Вакуумная печь: назначение, технические характеристики. Вакуумная плавка

Вакуумная печь — это устройство, которое в первую очередь предназначено для образования внутри системы высокой температуры. Проделывается весь этот путь, для того, чтобы достичь оптимальных условий для плавки металла в вакууме с помощью энергии электрической дуги.

Навигация:

Если говорить о том, где задействуются подобные устройства, то на данный момент вакуумные печи нашли свое применение во многих отраслях производства, где они играют одни из самых важных ролей. К примеру, вакуумные печи нашли свое применение в таких отраслях, как:

  • Ракетостроение
  • Космическая промышленность
  • Атомная энергетика
  • Металлургия

Все эти отрасли требуют качественной выплавки высококачественных сталей, которые смогут выдерживать самые трудные погодные условия. А без участия вакуумных печей, достичь подобной кондиции попросту невозможно.

Также можно рассмотреть главные преимущества вакуумной печи, которых на самом деле огромное количество. Пройдя через вакуумную печь, в сплаве остается минимальное содержание газов и неметаллических веществ.

Благодаря качественной конструкции вакуумных печей, а именно отдельных её элементов, удалось достичь максимальной прочности агрегата. Этот фактор позволяет достигать внутри системы максимальных температур, вплоть до 2000 градусов. При этом, сплавы являются действительно очень качественными и не содержат в себе каких-то нежеланных элементов. А сами печи, вне зависимости от ценовой категории никаким образом не портятся и остаются все такими же эффективными.

Но стоит отметить тот факт, что вакуумная печь, цена которой довольно высока — это не такой часто встречаемый продукт, и купить подобный агрегат будет весьма проблематично.

Дуговая печь

В отличие от обычной вакуумной печи, дуговая печь работает по мене запутанному алгоритму, но результаты, которые она предоставляет, ничем не уступают обычной версии вакуумной печи. Но стоит напомнить, что у этих печей абсолютно разное предназначение и каждая из них выполняет собственные задачи.

Дуговая печь работает за счет теплового эффекта электрической дуги, который приводит в действие весь механизм. Главная задача этого агрегата — это плавка металла, но кроме него, печь в силах справится и с другими материалами, и показывает себя в этом только с лучшей стороны.

Дуговые печи имеют три версии сборки, из-за чего их и разделили на три отдельных категории.

  • Печи прямого нагрева — электрическая дуга находится посредине двух электродов и находится под воздействием расплавленных металлов.
  • Печи с закрытой дугой — материал, который поддается нагреву, находится внутри, в полном окружении электродов. Что касается дуги, то в этом устройстве, она разместилась под нагреваемым материалом. С помощью излучения, дуга воздействует на материал внутри системы, придавая ему все условия для быстрой плавки, в то время как электрический ток проходит внутри расплавленного метала
  • Печи косвенного нагрева — Этот тип системы подразумевает более интересный способ работы, так как здесь электрическая дуга, находится в активном режиме только между электродами. Что касается тепла от дуги, то оно поступает посредством излучения.

Индукционная печь

Индукционные печи в плане внешнего вида не особо отличаются от своих собратьев, но что касается технологии работы, то здесь отличия просто кардинальные. В какой-то мере можно сказать, что именно индукционные плавильные печи — это прорыв в отрасли плавки металлов, так как технология плавильной печи устроена таким образом, что нагревается не сам агрегат, а лишь материал который в нем находится, так как электрическая энергия направленна исключительно на материал внутри системы.

Вакуумная индукционная плавильная печь, использует нагрев токами, высочайшей частоты, которые позволяют реализовать возможность создания наибольшей концентрации электрической энергии. Она же в свою очередь, направляется на метал, который находится в плавильной печи. Также большим плюсом является то, что подобная технология позволяет проводить нагрев намного быстрее, чем обычные печи. А это значит, что предприятия, которые используют именно индукционные плавильные печи, имеют возможность значительно увеличить эффективность труда, что принесет дополнительный доход.

Вакуумная термическая печь

Вакуумная термическая печь, как собственно и другие её вариации, также нашла свое применение во многих производственных отраслях и на данный момент используется многими предприятиями. Если говорить о самых известных отраслях, в которых на данный момент термическая печь является важнейшим звеном, то сюда можно отнести такие отрасли, как:

  • Авиационная промышленность
  • Космическая промышленность
  • Машиностроение

Все эти отрасли являются довольно распространёнными в нашей стране, и все они используют в своей работе вакуумную термообработку деталей, без которой они будут попросту не пригодны для работы. После термообработки, любая деталь покрывается небольшим покрытием, которое в будущем и служит надежным защитником от воздействия окружающей среды.

Что касается ценовой категории вакуумных термических печей — то это действительно дорогой агрегат, купить который будет довольно проблематично. Обычному человеку это возможно сделать, если он найдет самую маленькую версию печи подобного типа, которых на рынке не так много. Зачастую вакуумные термические печи используются большими предприятиями, которым требуется устройство, которое сможет давать хорошие показатели работоспособности и при этом работать сутками без остановки.

Водородная печь

Если говорить о наиболее качественной и надежной печи, то без каких-либо сомнений можно сказать, что таковой является водородная печь, имеющая наибольший спектр функций, которые позволяют ей справляться с самыми разными задачами. Не стоит также забывать и о характеристиках подобного агрегата, так как они действительно отличаются от того, что можно увидеть у вакуумных печах других вариаций.

Дополнительные процессы отжига и пайки, позволяют деталям обеспечить по-настоящему качественное соединение. Вакуумные водородные печи, также отличатся абсолютной автоматизацией и не требуют никакой человеческой помощи. Для долгой и качественной работы, надо лишь правильно настроить агрегат, после чего он будет выполнять все в точности с заданными параметрами.

Водородные печи выпускаются в самых различных вариациях в точном числе и в плане габаритов есть самые разные модели. А это значит, что человек, который хочет себе подобное устройство, имея нужную сумму денег, может без каких-либо преград купить себе подобный агрегат. Но все-таки намного чаще он используется на различных производствах, где он выполняет одну из важнейших функций.

По сути, сравнивать все эти печи – это довольно странная затея, так как все они имеют свое предназначение и выполняют отдельные функции. Но все-таки, если сравнивать их в плане производительности, то лучше всего себя показывает именно вакуумная водородная печь, демонстрируя отличное качество и скорость работы, которая значительно выше, чем у других печей вакуумного типа.

Принцип действия индукционных печей основан на токах, возникающих в расплаве с помощью специальных устройств — индукторов. При этом наведенные токи позволяют достигать температуры плавления в металлах, достигается высокая равномерность расплавов за счет перемешивания. Все элементы расплавов подвергаются вихревому воздействию токов, таким образом происходит движение слоев и достигается максимально возможное смешивание различных присадок и металлов. К основным достоинствам индукционных печей следует отнести простейший ремонт, высокий КПД, возможность получения сплавов, обладающих заданными характеристиками и выполнять термообработку в любом режиме.

Навигация:

Индуктор, помимо создания электрического тока в обрабатываемом металле, воспринимает механические вибрационные и температурные нагрузки, поэтому при проектировании предусматривается необходимая прочность и тугоплавкость как токопроводящей, так и изолирующей части. В качестве изоляции может применяться воздушная прослойка, при этом должно быть обеспечено необходимое расстояние между витками и жесткое закрепление проводника.

Также применяют ленточную изоляцию, которая наносится поверх лакового покрытия. Лента должна обладать хорошими диэлектрическими свойствами, обеспечивающими надежную изоляцию витков.

Другим способом обеспечения необходимой диэлектрической изоляции витков индуктора является применение специального прокладочного материала, устанавливаемого между витками. Крепление прокладок осуществляется с помощью специального клея. Такой способ обычно применяется для изоляции индуктора большой мощности.

Компаундирование также служит для обеспечения нужного уровня изоляции. Данный способ не нашел широкого применения, поскольку индуктор в этом случае очень сложно отремонтировать.

Токопроводящая часть индуктора должна обладать хорошей электропроводностью, снижающей потери мощности. Кроме того, материал, используемый в электрической части индуктора должен быть немагнитным. Для того, чтобы обеспечить максимальную площадь со стороны, обращенной к обрабатываемому металлу и меньшую массу, используются различные сечения с внутренними полостями.

Каркас печи должен обеспечить жесткость всей конструкции и исключить поглощение мощности деталями. В промышленных печах обычно применяется цилиндрический каркас из листов стали со специальными технологическими отверстиями, обеспечивающими свободный доступ к индуктору.

Плавка металла в индукционной печи позволяет точно регулировать температурные режимы, поддерживать необходимую температуру в течение определенного времени. КПД индукционных печей очень высокий, поскольку отсутствуют дополнительно нагреваемые элементы, нагревается только обрабатываемый металл. По экологическим характеристикам индукционные печи являются наиболее безопасными, так как отсутствуют продукты сгорания топлива и вредные вещества, выделяющиеся при других способах плавки.

Индукционные печи применяются для выплавки цветных и черных металлов, закалки, отпуска, отжига, нормализации сталей. Конструктивно индукционные печи бывают канального типа и тигельные. Выпускаются печи, позволяющие производить плавку с доступом воздуха, в определенной газовой среде с избыточным давлением или вакууме.

Помимо цветных металлов, индукционные печи используют для плавки драгоценных металлов. При этом обычно требуется более низкая температура, чем для черных металлов. Плавка палладия в индукционной печи требует окислительной атмосферы, в отличие от других драгоценных металлов.

Выплавка стали в индукционных печах позволяет получать высоколегированные сорта, отвечающие самым жестким требованиям. В некоторых случаях применяется плавка стали в определенной газовой среде или вакууме, что позволяет получать дополнительные качества.

Плавка титана в индукционных печах дает возможность получения слитков или заготовок, обладающих равномерным составом по всему объему. Недостатком плавки в индукционных печах является сравнительно высокое содержание углерода в конечной продукции. Для уменьшения воздействия газов, выплавку титана производят в аргоновой среде или вакууме.

Следует учесть, что плавка влажных или содержащих лед металлов очень опасна, поэтому рекомендуется предварительная сушка. Наличие влаги в рабочей камере печи при появлении расплава вызовет разбрызгивание раскаленного металла, что может повлечь за собой травмы и выход из строя оборудования.

Промышленная печь индукционная

Проектирование промышленных печей осуществляется исходя из требований к технологическому процессу. Проект определяет максимально возможную температуру нагрева, возможность создания определенной газовой среды или вакуума, применение тиглей или канальное устройство рабочей части, степень автоматизации. Промышленные печи должны оборудоваться системами, обеспечивающими максимальную безопасность в процессе работы. Кроме того, так печи работают с применением переменного электрического тока, на мощность печи влияет его частота.

От того, какие температурные режимы требуются, какие виды металлов или сплавов планируется выплавлять, применяют различные виды футеровки. Футеровка индукционных печей может выполняться из огнеупорного материала, содержащего свыше 90% окиси кремния с небольшим количеством других окислов. Такая футеровка получила название кислой и может выдержать до 100 плавок.

Основная или щелочная футеровка изготавливается из магнезита с добавлением других окислов и жидкого стекла. Такая футеровка может выдержать до 50 плавок, в печах большого объема износ происходит намного быстрее.

Нейтральная футеровка применяется чаще других видов и может выдерживать свыше 100 плавок. Наиболее часто она применяется в тигельных печах. Следует учесть, что в результате проведения плавок происходит неравномерный износ футеровки. Таким образом изменяется рабочий объем и толщина стенки футеровки. Больший износ происходит в местах с большей температурой, обычно в нижней части печи.

Так как промышленные индукционные печи работают с большими нагрузками, обмотка индуктора в процессе работы может значительно нагреваться. Для предотвращения негативных последствий перегрева, обычно предусматривается водяная система охлаждения, отводящая излишки тепла от витков индуктора. При проектировании вопрос охлаждения индуктора является одним из важнейших, поскольку от эффективности системы зависит надежность и срок службы всей печи.

Максимально возможная автоматизация процессов термообработки является необходимым условием для нормальной работы промышленных индукционных печей. Правильно подобранная автоматика обеспечит различные режимы, позволяющие наиболее точно выполнить требования технологических процессов.

Производство промышленных печей осуществляется в строгом соответствии с требованиями заказчика и регулирующей НТД. Промышленные печи могут изготавливаться по типовым проектам или индивидуальным заказам. Обязательным условием является аттестация оборудования, которая должна выполняться не реже 1 раза в год.

Лабораторная индукционная печь

Исследования, проводимые с различными металлами и сплавами, требуют создания определенных условий в процессе плавки или термообработки. Индукционная печь лабораторная служит для обеспечения заданных условий, поэтому степень автоматизации такого устройства очень высока. В зависимости от того, какие материалы планируется исследовать, лабораторные печи снабжаются дополнительным оборудованием. Некоторые модели предусматривают возможность плавки при избыточном давлении или вакууме.

В лабораторных печах для футеровки, помимо указанных выше материалов, могут применяться более современные теплоизолирующие материалы, такие как:

    корунд, выдерживающий до 300 плавок;

    различные термостойкие волоконные материалы;

    керамические теплоизолирующие пластины.

К лабораторным печам можно отнести также ювелирные печи, служащие для обработки драгоценных металлов и стоматологические, предназначенные для изготовления протезов. Печи такого типа обычно не предназначены для получения высоких температур и обработки больших объемов металла, поэтому мощность их не высока.

Каркас лабораторных печей обычно имеет форму куба или параллелепипеда. Для изготовления ребер применяют различные немагнитные материалы (дюралюминий, специальная сталь, медь). Элементы каркаса закрываются асбоцементными листами, обеспечивающими дополнительную теплоизоляцию. Для уменьшения нагрева элементов каркаса применяют специальные изолирующие прокладки. Также они служат для предотвращения возникновения блуждающих токов. Крепление индуктора в этом случае осуществляется к верхним и нижним плитам.

Лабораторные индукторные печи, как и промышленные, требуют эффективного охлаждения обмотки. В некоторых моделях достаточно воздушного охлаждения, в работающих с высокими температурами индукторах применяется водяное.

Наличие необходимого уровня защиты от токов индукции в лабораторных печах является необходимым условием, обеспечивающим безопасность персонала. Для обеспечения нужного уровня безопасности, используются специальные электромагнитные экраны. Обычно они изготавливаются из листового алюминия или меди.

Индукционная печь используется для плавки цветных и черных металлов. Агрегаты такого принципа действия применяют в следующих сферах: от тончайшего ювелирного дела до промышленной плавки металлов в крупных размерах. В данной статье будут рассмотрены особенности различных индукционных печей.

Индукционные печи для плавки металла

Принцип работы

Индукционный нагрев положен в основу действия печи. Другими словами, электрический ток образовывает электромагнитное поле и получается тепло, которое используется в промышленных масштабах. Этот закон физики изучается в последних классах общеобразовательной школы. Но понятие электрического агрегата и электромагнитных индукционных котлов нельзя путать. Хоть в основе работы и там и тут лежит электричество.

Как это происходит

Генератор подключается к источнику переменного тока, который поступает в него через индуктор, находящийся внутри. Конденсатор задействуется для создания контура колебания, в основе которого лежит постоянная рабочая частота, на которую настраивается система. При возрастании напряжения в генераторе до предела в 200 В индуктор создает магнитное поле переменного действия.

Замыкание цепи происходит, чаще всего, посредством сердечника из ферромагнитного сплава. Переменное магнитное поле начинает взаимодействие с материалом заготовки и создает мощный поток электронов. После вступления в индукционное действие электропроводящего элемента в системе происходит возникновение остаточного напряжения , которое в конденсаторе способствует возникновению вихревого тока. Энергия вихревого тока преобразовывается в тепловую энергию индуктора и происходит нагревание до высоких температур плавления искомого металла.

Тепло, производимое индуктором, применяют:

  • для расплавления мягких и твердых металлов;
  • для закаливания поверхности металлических деталей (например, инструмента);
  • для обработки в термическом режиме уже произведенных деталей;
  • бытовых потребностей (обогрев и кулинария).

Краткая характеристика различных печей

Разновидности приборов

Индукционные тигельные печи

Является наиболее распространенным типом печного индукционного нагрева. Отличительной чертой, отличной от других видов является то, что в ней переменное магнитное поле появляется при отсутствии стандартного сердечника. Тигель в форме цилиндра размещается внутри индукторной полости . Печь, или тигель изготавливается из материала, который прекрасно сопротивляется огню и подключается к переменному электрическому току.

Положительные аспекты

Тигельные агрегаты относят к экологически чистым источникам тепла , окружающая среда не загрязняется от плавки металлов.

В работе тигельных печей присутствуют недостатки:

  • при технологической обработке используются шлаки пониженной температуры;
  • произведенная футеровка тигельных печей имеет низкую стойкость против разрушения, больше всего это заметно при резких скачках температур.

Имеющиеся недостатки не представляют особенных трудностей, достоинства тигельного индукционного агрегата для плавки металла очевидны и сделали такой тип приборов популярным и востребованным среди широкого круга потребителей.

Канальные печи индукционной плавки

Такой тип нашел широкое применение в плавильном деле цветных металлов. Эффективно используется для меди и медных сплавов на основе латуни, мельхиора, бронзы. Активно плавят в канальных агрегатах алюминий, цинк и сплавы в составе этих металлов. Широкое использование печей этого типа ограничено из-за невозможности выполнить футеровку, стойкую к разрушениям, на внутренних стенках камеры.

Расплавленный металл в канальных печах индукционного типа совершает тепловое и электродинамическое движение , что обеспечивает постоянную однородность смешивания компонентов сплава в печной ванне. Использование канальных печей индукционного принципа оправдано в случаях, если к расплавленному металлу и изготовленным слиткам предъявляются особые требования. Сплавы получаются качественными в плане коэффициента насыщения газами, присутствия в металле органических и синтетических примесей.

Индукционные канальные печи работают по типу миксера и предназначаются для выравнивания состава, поддержки постоянной температуры процесса, и выбора скорости разлива в кристаллизаторы или формы. Для каждого сплава и состава литья существуют параметры специальной шихты.

Достоинства

  • подогревание сплава происходит в нижней части, к которой нет воздушного доступа, что уменьшает испарение с верхней поверхности, нагретой до минимальной температуры;
  • канальные печи относят к экономичным индукционным печам, так как происходящее расплавление обеспечивается маленьким расходом электрической энергии;
  • печь имеет высокий коэффициент полезного действия благодаря применению в работе замкнутого контура магнитного провода;
  • постоянная циркуляция в печи расплавленного металла вызывает ускорение плавильного процесса и способствует однородности перемешивания компонентов сплава.

Недостатки

  • стойкость каменной внутренней футеровки снижается при использовании высоких температур;
  • футеровка разрушается при плавлении химически агрессивных сплавов из бронзы, олова и свинца.
  • при плавлении загрязненной низкосортной шихты происходит засорение каналов;
  • поверхностный шлак на ванне не нагревается до высокой температуры, что не позволяет проводить операции в промежутке между металлом и укрытием и расплавлять стружку и скрап;
  • канальные агрегаты плохо переносят перерывы в работе, что заставляет постоянно хранить в жерле печи значительное количество жидкого сплава.

Полное удаление расплавленного металла из печи ведет к ее быстрому растрескиванию. По этой же причине невозможно выполнить быструю перестройку с одного сплава на другой , приходится делать несколько промежуточных плавок, получивших название балластных.

Вакуумные печи индукционного действия

Этот вид имеет широкое применение для плавления сталей высокого качества и никелевых, кобальтовых и железных сплавов жаростойкого качества. Агрегат успешно справляется с плавкой цветных металлов. В вакуумных агрегатах варят стекло, обрабатывают высокой температурой детали, производят монокристаллы .

Печь относят к высокочастотному генератору, расположенному в изолированном от внешней среды индукторе, пропускающем ток высокой частоты. Для создания вакуума из него насосами откачивают воздушные массы. Все операции по введению добавок, загрузке шихты, выдаче металла производится автоматическими механизмами с электрическим или гидравлическим управлением. Из вакуумных печей получают сплавы с небольшими примесями кислорода, водорода, азота, органики. Результат намного превосходит открытые печи индукционного действия.

Жаропрочную сталь из вакуумных печей применяют в инструментальном и оружейном производстве . Некоторые сплавы из никеля, с содержанием никеля и титана являются химически активными, и получить их в других видах печей проблематично. Вакуумные печи выполняют розлив металла поворотом тигеля во внутреннем пространстве кожуха или вращением камеры с неподвижно закрепленной печью. Некоторые модели имеют в дне открывающееся отверстие для слива металла в установленную емкость.

Тигельные печи с транзисторным преобразователем

Применяют для ограниченного веса цветных металлов. Они мобильные, имеют небольшой вес и с легкостью переставляются с места на место. В комплектацию печи входит высоковольтный транзисторный преобразователь универсального действия . Позволяет подобрать мощность, рекомендуемую для подключения в сети, а соответственно ей тип преобразователя, который необходим в этом случае с изменением параметров веса сплава.

Транзисторная индукционная печь широко применяется для металлургической обработки. С ее помощью нагревают детали в кузнечном деле, закаляют металлические предметы. Тигли в транзисторных печах выполняют из керамики или графита, первые предназначены плавить ферромагнитные металлы, такие как чугун или сталь. Графит устанавливается для плавления латуни, меди, серебра, бронзы и золота. На них плавят стекло и кремний. Алюминий хорошо плавится посредством чугунных или стальных тиглей.

Что такое футеровка печей индукционного действия

Ее предназначение состоит в защите печного кожуха от разрушающего действия высоких температур. Побочным действием является сохранение тепла, следовательно, повышается результативность процесса .

Тигель в конструкции индукционной печи выполняется одним из способов:

  • способом выемки в маленьких по объему печах;
  • набивным способом из огнеупорного материала в виде кладки;
  • комбинированным, сочетающим керамику и прокладку буферного слоя в промежутке кладки и индикатора.

Футеровка выполняется из кварцита, корунда, графита, шамотного графита, магнезита. Во все эти материалы домешивают добавки, улучшающих характеристики футеровки, уменьшающих изменения объема, улучшающих спекание, увеличивающие стойкость слоя к агрессивным материалам.

Для выбора того или иного материала для футеровки учитывают ряд сопутствующих условий , а именно, вид металла, цену и огнеупорные свойства тигля, срок службы состава. Правильно подобранный состав футеровки должен обеспечить технические требования для проведения процесса:

  • получение слитков высокого качества;
  • наибольшее количество полноценной плавки без проведения ремонтных работ;
  • безопасную работу специалистов;
  • стабильность и непрерывность проведения плавильного процесса;
  • получение качественного материала при использовании экономного количества ресурсов;
  • применение для футеровки распространенных материалов по невысокой цене;
  • минимальное влияние на окружающее пространство.

Применение индукционных печей позволяет получить сплавы и металлы отменного качества с минимальным содержанием различных примесей и кислорода, что повышает их применение в сложных областях производства.

Нагревание тел с помощью электромагнитного поля, возникающего от воздействия индуцированным током, называется индукционным нагревом. Электротермическое оборудование, или индукционная печь, имеет разные модели, предназначенные для выполнения задач разного назначения.

Конструкция и принцип действия

По техническим характеристикам устройство является частью установки, используемой в металлургической промышленности. Принцип работы индукционной печи зависит от переменного тока , мощность установки формируется назначением прибора, в конструкцию которого входит:

  1. индуктор;
  2. каркас;
  3. плавильная камера;
  4. вакуумная система;
  5. механизмы перемещения объекта нагревания и другие приспособления.

Современный потребительский рынок располагает большим количеством моделей приборов, работающих по схеме образования вихревых токов. Принцип работы и конструкционные особенности промышленной индукционной печи позволяет выполнять ряд специфических операций, связанных с плавкой цветного металла, термической обработкой изделий из металла, спекания синтетических материалов, очисткой драгоценных и полудрагоценных камней. Бытовые приборы используются для дезинфекции предметов быта и обогрева помещений.

Работа ИП (индукционной печи) заключается в нагревании помещенных в камеру предметов вихревыми токами, излучаемыми индуктором, представляющим собой катушку индуктивности, выполненную в форме спирали, восьмерки или трилистника с обмоткой проводом большого поперечного сечения. Работающий от переменного тока индуктор создает импульсное магнитное поле, мощность которого изменяется в соответствии с частотой тока. Предмет, помещенный в магнитное поле, нагревается до точки закипания (жидкости) или плавления (металл).

Установки, работающие с помощью магнитного поля, производятся в двух типах: с магнитным проводником и без магнитопровода. Первый тип приборов имеет в конструкции индуктор, заключенный в металлический корпус, обеспечивающий быстрое повышение температуры внутри обрабатываемого объекта. В печах второго типа магнитотрон находится снаружи установки.

Особенности индукционных приборов

От мастера также требуются навыки конструирования и монтажа электроприборов. Безопасность устройства индивидуальной сборки заключается в ряде особенностей:

  1. емкости оборудования;
  2. рабочей частоты импульса;
  3. мощности генератора;
  4. вихревых потерь;
  5. гистерезисных потерь;
  6. интенсивности тепловой отдачи;
  7. способа футеровки.

Свое название канальные печи получили за наличие в пространстве агрегата двух отверстий с каналом, образующим замкнутый контур. По конструкционным особенностям прибор не может работать без контура, благодаря которому жидкий алюминий находится в непрерывном движении. При несоблюдении рекомендаций завода изготовителя оборудование самопроизвольно отключается, прерывая процесс плавки.

По расположению каналов индукционные плавильные агрегаты бывают вертикальными и горизонтальными с барабанной или цилиндрической формой камеры. Барабанная печь, в которой можно плавить чугун, выполнена из листовой стали. Поворотный механизм оснащен приводными роликами, электродвигателем на две скорости и цепной передачей.

Жидкая бронза заливается через сифон, расположенный на торцевой стенке, присадки и шлаки загружаются и удаляются через специальные отверстия. Выдача готовой продукции осуществляется через V -образный сливной канал, сделанный в футеровке по шаблону, который расплавляется в рабочем процессе. Охлаждение обмотки и сердечника осуществляется воздушной массой, температура корпуса регулируется при помощи воды.

1 Вакуумные печи................................................................4

1.1 Общая характеристика............................................................ 4

1.2 Особенности тепловой работы …………………………………..5

2 Индукционные печи …………………………………………….….6

2.1 Индукционные плавильные печи ………………………………..6

2.2 Печи без железного сердечника ………………………….……..6

2.3 Печи с железным сердечником………………………….…….. 10

3 Установки для плавки во взвешенном состояния ……….……..17

3.1 Общая характеристика …………………………………………..17

3.2 Особенности тепловой работы ………………………………….17

Заключение ……………………………………………………………19

Список использованных источников ………………………………20


1 Вакуумные печи

1.1 Общая характеристика

Компактность электромагнитной системы «индуктор–металл», характерная для индукционных тигельных печей, обусловила развитие на их основе разнообразных конструкций индукционных вакуумных плавильных (рисунок 1) и нагревательных печей, различающихся расположением индуктора вне (рисунок 1,а) или внутри (рисунок 1, б-г) вакуумной камеры. Слив металла из тигля плавильных печей может быть через донное отверстие, путем наклона корпуса печи малых размеров (рисунок 1, б) или тигля внутри вакуумной камеры больших габаритов (рисунок 1, в и г) в изложницы или литейные формы. Нагревательные печи периодического действия в зависимости от способа загрузки изделий могут быть камерные, шахтные, элеваторные; возможно создание печей непрерывного действия. Плавильные печи, работающие без нарушения вакуума в течение всей кампании тигля, называют печами полунепрерывного действия. Такие печи - наиболее сложные агрегаты (рисунок 1, г), имеющие помимо основной (плавильной) вакуумной камеры с индукцион­ной печью ряд вспомогательных шлюзовых камер для загрузки шихты, разливки, подачи изложниц или литейных форм, дозаторы для присадок, устройство для отбора проб и измерения температуры жидкого металла по ходу плавки и другое технологическое оборудование.

Кожух вакуумной камеры изготовляют из немагнитной стали. По требованиям вакуумной гигиены внутреннюю поверхность кожуха хорошо обрабатывают (в некоторых случаях – полируют). При расположении индуктора вне вакуумной камеры кожух представляет собой кварцевую трубу (рисунок 1,а).

Индукционные вакуумные печи работают в условиях среднего вакуума с остаточным давлением 0,01-0,1 Па при нагреве и 0,1 – 1 Па при плавке.

Индукционные вакуумные печи применяют для плавки черных и цветных металлов и их сплавов из чистых твердых шихтовых материалов на частоте 1 – 2,5 кГц (вместимость до 10-15 т), рафинирования полупродукта на промышленной частоте (вместимость до 60 т), переплава чистых металлов для фасонного литья (вместимостью до 450 кг). Химически активные и особо чистые материалы получают в индукционных вакуумных печах с так называемым холодным тиглем, представляющим собой медный водоохлаждаемый тигель с продольными разрезами, через которые электромагнитные волны проходят к расплавляемому материалу, не поглощаясь в электропроводном тигле.

1.2 Особенности тепловой работы

В вакуумных индукционных печах основные принципы теплогенерации, рассмотренные для индукционных тигельных печей, сохраняются. Однако конструктивные особенности электромагнитной системы «индуктор-металл», связанные с возможным расположением индуктора вне вакуумной камеры (рисунок 1,а), наличием металлического кожуха вокруг индуктора (рисунок 1, б-г) и другие, снижают коэффициент использования электрической энергии из-за увеличения магнитного потока рассеяния и реактивной мощности, не участвующей в теплогенерации.


2 Индукционные печи

2.1 Индукционные плавильные печи

Плавка черных металлов в индукционных печах имеет ряд преимуществ перед плавкой в дуговых печах, поскольку исключается такой источник загрязнения, как электроды. В индукционных печах тепло выделяется внутри металла, а расплав интенсивно перемешивается за счет возникающих в нем электродинамических усилий. Поэтому во всей массе расплава поддерживается требуемая температура при наименьшем угаре по сравнению со всеми другими типами электрических плавильных печей. Индукционные плавильные печи легче выполнить в вакуумном варианте, чем дуговые.

Однако важнейшее достоинство индукционных печей, обусловленное генерацией тепла внутри расплавленного металла, становится недостатком при использовании их для рафинирующей плавки. Шлаки, имеющие очень малую электропроводность, нагреваются в индукционных печах от металла и получаются со сравнительно низкой температурой, что затрудняет проведение процессов рафинирования металла. Это обусловливает использование индукционных плавильных печей преимущественно в литейных цехах. Кроме того, высокая стоимость высокочастотных питающих преобразователей сдерживает применение высокочастотных плавильных печей.

Конструкция и схема питания индукционной печи существенно зависят от наличия или отсутствия железного сердечника. Поэтому индукционные печи рассматриваются далее в соответствии с этим признаком.

2.2 Печи без железного сердечника

В индукционной плавильной печи без железного сер­дечника (рисунок 2) главной частью является индуктор, выполняемый обычно из медной трубки и охлаждаемый протекающей по ней водой. Витки индуктора располагают в один ряд. Медная трубка может быть круглого, овального или прямоугольного сечения. Зазор между витками составляет 2-4 мм. Число витков индуктора зависит от напряжения, частоты тока и емкости печи. Витки закрепляют на изоляционных стойках, с помощью которых индуктор устанавливают в каркасе печи. Каркас печи должен обеспечивать достаточную жесткость конструкции; чтобы не нагревались вались его металлические части, они не должны образовывать электрически замкнутого контура вокруг индуктора.

Для выпуска металла из печи предусматривается возможность наклона печи, что осуществляется с помощью тельфера на малых печах или при помощи гидравлических цилиндров на крупных.

Футеровка (тигель) индукционной печи работает в очень тяжелых условиях, так как интенсивное движение металла и большие скорости изменения температуры вызывают ее размывание и разрушение, поэтому, чем толще стенки тигля, тем больше срок его службы. Стенки тигля должны быть, возможно, более тонкими, чтобы обеспечить хорошую электромагнитную связь между индуктором и металлом.

Тигель изготовляют обычно набивным с применением металлического шаблона. После набивки тигель подвергают обжигу и спеканию непосредственно в печи, шаблон при этом расплавляется. Возможно изготовление футеровки вне печи формовкой под давлением в специальных разборных пресс-формах с последующей установкой тигля на место. Иногда на крупных печах футеровку тигля выкладывают из готовых фасонных огнеупоров. В крупных печах тигель опирается на подовую подстилку, выложенную из огнеупорных кирпичей на толстом стальном листе, образующем днище каркаса вместе с необходимыми поперечными балками.

Футеровку выполняют кислой или основной. Основой набивочной массы для кислой футеровки служит кварцит с высоким (не менее 95 %) содержанием кремнезема. В качестве связующей добавки используют сульфитно-целлюлозный экстракт и борную кислоту (1,0-2,0%). Набивоч­ная масса для основной футеровки состоит из молотого обожженного или плавленого магнезита со связующей добавкой (патока или водный раствор стекла и огнеупорная глина) в количестве 3%. Стойкость кислой футеровки составляет 100-150 плавок для стали и 200-250 для чугуна, а основной футеровки 30-80 плавок для стали и 150 плавок для чугуна.

Поскольку чрезмерный износ футеровки может привести к «проеданию» стенок или днища тигля расплавленным металлом, что является очень серьезной аварией, то на индукционных печах обязательно предусматривается установка датчиков (для замера активного сопротивления футеровки), сигнализирующих о появлении в ней опасных трещин в начале просачивания жидкого металла.

На средних и крупных индукционных плавильных печах тигель закрывается крышкой (сводом), выполняемой обычно набивной из того же огнеупорного материала, что и тигель. Для подъема и отвода крышки в сторону применяют простые рычажные механизмы или гидравлические цилиндры.

ВНИИЭТО разработаны индукционные печи без сердечника серии ИСТ для плавки стали, работающие на токе повышенной частоты. Емкость печей, работающих на токе частотой 2400 Гц (обеспечиваемой машинными генераторами), составляет 60, 160, 250 и 400 кг при потребляемой мощности соответственно 50, 100, 250 и 237 кВт. Печь емкостью 1 т, питаемая током частотой 1000 Гц, потребляет мощность 470 кВт. Крупные печи емкостью 2,5; 6 и 10 т потребляют мощность соответственно 1500, 1977 и 2730 кВт и питаются током частотой 500 Гц либо от машинных генераторов, либо от полупроводниковых (тиристорных) преобразователей. Продолжительность плавки в печах серии ИСТ., колеблется от 50 мин (печь емкостью 60 кг) до 2 ч (печь емкостью 10 т).

Таким образом, диапазон производительностей всей этой серии печей весьма широк: от 70 кг/ч до 5 т/ч. Удель­ный расход электроэнергии на расплавление твердой завалки составляет в среднем 3600 кДж/кг (1,00 кВт-ч/кг) для малых печей и снижается до 2300 кДж/кг (0,64 кВт-ч/кг) для крупных печей.

Для плавки чугуна специально разработаны крупные индукционные печи без сердечника серии ИЧТ, работаю­щие на токе промышленной частоты (50 Гц). Печь ИЧТ-2,5 имеет емкость 2,5 т при потребляемой мощности 718 кВт и производительности 11 т/ч; печь ИЧТ-6 имеет емкость 6 т при потребляемой мощности 1238 кВт и производительности 2,1 т/ч. Удельный расход электроэнергии составляет в обеих печах 2160 кДж/кг (0,6 кВт-ч/кг).

В схемы питания всех этих печей включены конденса­торные батареи с целью повышения cos φ. Отсутствие доро­гостоящих преобразователей значительно снижает стоимость печей, работающих на токе промышленной частоты.