагрузки учитывается лишь после выбора сечения провода. Номинальный ток, указанный на автомате, должен быть меньше максимального тока, допустимого для провода данного сечения.

Таким образом, выбор автомата производят по минимальному сечению провода, который используется в проводке.

Например, допустимый ток для медного провода сечением 1,5 кв. мм, составляет 19 ампер. Значит, для данного провода выбираем ближайшее значение номинального тока автомата в меньшую сторону, составляющее 16 ампер. Если выбрать автомат со значением 25 ампер, то проводка будет греться, так как провод данного сечения не предназначен для такого тока. Чтобы правильно произвести расчет автоматического выключателя, необходимо, в первую очередь, учитывать сечение провода.

Автоматический выключатель представляет собой электротехническое устройство, основным назначением которого является совершение переключение своего рабочего состояния при возникновении определённой ситуации. Автоматы электрические совмещают в себе два устройства, это обычный выключатель и магнитный (или тепловой) расцепитель, задачей которого является своевременный разрыв электрической цепи в случае превышения порогового значения силы тока. Автоматические выключатели, как и все электрические устройства , также имеют различные разновидности, что их разделяет на определённые типы. Давайте ознакомимся с основными классификациями автоматических выключателей .

1» Классификация автоматов по количеству полюсов:

А) однополюсные автоматы

б) однополюсные автоматы с нейтралью

в) двухполюсные автоматы

г) трехполюсные автоматы

д) трехполюсные автоматы с нейтралью

е) четырехполюсные автоматы

2» Классификация автоматов по типу расцепителей.

В конструкцию различных видов автоматических выключателей, обычно, входят 2 основных типа расцепителей (размыкателей) - электромагнитный и тепловые. Магнитные служат для электрической защиты от короткого замыкания, а тепловые размыкатели предназначены в основном для защиты электрических цепей по определённому току перегрузки.

3» Классификация автоматов по току расцепления: В, С, D, (A, K, Z)

ГОСТ Р 50345-99, по току мгновенного расцепления автоматы разделяются на такие типы:

А) тип «B» - свыше 3 In до 5 In включительно (In - это номинальный ток)

б) тип «C» - свыше 5 In до 10 In включительно

В) тип «D» - свыше 10 In до 20 In включительно

Производителей автоматов в Европе имеют несколько иную классификацию. К примеру, у них имеется дополнительный тип «A» (свыше 2 In до 3 In). У некоторых производителей автоматических выключателей также существуют дополнительные кривые выключения (у АВВ автоматы с кривыми K и Z).

4» Классификация автоматов по роду тока в цепи: постоянного, переменного, обоих.

Номинальные электрические токи для основных цепей расцепителя подбирают из: 6,3; 10; 16; 20; 25; 32; 40; 63; 100; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300 А. Также дополнительно выпускаться автоматы на номинальные токи основных электроцепей автоматов: 1500; 3000; 3200 А.


5» Классификация по наличию токоограничения:

а) токоограничивающие

б) нетокоограничивающие

6» Классификация автоматов по видам расцепителей:

А) с максимальным расцепителем тока

б) с независимым расцепителем

в) с минимальным либо нулевым расцепителем напряжения

7» Классификация автоматов по характеристике выдержки времени:

А) без выдержки времени

б) с выдержкой времени, независимой от тока

в) с выдержкой времени, обратно зависимой от тока

г) с сочетанием указанных характеристик

8» Классификация по наличию свободных контактов: с контактами и без контактов.

9» Классификация автоматов по способу подсоединения внешних проводов:

А) с задним присоединением

б) с передним присоединением

в) с комбинированным присоединением

г) с универсальным присоединением (и передним и задним).


10» Классификация по виду привода:
с ручным, с двигательным и с пружинным.

P.S. У всего есть свои разновидности. Ведь если бы существовала только одна единвещь в своём единственном экземпляре, это было бы как минимум просто скучно и слишком ограниченно! Тем многообразие и хорошо, что в нём можно выбрать именно то, что максимум соответствует своим потребностям.


В любом автоматическом выключателе есть важная составная часть устройства: расцепитель, который служит для размыкания или замыкания коммутационного устройства. По сути расцепитель размыкает контакты автомата при появлении сверхтоков, снижении напряжения. ГОСТ Р 50030.1 (5) определяет понятие расцепителя, как «Устройство, механически связанное с контактным коммутационным аппаратом, которое освобождает удерживающие приспособления и тем самым допускает размыкание или замыкание коммутационного аппарата». Стандарт МЭК 61992‑1 (6) дополняет данное определение расцепителя автоматического выключателя - расцепитель может состоять из механических, электронных или электромагнитных компонентов; относится к любому устройству с механическим действием, которые применяется для расцепляющего оперирования в случае, когда во входной цепи встречаются определенные условия; в автомате может быть несколько расцепителей.

Виды расцепителей

В бытовых автоматических выключателях чаще всего встречаются следующие виды расцепителей: тепловой, электронный и электромагнитный. Они быстро распознают критическую ситуацию (появление сверхтоков, перегрузки и перепады напряжения) и размыкают контакты автоматического выключателя, предотвращая порчу электрического оборудования и защищая проводку. Помимо этих видов, существуют еще и расцепители нулевого напряжения, минимального напряжения, независимые, полупроводниковые, механические.

Сверхтоки - увеличение силы тока в электрической сети , превышающей номинальный ток автомата. Это токи перегрузки, замыкания.

Ток перегрузки - сверхток в функциональной сети.

Ток короткого замыкания - сверхток, появляющийся в результате замыкания двух составляющих сети при крайне низком сопротивлении между этими элементами.

Тепловой расцепитель

Тепловой расцепитель размыкает контакты автоматического выключателя при небольших превышениях номинального тока, отличается увеличенным временем срабатывания. При кратковременных превышениях токовой нагрузки он не срабатывает, это удобно в сетях, где часты именно кратковременные превышения номинального тока автомата.

Тепловой расцепитель является биметаллической пластиной, один конец которой расположен рядом со спусковым механизмом расцепления. В случае увеличения силы тока пластина начинает изгибаться и приближаться к спусковому механизму, касается планки, а та, в свою очередь, размыкает контакты автоматического выключатели. Принцип работы построен на физических свойствах металла, расширяющегося при нагревании, поэтому такой расцепитель и называется тепловым.

К достоинствам теплового расцепителя можно отнести отсутствие трущихся друг о друга поверхностей, устойчивость к вибрациям, низкая стоимость в силу простой конструкции. Но нужно обратить внимание и на недостатки - работа теплового расцепителя сильно зависит от температуры окружающей среды , их следует размещать в местах со стабильным температурным режимом вдали от источников тепла, в противном случае возможны многочисленные ложные срабатывания.

Электронный расцепитель

В состав электронного расцепителя входят измерительные устройства (датчики тока), блок управления и исполнительный электромагнит. Электронные расцепители предназначены для подачи команды на автоматическое отключения автомата с заданной программой при возникновении в электрической цепи сверхтоков перегрузки или замыкания. При превышении силы тока через автомат в блоке электронного расцепителя начинается отсчет времени срабатывания в соответствии с время-токовой характеристикой. Если за время срабатывания ток снизится до величины, ниже пороговой, то автоматического срабатывания не произойдет.

К плюсам электронных расцепителей относятся: широкий выбор настроек, четкое следование прибора заданной программе, наличие индикаторов. Основной недостаток - довольно высокая стоимость, а также чувствительность расцепителя к воздействию электромагнитного излучения.

Электромагнитный расцепитель

Электромагнитный расцепитель (отсечка) срабатывает мгновенно, не допуская ни малейшей вероятности повреждения составных частей электроцепи. Это соленоид с подвижным сердечником, который воздействует на механизм расцепления. В процессе протекания тока по обмотке соленоида, в случае превышения токовой нагрузки, происходит втягивание сердечника под воздействием электромагнитного поля.

Электромагнитный расцепитель срабатывает при превышении тока короткого замыкания. Он обладает достаточной прочностью, устойчив к вибрации, однако создает магнитное поле.

Ток расцепителя автоматического выключателя

Ток расцепителя автоматического выключателя имеет конкретное значение (номинал), означающий величину тока, при котором автомат разомкнет цепь. Ток в тепловом расцепителе всегда равен или меньше номинального тока автоматического выключателя. При любом превышении токовой нагрузки на расцепитель будет происходить отключения автомата. При этом время, через которое произойдет размыкание контактов, зависит от времени протекания тока превышенной нагрузки. Время отключения теплового расцепителя можно рассчитать, используя время-токовые характеристики.

Ток электромагнитного расцепителя отключает автомат мгновенно при превышении номинального тока автоматического выключателя, чаще всего это происходит при коротком замыкании. Перед КЗ в сети очень быстро нарастает величина тока, которую учитывает устройство электромагнитного расцепителя, в результате происходит очень быстрое воздействие на механизм расцепления. Скорость срабатывания в этом случае составляет доли секунды.

Они могут снабжаться следующими встроенными в них расцепителями:

Электромагнитным или электронным расцепителем максимального тока мгновенного или замедленного действия с практически независимой от тока выдержкой времени;

Электротермическим или электронным инерционным расцепителем максимального тока с зависимой от тока выдержкой времени;

Расцепителем тока утечки;

Асцепителем минимального напряжения;

Расцепителем обратного тока или обратной мощности;

Независимый расцепитель (дистанционное отключение выключателя).

Первые два типа устанавливаются во всех трех полюсах, остальные - по одному на выключатель. Токи уставки, а также выдержки времени токовых расцепителей могут быть регулируемыми. В одном выключателе могут применять один или несколько типов токовых расцепителей и дополнительно к ним расцепитель минимального напряжения, независимый расцепитель и электромагнит включения.

По времени срабатывания электромагнитные и аналогичные им электронные расцепители имеют четыре разновидности:

Расцепители, обеспечивающие срабатывание АВ за время намного меньше 0,01с, и отключение тока КЗ раньше, чем он достигнет своего ударного значения. Такие АВ называют токоогораничивающие.

Расцепители, обеспечивающие отключение тока КЗ при первом прохождении тока черехз нулевое значение tc=0,01с.

Нерегулируемые расцепители, время срабатывания которых превышает 0,01с;

Расцепители м регулируемой выдержкой времени (0,1-0,7с), позволяющие добиться замедленной работы относительно других АВ той же сети, называют селективными.

Расцепители тока утечки применяют для быстрого отключения участков сети, в которых из-за нарушения изоляции или прикосновения людей к проводникам возник ток утечки на землю. При этом ток уставки расцепителя выбирают в пределах от 10 до30 мА, а время зависимости от напяжения в пределах от 10 до100мс. Эту защиту в наст время считают более эффективной от защиты людей от поражения электрическим током.

Расцепители минимального напряжения применяют в целях отключения источников питания при прекращении ими питании сети (еред АВР)_, а также в целях отключения электроприемников, самозапуск которых при автоматическом восстановлении напряжения нежелателен. Напряжение сраьатывания расцепителя выбирают в пределах от 0,8 до0,9 Uном, время срабатывания – в соответствии с требованиями систем автоматического восстановления питания сети.

Независимые расцепители примеяют для местного дистанционного и автоматического отключения АВ при срабатывании внешних защитных устройств.

Расцепители обратного тока или обратной мощности применяют для защиты генереаторов, работающих на электрическую систему от выпадения синхронихма.

17. Максимальная токовая направленная защита (принцип действия, принципиальная элек­трическая схема, расчет выдержек времени).

Направленные токовые защиты линии МТНЗ

T 1 > t → 2 > t 3

I p = I` кз I p = I` кз

U p = U в U p = U в

φ p = 180 - φ а φ p = φ а t 4 > t ← 3 > t 2

I p = I`` кз I p = I` кз

U p = U в U p = U в

φ p = φ а φ p = 180 - φ а

В выключателях Q1 - Q3 стоят МТЗ направленного действия. Она отличается от обычной МТЗ тем, что вводится дополнительный орган, определяющий направление мощности КЗ - реле направления мощности, который реагирует на фазу тока КЗ относительно напряжения на шинах подстанции в месте установки комплекта защиты, то «-» знак мощности и реле направления мощности блокирует комплект защиты. Если направление мощности КЗ от шин к линии, то это «+» знак мощности КЗ и реле направления мощности, закрывая свои контакт, разрешает комплекту МТНЗ действовать.

В результате действия направленной защиты 2 и 3 комплект не нужно согласовывать, т.к. они развязаны с помощью направленного действия реле.Эта страница нарушает авторские права

Для того чтобы вся техника в доме или на производстве была защищена от перепадов напряжения электрического тока нужно установить специальные автоматические выключатели. Они смогут зафиксировать скачок и быстро на него среагировать, отключив всю систему от подачи электричества. Человек самостоятельно сделать этого не сможет, а вот автомат определенного типа справить за несколько секунд.

Типы автоматов

Чувствительность аппарата

Перед тем как ознакомится с видами автоматов нужно узнать с какой чувствительностью приборы подойдут для домашнего использования, а какие будут неуместны. Такой показатель будет указывать на то, насколько быстро будет реагировать прибор на скачок напряжения. Он имеет несколько маркировок:

Классификация автоматов

Выделяют различные виды автоматов по отношению к типу тока, номинальному напряжению или показателю тока и другим техническим характеристикам . Поэтому нужно конкретно разбираться по каждому пункту отдельно.

Тип тока

По отношению к этой характеристике автоматы разделяют на:

  1. Для работы в сети переменного тока ;
  2. Для работы в сети постоянного тока ;
  3. Универсальные модели.

Тут все ясно и дополнительных пояснений не нужно.

По показателю номинального тока

От значения данной характеристики будет зависеть в сети с каким максимальным значением может работать автоматический выключатель. Есть приборы, которые способны работать от 1 А до 100 А и больше. Минимальное значение, с которым можно найти в продаже автоматы составляет 0,5 А.

Показатель номинального напряжения

Данная характеристика указывает с каким напряжением может работать данный вид автоматических выключателей. Одни могут работать в сети с напряжением 220 или 380 Вольт - это самые распространенные варианты для бытового применения. Но есть автоматы, которые будут прекрасно справляться и с более высокими показателями.

По способности ограничить приток электричества

По данной характеристике выделяют:

Другие характеристики

Количество полюсов может быть от одного до четырех. Соответственно их называют однополюсные, двухполюсные и так далее.


Автоматы по количеству полюсов

По строению различают:

По скорости сбрасывания производят быстродействующие, нормальные и селективные приборы. В них может быть установлена функция выдержки времени, которая может обратно зависеть от тока или не зависеть от него. Выдержку времени могут и не устанавливать.

Есть у автоматов и привод, который может быть ручной, подключаться к двигателю или пружине. Рознятся выключатели и наличию свободных контактов, и способу подключения проводников.

Важной характеристикой будет защита от воздействия окружающей среды. Тут можно выделить:

  1. IP-защиту;
  2. От механического воздействия;
  3. Ток проводимость материала.

Все характеристики могут сочетаться в различных комбинациях. Все зависит от модели и производителя.

Типы выключателей

Автомат внутри содержит расцепитель, который с помощью рычага, защелки, пружины или коромысла способен мгновенно отключить сеть от подачи электричества. Типы автоматических выключателей и различают по типу расцепителя. Бывают:

Автоматические выключатели гораздо выгоднее плавких предохранителей . Это потому что после остывания автомат уже можно включать, и он будет работать как надо, если причина перегрузки устранена. Плавки предохранитель нужно заменить. Его может не оказаться под рукой и замена может занять много времени.

Привет, друзья. Тема поста – типы и виды автоматических выключателей (автоматов, АВ). Также хочу итоги турнира по разгадыванию кроссвордов.

Виды автоматов:

Можно разделить на выключатели переменного тока, постоянного тока и универсальные, работающие при любом токе.

Конструкция - бывают воздушные, модульные, в литом корпусе.

Показатель номинального тока. Минимальный ток срабатывания модульного автомата составляет 0,5 Ампер, например. Скоро напишу о том, как правильно выбрать номинальный ток для автоматического выключателя, подписывайтесь на новости блога, чтобы не пропустить.

Номинальное напряжение, еще одно различие. В большинстве случаев АВ работают в сетях с напряжением 220 или 380 Вольт.

Бывают токоограничивающие и нетокоограничивающие.

Все модели выключателей классифицируются по количеству полюсов. Делятся на однополюсные, двухполюсные, трехполюсные и четырехполюсные автоматы.

Виды расцепителей - максимальный расцепитель тока, независимый расцепитель, минимальный или нулевой расцепитель напряжения.

Скорость срабатывания автоматических выключателей. Выделяют быстродействующие, нормальные и селективные автоматы. Бывают с выдержкой времени, без нее, независимой или обратно зависимой от тока выдержкой времени срабатывания. Характеристики могут сочетаться.

Отличаются по степени защиты от окружающей среды - IP, механических воздействий , токопроводимости материала. По виду привода - ручной, двигатель, пружина.

По наличию свободных контактов и способу присоединения проводников.

Типы автоматов:

Что означает тип АВ?

Автоматические выключатели содержат внутри себя два вида размыкателей – тепловой и магнитный.

Магнитный быстродействующий размыкатель предназначен для защиты при коротком замыкании. Срабатывание размыкателя может происходить за время от 0,005 до нескольких секунд.

Тепловой размыкатель значительно медленнее, предназначен для защиты от перегрузки. Работает с помощью биметаллической пластины, нагревающейся при перегрузке цепи. Время срабатывания от нескольких секунд до минут.

Совместная характеристика срабатывания зависит от вида подключаемой нагрузки.


Существует несколько типов отключения АВ. Их еще называют - типы время-токовых характеристик отключения.

A, B, C, D, K, Z.

A – применяется для размыкания цепей с большой длинной электропроводки, служит хорошей защитой для полупроводниковых устройств. Срабатывают при 2-3 номинальных токах.

B – для осветительной сети общего назначения. Срабатывают при 3-5 номинальных токах.

C – осветительные цепи, электроустановки с умеренными пусковыми токами. Это могут быть двигатели, трансформаторы. Перегрузочная способность магнитного размыкателя выше, чем у выключателей типа B. Срабатывают при 5-10 номинальных токах.

D – применяются в цепях с активно-индуктивной нагрузкой. Для электродвигателей с большими пусковыми токами, например. При 10-20 номинальных токах.

K – индуктивные нагрузки.

Z – для электронных устройств.

Данные о срабатывании выключателей типов K, Z лучше смотреть в таблицах конкретно по каждому производителю.

Вроде все, если есть, что дополнить, оставь комментарий .

Как работает автоматический выключатель

Нормальный рабочий режим автомата при номинальном или низком токе. Рабочий ток проходит по верхней клемме автомата, через подвесной контакт, по катушке электромагнитного расцепителя, затем проходит тепловой механизм расцепителя и нижнюю клемму автомата. При размерах тока превышающих номинал, срабатывает электромагнитная или тепловая защита.

Разновидности автоматических выключателей

С целью защиты от перегрузки по току в автомате используется тепловой расцепитель как защита от перегрузки, — это биметаллическая узкая полоса пластины собранная из двух типов сплавов, имеющих разные коэффициенты температурного расширения.

Составная биметаллическая пластина нагревается протекающим током и выгибается в сторону металла с маленьким расширением. Когда ток больше номинальной величины, то со временем пластина выгибается настолько, что этого изгиба хватает для реагирования тепловой защиты. Время, при котором среагирует расцепитель, зависит от степени превышения относительно номинального тока.

При значительном увеличении от номинала тока, тепловая защита отключит автомат быстрее, чем при малом превышении от номинала. Второй тип защиты автомата срабатывает на короткое замыкание в нагрузке – это электромагнитный расцепитель. Он состоит из медной катушки с металлическим сердечником. Относительно величины проходящего тока растет и электромагнитное поля катушки, которое намагничивает стальной сердечник.

Демонстрация механизмов автомата

Намагниченный сердечник притягивается, преодолевая усилие удерживающей его пружины, толкает механизм электромагнитной защиты и разрывает контакты. Номинального тока и тока немного выше не хватает для намагниченности сердечника, чтобы сработал механизм расцепителя. А ток короткого замыкания создает намагниченность сердечника достаточную для отключения автомата за сотые доли секунды или даже меньше.

Защита автомата при разных перегрузках

Механизм теплового расцепителя не сработает при небольшом и недолгом токе выше номинального. При большой продолжительности тока больше номинального сработает тепловой расцепитель. Время, отключения автомата тепловой защитой, может доходить до часу.

Механизмы автоматического выключателя

Временная задержка позволяет не отключать автоматы при значительных пусковых токах двигателя и кратковременных бросках тока. тепловых расцепителей зависит также от окружающей температуры. При повышенных температурах тепловая защита отработает быстрее, чем на холоде.

Вызвать перегрузку можно включением нескольких бытовых приборов — это чайник, стиральная машина, кондиционер, электроплита. При перегрузке автомат отключается, но сразу включить его невозможно, нужно ждать, чтобы остыла биметаллическая пластина.

Работа автомата при коротком замыкании

Большие токи короткого замыкания могут оплавить электропроводку или сжечь изоляцию. Чтобы сохранить электропроводку, используют электромагнитный расцепитель . При коротких замыканиях механика электромагнитного расцепителя срабатывает мгновенно, защищая электропроводку, и она не успевает нагреться.

Однако во время размыкания контактов появляется электрическая дуга с огромной температурой. Для защиты от обгорания контактов, разрушения корпуса предназначена дугогасительная камера. Конструктивно камера состоит из элемента с набором медных тонких пластин с небольшим зазором.

Электромагнитная и тепловая защита автоматического выключателя

Электрическая дуга касаясь набора пластин через медный провод соединенного с контактом, рассыпается на части, остывает и исчезает. При коротком замыкании образуются газы, которые выходят через отверстия в камере. Для повторного включения автомата, нужно устранить причину короткого замыкания, или автомат опять выбъет.

Виновника короткого замыкания можно определить последовательным выключением бытовых электроприборов. Но если после отключения всех приборов короткое замыкание не исчезает, то большая вероятность его происхождения в электропроводке. Состояние короткого замыкания могут вызвать электроосветительные приборы, которые также необходимо отключать.

Основное отличие этих коммутационных аппаратов от всех остальных подобных устройств состоит в комплексном сочетании способностей:

1. длительно поддерживать номинальные нагрузки в системе за счет надежного пропускания через свои контакты мощных потоков электроэнергии;

2. защищать работающее оборудование от случайно возникающих неисправностей в электрической схеме за счет быстрого снятия с него питания.

При нормальных условиях эксплуатации оборудования оператор может вручную коммутировать нагрузки автоматическими выключателями, обеспечивая:

    разные схемы питания;

    изменение конфигурации сети;

    вывод оборудования из работы.

Аварийные ситуации в электрических системах возникают мгновенно и стихийно. Человек не способен быстро среагировать на их появление и принять меры к устранению. Эта функция возлагается на автоматические устройства, встроенные в выключатель.

В энергетике принято деление электрических систем по видам тока:

    постоянный;

    переменный синусоидальный.

Кроме того, существует классификация оборудования по величине напряжения на:

    низковольтное - менее тысячи вольт;

    высоковольтное - все остальное.

Для всех типов этих систем создаются свои автоматические выключатели, предназначенные для многократной работы.


Цепи переменного тока

По мощности передаваемой электроэнергии автоматические выключатели в цепях переменного тока условно подразделяют на:

1. модульные;

2. в литом корпусе;

3. силовые воздушные.

Модульные конструкции

Специфическое исполнение в виде небольших стандартных модулей с шириной кратной 17,5 мм определяет их название и конструкцию с возможностью установки на Din-рейку.

Внутреннее устройство одного из подобных автоматических выключателей показано на картинке. Его корпус полностью изготовлен из прочного диэлектрического материала, исключающего .


Питающий и отходящий провода подключаются на верхний и нижний клеммный зажим соответственно. Для ручного управления состоянием выключателя установлен рычаг с двумя фиксированными положениями:

    верхнее предназначено для подачи тока через замкнутый силовой контакт;

    нижнее - обеспечивает разрыв цепи питания.

Каждый из подобных автоматов рассчитан на длительную работу при определенной величине (Iн). Если же нагрузка становится больше, то происходит разрыв силового контакта. Для этого внутри корпуса размещено два вида защит:

1. тепловой расцепитель;

2. токовая отсечка.

Принцип их работы позволяет объяснить времятоковая характеристика, выражающая зависимость времени срабатывания защиты от проходящего сквозь нее тока нагрузки или аварии.

Представленный на картинке график приведен для одного конкретного автоматического выключателя, когда зона работы отсечки выбрана в 5÷10 крат номинального тока.


При первоначальной перегрузке работает тепловой расцепитель, выполненный из , которая при увеличенном токе постепенно нагревается, изгибается и воздействует на отключающий механизм не сразу, а с определенной задержкой по времени.

Таким способом он позволяет небольшим перегрузкам, связанным с кратковременным подключением потребителей, самоустраниться и исключить излишние отключения. Если же нагрузка обеспечит критический нагрев проводки и изоляции, то происходит разрыв силового контакта.

Когда же в защищаемой цепи возникает аварийный ток, способный своей энергией сжечь оборудование, то в работу вступает электромагнитная катушка. Она импульсом за счет броска возникшей нагрузки выкидывает сердечник на отключающий механизм с целью мгновенного прекращения запредельного режима.

На графике видно, что чем выше токи коротких замыканий, тем быстрее происходит их отключение электромагнитным расцепителем.

По этим же принципам работает бытовой предохранитель автоматический ПАР.

При разрыве больших токов создается электрическая дуга, энергия которой может выжечь контакты. Чтобы исключить ее действие в автоматических выключателях используется дугогасительная камера, разделяющая дуговой разряд на маленькие потоки и гасящая их за счет охлаждения.

Кратность отсечек модульных конструкций

Электромагнитные расцепители настраиваются и подбираются под работу с определенными нагрузками потому, что при запуске они создают разные переходные процессы. Например, во время включения различных светильников кратковременный бросок тока из-за изменяющегося сопротивления нити накала может приближаться к трем кратам номинальной величины.

Поэтому для розеточной группы квартир и цепей освещения принято выбирать автоматические выключатели с времятоковой характеристикой типа «В». Она составляет 3÷5 Iн.

Асинхронные двигатели при раскрутке ротора с приводом вызывают бо́льшие токи перегрузок. Для них подбирают автоматы с характеристикой «С», или - 5÷10 Iн. За счет созданного запаса по времени и току они позволяют двигателю раскрутиться и гарантированно выйти на рабочий режим без излишних отключений.

В промышленных производствах на станках и механизмах встречаются нагруженные привода, подключенные к двигателям, которые создают более увеличенные перегрузки. Для таких целей применяют автоматические выключатели характеристики «D» с номиналом 10÷20 Iн. Они хорошо себя зарекомендовали при работе в схемах с активно-индуктивными нагрузками.

Кроме того, у автоматов есть еще три вида стандартных времятоковых характеристик, которые применяются в специальных целях:

1. «А» - у длинных проводок с активной нагрузкой или защит полупроводниковых устройств с величиной 2÷3 Iн;

2. «K» - для выраженных индуктивных нагрузок;

3. «Z» - у электронных устройств.

В технической документации у разных производителей кратность срабатывания отсечки для последних двух типов может немного отличаться.

Этот класс устройств способен коммутировать бо́льшие токи, чем модульные конструкции. Их нагрузка может достигать величины до 3,2 килоампера.


Они изготавливаются по тем же принципам, что и модульные конструкции, но, с учетом повышенных требований к пропусканию увеличенной нагрузки, им стараются придать относительно маленькие габариты и высокое техническое качество.

Эти автоматы предназначены для безопасной работы на промышленных объектах. По величине номинального тока их условно делят на три группы с возможностью коммутации нагрузок до 250, 1000 и 3200 ампер.

Конструктивное исполнение их корпуса: трех- или четырехполюсные модели.

Силовые воздушные выключатели

Они работают в промышленных установках и оперируют токами очень больших нагрузок до 6,3 килоампера.


Это наиболее сложные устройства коммутационных аппаратов низковольтного оборудования. Они используются для работы и защиты электрических систем в качестве вводных и отходящих аппаратов распределительных установок повышенных мощностей и для подключения генераторов, трансформаторов, конденсаторов или мощных электродвигателей.

Схематичное изображение их внутреннего устройства показано на картинке.


Здесь используется уже двойной разрыв силового контакта и установлены дугогасящие камеры с решетками на каждой стороне отключения.

В алгоритме работы участвуют катушка включения, замыкающая пружина, мотор-привод взвода пружины и элементы автоматики. Для контроля протекающих нагрузок встроен трансформатор тока с защитной и измерительной обмоткой.

Автоматические выключатели высоковольтного оборудования относятся к очень сложным техническим устройствам и изготавливаются строго индивидуально под каждый класс напряжения. Они используются, как правило, .

К ним предъявляются требования:

    высокой надежности;

    безопасности;

    быстродействия;

    удобства пользования;

    относительной бесшумности при работе;

    оптимальной стоимости.

Нагрузки, которые разрывают при аварийном отключении, сопровождаются очень сильной дугой. Для ее гашения используются различные способы, включая разрыв цепи в специальной среде.

В состав такого выключателя входят:

    контактная система;

    дугогасительное устройство;

    токоведущие части;

    изолированный корпус;

    приводной механизм.

Один из таких коммутационных аппаратов показан на фотографии.

Для качественной работы схемы в подобных конструкциях, кроме рабочего напряжения, учитывают:

    номинальную величину тока нагрузки для надежной ее передачи во включенном состоянии;

    максимальный ток короткого замыкания по действующему значению, который способен выдержать отключающий механизм;

    допустимую составляющую апериодического тока в момент разрыва схемы;

    возможности автоматического повторного включения и обеспечение двух циклов АПВ.

По способам гашения дуги во время отключения выключатели классифицируют на:

    масляные;

    вакуумные;

    воздушные;

    элегазовые;

    автогазовые;

    электромагнитные;

    автопневматические.

Для надежной и удобной работы они снабжаются приводным механизмом, который может использовать один или несколько видов энергий либо их сочетаний:

    взведенной пружины;

    поднятого груза;

    давления сжатого воздуха;

    электромагнитного импульса от соленоида.

В зависимости от условий применения они могут создаваться с возможностью работы под напряжением от одного и до 750 киловольт включительно. Естественно, что они имеют разную конструкцию. габариты, возможности автоматического и дистанционного управления, настройку защит для безопасной эксплуатации.

Вспомогательные системы таких автоматических выключателей могут иметь очень сложную разветвленную структуру и размещаться на дополнительных панелях в специальных технических зданиях.

Цепи постоянного тока

В этих сетях тоже работает огромное число автоматических выключателей, обладающих разными возможностями.

Электрооборудование до 1000 вольт

Здесь массово внедряются современные модульные устройства, имеющие возможность крепления на Din-рейку.

Они успешно дополняют классы старых автоматов типа , АЕ и других подобных, которые закреплялись на стенках щитов винтовыми соединениями.

Модульные конструкции постоянного тока имеют такое же устройство и принцип работы, как их аналоги на переменном напряжении. Они могут выполняться одним или несколькими блоками и подбираются по нагрузке.

Электрооборудование выше 1000 вольт

Высоковольтные автоматические выключатели для постоянного тока работают на установках электролизного производства, металлургических промышленных объектах, железнодорожном и городском электрифицированном транспорте, предприятиях энергетики.


Основные технические требования к работе подобных устройств соответствуют их аналогам на переменном токе.

Гибридный выключатель

Ученым шведско-швейцарской компании ABB удалось разработать высоковольтный выключатель постоянного тока, сочетающий в своем устройстве две силовые конструкции:

1. элегазовую;

2. вакуумную.

Он получил название гибридного (HVDC) и использует технологию последовательного гашения дуги сразу в двух средах: гексафторида серы и вакуума. Для этого собрана следующее устройство.

На верхнюю шину гибридного вакуумного выключателя подводится напряжение, а с нижней шины элегазового - снимается.

Силовые части обоих коммутационных устройств соединены последовательно и управляются своими индивидуальными приводами. Чтобы они одновременно работали создано устройство управления синхронизированных координатных операций, которое передает команды на управляющий механизм с независимым питанием по оптоволоконному каналу.

За счет применения высокоточных технологий разработчикам конструкции удалось достичь согласованности действий исполнительных механизмов обоих приводов, которая укладывается в промежуток времени менее одной микросекунды.

Управление выключателем происходит от блока релейной защиты, встроенного через ретранслятор в линию электропередачи.

Гибридный выключатель позволил значительно повысить эффективность составных элегазовых и вакуумных конструкций за счет использования их совместных характеристик. При этом удалось реализовать преимущества перед другими аналогами:

1. способность надежно отключать токи КЗ при высоковольтном напряжении;

2. возможность небольшого усилия для проведения коммутаций силовых элементов, которая позволила значительно уменьшить габариты и. соответственно, стоимость оборудования;

3. доступность выполнения различных стандартов для создания конструкций, работающих в составе отдельного выключателя или компактных устройств на одной подстанции;

4. способность устранять последствия быстро возрастающего восстанавливающегося напряжения;

5. возможность формирования базового модуля для работы с напряжениями до 145 киловольт и выше.

Отличительная черта конструкции - способность разрывать электрическую цепь за 5 миллисекунд, что практически невозможно выполнять силовыми устройствами других конструкций.

Гибридное устройство выключателя отмечено в числе десяти лучших разработок за год по версии технологического обзора МТИ (Массачусетского технологического института).

Подобными исследованиями занимаются и другие производители электротехнического оборудования. Они тоже добились определенных результатов. Но компания АВВ опережает их в этом вопросе. Ее руководство считает, что при передаче электроэнергии переменного тока происходят ее большие потери. Их значительно можно снизить, используя цепи высоковольтного постоянного напряжения.

Введение

1. Автоматические выключатели

2. Автоматические выключатели с тепловыми расцепителями

3. Автоматические выключатели с комбинированным расцепителем

Список литературы

Введение

В настоящее время для защиты сетей и электрических приемников от повреждений, вызываемых током, превышающим допустимую величину, все шире применяются автоматические выключатели. Они служат для проведения, включения и автоматического размыкания электрических цепей при аномальных явлениях, (например при токах перегрузки, КЗ, недопустимых снижения напряжения), а также для нечастого включения цепей вручную. Выключатели выпускаются с тепловыми, электромагнитными и комбинированными (тепловыми и электромагнитными) расцепителями с различным числом полюсов -- одним, двумя и тремя. В однофазных цепях применяют одно- и двухполюсные, а в трехфазных -- трехполюсные.

1. Автоматические выключатели

Автоматические выключатели с электромагнитными расцепителями применяются для защиты сети и электрического приемника от повреждений, вызываемых током короткого замыкания, действующим даже кратковременно. Принципиальная схема такого выключателя изображена на рис 1,а.

Контакт главной цепи замыкается нажатием на кнопку или поворотом рукоятки. При этом преодолевается усилие размыкающей пружины и контакт удерживается в замкнутом положении защелкой 3. Как только ток в защищаемой цепи превысит определенную величину, сердечник 6 втянется в катушку 5 и через рычаг 4 освободит защелку 5. Под действием пружины 1 контакт 2 разомкнётся. На схеме изображен один контакт главной цепи, а практически их может быть два или три, столько же может быть и катушек 5 с сердечниками 6. Всё сердечники при втягивании действуют на одну и ту же защелку 3. Увеличение тока в любом проводе (катушке) до величины, превышающей величину установки тока срабатывания, влечет за собой размыкание всех главных контактов.

Электромагнит с механизмом отключения называется электромагнитным расцепителем. Время отключения автоматических выключателей с электромагнитными расцепителями незначительное (доли секунды), поэтому они относятся к аппаратам максимальной защиты мгновенного действия.

Преимущество автоматических выключателей перед плавкими предохранителями состоит в том, что они обладают многократностью действия. После срабатывания плавкого предохранителя требуется замена плавкой вставки. Автоматический же выключатель после устранения причины срабатывания можно подготовить для повторной работы нажатием на кнопку или поворотом рукоятки.

Автоматические выключатели применяются не только для отключения приемников при токах короткого замыкания, но и для нечастых включений и отключений их вручную при нормальной работе. Возникающая при размыкании цепи электрическая дуга гасится в воздухе или масле. В зависимости от этого автоматические выключатели называются воздушными или масляными. В цепях с напряжением до 500 В применяются в основном воздушные выключатели.

2. Автоматические выключатели с тепловыми расцепителями

Металлы имеют разные коэффициенты линейного расширения и поэтому при нагревании удлиняются неодинаково. Если две металлические пластины с различными коэффициентами расширения наложить одну на другую и прочно соединить вместе, получится биметаллическая пластина. При нагревании она деформируется выпуклостью в сторону активного слоя металла. Активным называется слой металла, обладающий большим коэффициентом расширения. Другой слой называют пассивным. Активный слой делают из стали, а пассивный -- из инвара (сплав, состоящий из 64 % железа и 36% никеля). Коэффициент линейного расширения инвара в 12 раз меньше стали.

Если один конец биметаллической пластины закрепить, то другой при нагревании будет изгибаться в сторону пассивного слоя. Это свойство пластины используется для освобождения защелки автоматического выключателя. Степень деформации пластины зависит от температуры ее нагрева.

Применяются два способа нагревания пластины: непосредственный и косвенный. При первом ток проходит непосредственно через пластину. При этом количество теплоты, которое выделяется в ней, пропорционально квадрату величины тока, времени его прохождения и сопротивлению пластины. При втором способе ток проходит по нагревательному элементу (небольшой спирали), выполненному из нихрома или другого сплава. Спираль располагают рядом с пластиной или наматывают на нее. Выделяющаяся в этой спирали теплота и нагревает биметаллическую пластину. Перед намоткой спирали биметаллическая пластина покрывается электроизоляцией, например слюдой.

На рис.1,6 изображена схема автоматического выключателя с тепловым расцепителем. Контакт 2 главной цепи замыкают вручную кнопкой или рукояткой, g замкнутом положении он удерживается защелкой 3. При прохождении по сети тока, величина которого меньше определенного значения, биметаллическая пластина 7 нагревается незначительно, и ее изгиба вверх недостаточно для того, чтобы передать усилие на защелку 3. Если же по спирали 8 будет проходить ток, величина которого превысит это определенное значение, то через некоторое время правый конец пластины 7 изогнется вверх настолько, что через толкатель 4 поднимет рычаг защелки 3. Под действием пружины 1 разомкнётся контакт 2. Время, через которое произойдет размыкание контакта, зависит от степени перегрузки сети. Тепловые расцепители не могут срабатывать мгновенно, особенно при косвенном нагреве биметаллической пластины. Нагрев и деформация ее не происходят мгновенно даже при очень большом выделении теплоты в спирали.

Автоматические выключатели с тепловыми расцепителями отключают сеть с выдержкой времени в обратной зависимости от величины тока перегрузки. При больших перегрузках отключение происходит быстрее. На схеме изображен один контакт выключателя, а их может быть два или три.