Косвенный санитарный показатель загрязнения воздуха закрытых. Стандарты на чистоту воздуха в лечебных учреждениях Химические показатели загрязнения воздуха помещений

Под вентиляцией (от лат.ventilatio - проветривание) понимается замена воздуха в помещении. В необходимых случаях при этом проводится: кондиционирование воздуха (фильтрация, подогрев или охлаждение, увлажнение или осушение), ионизация и т.д. Вентиляция обеспечивает благоприятные для здоровья санитарно-гигиенические условия (температуру, влажность, скорость движения воздуха и чистоту воздуха) воздушной среды в помещении, благоприятные для здоровья и самочувствия человека, отвечающие требованиям санитарных норм, технологических процессов, строительных конструкций зданий и т.д.

Основное назначение вентиляции - удаление продуктов жизнедеятельности людей и подача свежего воздуха в помещение.

Вентиляция, может быть естественной и искусственной.

При естественной вентиляции смена воздуха происходит за счет удаленных масс теплового и холодного воздуха или за счет движения наружного воздуха.

Когда необходимые метеорологические условия и состав воздуха в помещениях не могут быть обеспечены вентиляцией с естественным побуждением, эти помещения должны быть оборудованы вентиляцией с механическим побуждением. Искусственная вентиляция воздуха делится на приточную, вытяжную и комбинированную (приточно-вытяжную). С помощью приточной вентиляции в помещения принудительно подается наружный воздух, который разбавляет загрязнения и в результате подпора вытесняет его. При вытяжной вентиляции загрязненный воздух по воздуховоду поступает наружу и вследствие небольшого разрежения свежий воздух поступает через вентиляционные отверстия. Комбинированная система вентиляции представляет собой сочетание приточной и вытяжной и является наиболее эффективной.

Приточная вентиляции применяется большей частью в жилых и общественных помещениях, вытяжная вентиляция - в помещениях, имеющих источники загрязнения воздуха (санитарно-бытовые, изоляторы, буфетные), а комбинированные - в наиболее изолированных помещениях.

Система искусственной вентиляции состоит из набора элементов, включающих воздухозаборные устройства, вентиляторы, фильтры, воздуховоды, воздухораспределители, воздуховыбрасывающие шахты.

Таблица 3.1 - Классификация систем вентиляции

Признак Виды
По способу создания давления и перемещения воздуха С естественным и искусственным (механическим) побуждением
По назначению Приточная и вытяжная
По способу организации воздухообмена Общеобменные, Местные, аварийные, противодымные
По месту действия Общая и местная

Оценка эффективности вентиляции может быть сделана на основании:

1) санитарного обследования вентиляционной системы и режима ее эксплуатации;

2) расчета фактического объема вентиляции и кратности воздухообмена по формулам или данным замеров;

3) объективного исследования воздушной среды и микроклимата вентилируемых помещений;

4) субъективных ощущений человека.

При гигиенической оценке воздушного комфорта имеет значение воздушный куб. Воздушный куб определяется площадью помещения и высотой.

Наиболее удобным критерием оценки химического состава воздуха является концентрация в нем углекислого газа; его предельно допустимая концентрация (ПДК) равна 0,1 % или 1 ‰.

Необходимый объем вентиляции - количество воздуха в м, которое надо подать в помещение на 1 человека в час, чтобы содержание СО 2 не превысило допустимого уровня (0,1 %).

Взрослый человек при легкой физической работе производит в течение 1 мин. 18 дыхательных движений с объемом каждого дыхания 0,5 л и, следовательно, в течение одного часа выдыхает 540 л воздуха (18*0,5*60=540 л). Так как в выдыхаемом воздухе содержится 4 % С0 2 , общее количество выдыхаемого СО 2 за 1 час составит 21,6 л.

Необходимый объем вентиляции рассчитывается по формуле:

L - объем вентиляции в м 3 /час;

k - количество литров углекислого газа, выдыхаемого одним человеком в час при спокойной работе (для взрослого - в среднем 22,6 л, для школьника примерно столько литров, сколько лет школьнику);

р - предельно допустимая концентрация углекислого газа, т.е. 1 ‰;

q - концентрация углекислого газа в атмосфере (0,4 ‰).

Для взрослого человека объем вентиляции в час равен, в среднем, 37,7 м 3 ; для первоклассника он равен 10-12 м 3 , для выпускника школы - 25-30 м 3 . Это тот объем воздуха, который нужен для нормального газообмена, хорошего самочувствия и высокой работоспособности в течение часа.

Необходимая кратность воздухообмена - сколько раз за 1 час должен полностью обновиться (смениться) воздух, чтобы на протяжении часа он соответствовал нормативам.

K - кратность воздухообмена, раз;

L - объем вентиляции в час, м 3 /час;

V - объем помещения, м 3 .

В жилых помещениях кратность воздухообмена должна быть не менее 2.

Чистота воздуха закрытых помещений оценивается не только по содержанию в нем СО 2 , но и пыли, микроорганизмов (микробное число, санитарно-показательные микроорганизмы), углеводородов и др.

Чистый атмосферный воздух у поверхности Земли - это ме­ханическая смесь различных газов, среди которых в порядке их убывания по объему содержатся азот, кислород, аргон, диоксид углерода и ряд других газов, суммарное количество которых не превышает 1 %.

Состав чистого сухого атмосферного воздуха в объемных процентах представлен на рис. 1,2,

За сутки в состоянии покоя взрослый человек пропускает че­рез легкие 13-14 м3 воздуха - значительный объем, увеличи­вающийся при выполнении физических нагрузок. Это значит, что для организма небезразлично, воздухом какого химическо­го состава он дышит.

Кислород - самый важный для жизнедеятельности газ воз­духа. Он расходуется в организме на окислительные процессы, поступая через легкие в кровь, и доставляется тканям и клеткам организма в составе оксигемоглобина,

Рис. 1.2. Химический состав атмосферного воздуха при нормальных условиях.

В окружающей природе кислород также необходим для окис­ления органических веществ, находящихся в воде, воздухе и почве, а также для поддержания процессов горения.

Источником кислорода в атмосфере являются зеленые рас­тения, образующие его под действием солнечной радиации в процессе фотосинтеза и выделяющие в воздух в процессе ды­хания, Речь идет о фитопланктоне морей и океанов, а также растениях тропических лесов и вечнозеленой тайги, которые образно называют "легкими планеты".

Зеленые растения образуют кислород в очень больших коли­чествах, и вследствие постоянного перемешивания слоев ат­мосферного воздуха его содержание в атмосферном воздухе повсюду остается практически постоянным - около 21 %. Низ­кие концентрации кислорода, существенные для жизнедеятель­ности организма человека, наблюдаются при подъеме на высоту и при пребывании людей в герметически замкнутых помеще­ниях в случае аварийных ситуаций, когда нарушены техничес­кие средства поддержания жизнедеятельности. Повышенное содержание кислорода отмечается в условиях высокого атмос­ферного давления (в кессонах). При парциальном давлении свыше 600 мм рт.ст. он ведет себя как токсичное вещество, вы­зывая отек легких и пневмонию.

В атмосферном воздухе содержится динамический изомер кислорода - трехатомный кислород озон, являющийся силь­нейшим окислителем. Он образуется в природных условиях в верхних слоях атмосферы под влиянием коротковолнового ультрафиолетового излучения Солнца, при грозовых разрядах, в процессе испарения воды.

Озон играет важнейшую роль в защите биологических объ­ектов планеты от губительного воздействия жесткого ультрафи­олета, задерживая его в стратосфере на высоте 20-30 км.

Озон обладает своеобразным приятным запахом свежести, и его присутствие можно легко обнаружить в лесу после грозы, в горах, в чистой природной среде, где он считается показате­лем чистоты воздуха. Однако избыток озона неблагоприятен для жизнедеятельности организма, и начиная с концентрации 0,1 мг/м3 он действует как раздражающий газ.

Присутствие же озона в воздухе крупных промышленных горо­дов, загрязненном выбросами автотранспорта и промышленных объектов, в свете последних научных данных считается неблаго­приятным признаком, поскольку в этих условиях он образуется в результате фотохимических реакций при формировании смога.

Высокая окислительная способность озона используется при обеззараживании воды.

Диоксид углерода, или углекислый газ, поступает в воздух в процессе дыхания людей, животных, растений (в ночное вре­мя), окисления органических веществ при горении, брожении, гниении, находясь в окружающей среде в свободном и связан­ном состояниях.

Постоянство содержания этого газа на уровне 0,03 % в ат­мосфере обеспечивается его поглощением на свету зелеными растениями, растворением в воде морей и океанов, удалением с атмосферными осадками.

Значительные количества СО2 образуются в результате работы промышленных предприятий и автотранспорта, сжигающих ог­ромные количества топлива, вследствие чего в последние годы появились данные о том, что содержание углекислого газа в воздухе крупных современных городов приближается к 0,04 %, что вызывает тревогу у экологов по поводу образования "пар­никового эффекта", о котором более подробно будет сказано дальше.

Диоксид углерода участвует в обменных процессах организма, являясь физиологическим возбудителем дыхательного центра.

Вдыхание больших концентраций СОг нарушает окислительно­восстановительные процессы, и его накопление в крови и тканях ведет к тканевой аноксии. Длительное пребывание людей в за­крытых помещениях (жилых, производственных, общественных) сопровождается выделением в воздух продуктов их жизнеде­ятельности: углекислоты с выдыхаемым воздухом и летучих ор­ганических соединений (аммиак, сероводород, индол, меркап­тан), называемых антропотоксинами, с поверхности кожных покровов, грязной обуви и одежды. Происходит и некоторое снижение содержания в воздухе кислорода. В этих условиях у людей могут появиться жалобы на ухудшение самочувствия, снижение работоспособности, сонливость, головную боль и дру­гие функциональные симптомы. Чем же объясняется этот симптомокомплекс? Можно предположить, что причина лежит в не­хватке кислорода, количество которого, как уже говорилось, несколько снижается по сравнению с его содержанием в атмос­ферном воздухе. Однако было установлено, что его снижение в самых неблагоприятных условиях не превышает I %, так как вследствие негерметичности этих помещений кислород легко проникает из атмосферы в воздух помещений, пополняя его за­пас. Организм человека не реагирует на такое снижение содер­жания кислорода. Больные люди отмечают снижение кислорода в воздухе, если оно составляет 18 %, здоровые - 16 %. Жизнь не­возможна при концентрации кислорода в воздухе, равной 7-8 %. Однако названных концентраций кислорода в негерметичных помещениях никогда не бывает, но они могут быть в затонувшей подводной лодке, обрушившейся шахте и других герметичных пространствах. Следовательно, в негерметичных помещениях снижение содержания кислорода не может стать причиной ухуд­шения самочувствия людей. Тогда не заключается ли эта причи­на в накоплении избытка углекислоты в воздухе помещений? Однако известно, что неблагоприятная концентрация СО2 для здоровья человека составляет 4-5 %, когда появляются голо­вная боль, шум в ушах, сердцебиение и т.д. При содержании в воздухе 8 % углекислоты наступает смерть. Указанные же концентрации характерны только для герметичных помещений с неисправной системой жизнеобеспечения. В обычных закры­тых помещениях таких концентраций углекислого газа быть не может вследствие имеющегося постоянного воздухообмена с окружающей средой.

И все же содержание С02 в воздухе закрытых помещений имеет санитарное значение, являясь косвенным показателем чистоты воздуха. Дело в том, что параллельно с накоплением С02, обычно не выше 0,2 %, ухудшаются другие свойства воз­духа: повышаются температура и влажность, запыленность, со­держание микроорганизмов, число тяжелых ионов, появляются антропотоксины. Вот этот комплекс изменившихся физичес­ких свойств воздуха наряду с химическим загрязнением и вы­зывает ухудшение самочувствия людей. Такому изменению свойств воздуха соответствует содержание углекислоты, равное ОД %, и поэтому данная концентрация считается предельно до­пустимой для воздуха закрытых помещений.

В последние годы было установлено, что для оценки санитар­ного состояния воздуха закрытых помещений этого показателя недостаточно, так как требуется определение содержания неко­торых токсичных химических веществ, выделяющихся в воздух из полимерных строительных материалов, широко приме­няемых для внутренней отделки помещений (фенол, аммиак, формальдегид и др.).

Азот и другие инертные газы. Азот по количественному со­держанию является наиболее существенной частью атмосфер­ного воздуха, составляя 78,1 % и разбавляя другие газы, в пер­вую очередь кислород. Азот физиологически индифферентен, не поддерживает процессы дыхания и горения, содержание его в атмосфере постоянное, одинаково его количество во вдыха­емом и выдыхаемом воздухе. В условиях повышенного атмос­ферного давления азот может оказать наркотическое действие, а также известна его роль в патогенезе кессонной болезни.

Известен круговорот азота в природе, осуществляемый с по­мощью определенных видов почвенной микрофлоры, растений и животных, а также электрических разрядов в атмосфере, в ре­зультате чего азот связывается биологическими объектами, а за­тем вновь поступает в атмосферу.

Цель занятия: изучение методов определения содержания в воз- духе помещений некоторых химических загрязнителей и оценка степени загрязнения воздуха в соответствии с гигиеническими нор- мативами.

При подготовке к занятию студенты должны проработать следующие вопросы теории.

1. Химический состав чистого атмосферного воздуха и физиолого-гигиеническое значение его компонентов.

2. Основные источники загрязнения атмосферного воздуха, состав атмосферных загрязнений в городах. Влияние атмосферных загрязнений на санитарные условия жизни и здоровье населения.

3. Гигиеническое нормирование загрязнений атмосферного воздуха.

4. Антропогенное загрязнение воздуха закрытых помещений. Санитарные показатели загрязнения воздуха помещений. ПДК СО2 в непроизводственных помещениях.

5. Профилактические мероприятия по снижению уровня загрязнения воздушной среды.

После освоения темы студент должен знать:

Методику проведения отбора проб воздуха, их анализа, определение степени загрязнения вредными веществами воздуха аптечных помещений и производственных помещений хими- ко-фармацевтических предприятий;

уметь:

Оценить результаты исследований на соответствие гигиеническим нормативам;

Оценить условия труда персонала аптек при воздействии химических факторов по результатам санитарно-гигиенического обследования и лабораторных исследований;

Использовать основные нормативные документы и информационные источники справочного характера для организации контроля за содержанием вредных веществ в воздухе аптеч-

ных помещений и разработки профилактических мероприятий по снижению уровня загрязнения воздуха аптечных помещений и производственных помещений химико-фармацевтических предприятий.

Учебный материал для выполнения задания

Одной из основных сред обитания человека является атмосфера. Чистый атмосферный воздух у поверхности Земли представля- ет собой физическую смесь различных газов: 78,1% азота, 20, 93% кислорода, 0,03-0,04% диоксида углерода и до 1% других инертных газов (аргон, неон, гелий, криптон, ксенон, радон, актинон, торон). Основными причинами изменения газового состав атмосферы является поступление в воздух так называемых малых примесей, содержание которых в атмосфере во много раз меньше основных газов (азота и кислорода). В условиях современного крупного города загрязнения сосредоточены в основном в приземном слое высотой до 1- 2 км, а в средних городах - в слое толщиной в сотни метров. Источники загрязнения атмосферы могут быть природные, или естественные (пыльные бури, извержение вулканов, лесные пожары, выветривание) и антропогенные, или искусственные (промышленные предприятия, транспорт, теплоэлектростанции, сельское хозяйство), поступление загрязнений от которых часто имеет непрекращающийся и нарастающий характер. Загрязнения в атмосферном воздухе присутствуют в различных агрегатных состояниях: в виде твердых взвешенных частиц (аэрозолей), в виде пара, капель жидкости и газов. Наиболее часто атмосферный воздух загрязняется окисью и двуокисью углерода, окислами азота, окислами серы и другими соединениями серы (сероводород, сероуглерод), углеводородами, альдегидами, озоном, золой, сажей. В воздухе обнаруживаются высокотоксичные вещества, активно взаимодействующие с компонентами атмосферы и биосферы: свинец, мышьяк, ртуть, кадмий, фенол, формальдегид. В последние десятилетия значительное место в загрязнении атмосферного воздуха стали занимать предприятия биотехнологии, воздушные выбросы которых содержат органическую пыль, состоящую из жизнеспособных микроорганизмов, конечных и промежуточных продуктов микробиологического синтеза (в том числе антибиотики, аминокислоты, белки). Кроме того, в воздухе присутствует почвенная и бытовая пыль, количество которой определяется характером почв, степенью благоустройства территории города и погодой. Устойчивость пыли в

воздухе и эффективность способов ее улавливания и удаления определяются такими физическими свойствами пыли, как дисперсность, сыпучесть, гигроскопичность, электрозаряженность и др.

Образование в воздухе заряженных частиц происходит в результате естественного процесса расщепления газовых молекул и атомов под действием космических лучей, радионуклидов почвы, воды, воздуха, а также коротковолнового ультрафиолетового излучения Солнца. Легкие положительные или отрицательные аэроионы образуются при присоединении молекул газа к заряженным частицам. Оседая на механических частицах (пылинках) и микробах, содержащихся в воздухе, легкие аэроионы становятся средними, тяжелыми и сверхтяжелыми. Ионизационный режим воздушной среды определяется соотношением числа тяжелых аэроионов к числу легких (N/n) и коэффициентом униполярности (n+/n -) - отношением количества положительных аэроионов к числу отрицательных. Чем больше этот коэффициент, тем более загрязнен воздух. Диапазон допустимого уровня коэффициента униполярности находится в пределах 0,4-1,0. Имеющие заряд пылевые частицы дольше удерживаются в воздухе и в 2 раза интенсивнее задерживаются в дыхательных путях, чем нейтральные. Концентрация аэроионов обеих полярностей определяется как количество аэроионов в 1 см 3 воздуха (е/см 3) и в незагрязненном воздухе должна быть не менее 400-600 е/см 3 . Фитонциды, выделяемые некоторыми растениями (герань, гречиха, белая акация, красный дуб, ива), способствуют повышению концентрации в воздухе легких аэроионов.

Нарастающее загрязнение атмосферы (динамическая антропогенная денатурация природы) приводит к неблагоприятным последствиям в окружающей среде: токсические фотохимические туманы; озоновые дыры, т.е. уменьшение количества озона над ограниченными территориями Земли; так называемый парниковый эффект, т.е. глобальное потепление климата в связи с увеличением в атмосфере концентрации тепличных газов (углекислого газа, метана, окислов азота, озона, фреонов), которые препятствуют тепловому излучению от приземных слоев атмосферы; кислотные дожди.

Гигиеническая оценка степени загрязнения воздуха дается на основании сопоставления результатов анализов воздуха с предельно допустимыми концентрациями (ПДК) химических веществ в атмосферном воздухе. Различают максимальную разовую ПДК (ПДКмр) и среднесуточную ПДК (ПДКсс) химических веществ, в том числе аэрозолей для атмосферного воздуха и воздуха непроизводствен-

ных помещений [Гигиенические нормативы «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест» ГН 2.1.6.1338-03] (табл. 4). Максимальная разовая ПДК используется для оценки атмосферных загрязнений в период кратковременных подъемов концентраций, среднесуточная ПДК применяется в качестве гигиенического норматива при длительном поступлении атмосферных загрязнений в организм.

Таблица 4. Предельно допустимые концентрации химических веществ в атмосферном воздухе (извлечения из ГН 2.1.6.695-98)

Вещество

ПДКмр, мг/м 3

ПДКсс, мг/м 3

Аммиак

0,20

0,04

Анилин

0,05

0,03

Ацетон

0,35

0,35

Бензин

5,00

1,50

Бензол

0,30

0,10

Двуокись азота

0,85

0,04

Дихлорэтан

3,00

0,10

Окись углерода

5,00

3,00

Ртуть

0,0003

Свинец

0,001

0,0003

Сернистый ангидрид

0,50

0,05

Сероводород

0,008

Сероуглерод

0,03

0,005

Фтористый водород

0,02

0,005

Хлор

0,10

0,03

Пыль нетоксичная

0,50

0,15

В действующем нормативном документе дано 3 норматива по пыли в зависимости от уровня содержания в ней диоксида кремния. ПДКсс неорганических пылей в атмосферном воздухе с содержанием в них SiO 2 более 70% - 0,05 мг/м 3 , от 70 до 20% - 0,1 мг/м 3 , менее 20% - 0,15 мг/м 3 . ПДК пыли в атмосферном воздухе поселений дифферен- цированы с учетом вредности и опасности пыли для здоровья человека в зависимости от содержания в ней специфического компонента.

В аптечных учреждениях и на предприятиях химико-фармацевтической промышленности воздух производственных помещений и атмосферный воздух может загрязняться парами и аэрозолями лекарственных средств, промежуточными и побочными продуктами синтеза, а также вспомогательными веществами (наполнители, подсластители, разрыхлители, эмульгаторы и др.), применяемыми в процессе производства и переработки лекарственных препаратов, при взвешивании, транспортировке, загрузке и выгрузке оборудования, расфасовке и дозировании лекарственных веществ.

Лекарственные средства и отходы химико-фармацевтических предприятий являются специфическим фактором загрязнения производственной и окружающей среды, обладающим рядом особенностей, таких как высокая стабильность, увеличивающая уровень их опасности, большие различия в объеме производства и количестве выбросов в атмосферу (от нескольких кг до десятков тонн в год), преимущественное агрегатное состояние в виде мелкодисперсных аэрозолей в воздухе рабочей зоны и атмосферном воздухе населенных мест. Лекарственные средства часто представляют собой комплекс из нескольких ингредиентов, что требует особых методических подходов при оценке их опасности.

Изменения химического состава и физических свойств атмосферного воздуха приводят к нарушению здоровья людей и различным негативным последствиям в объектах окружающей среды. В зависимости от характеристики выброса в атмосферный воздух и биологического действия его компонентов атмосферные загрязнения могут оказывать острое и хроническое резорбтивное воздействие на здоровье человека, а также рефлекторное и раздражающее действие. Острое воздействие загрязнения атмосферного воздуха проявляется только в особых ситуациях (например, при авариях на промышленных предприятиях или в случае токсических туманов) и является провоцирующим фактором обострения хронических сердечно-сосудистых, легочных, аллергических (бронхиальная астма) заболеваний и повышения общей заболеваемости и смертности от хронических болезней. Хроническое резорбтивное воздействие загрязнений атмосферы городов на здоровье населения является наиболее частым и неблагоприятным. Оно может быть специфическим, когда компонент загрязнения является этиологическим фактором нарушения здоровья (например, при загрязнении воздуха соединениями бериллия у населения отмечаются случаи специфического бериллиоза

Специфический легочный грануломатоз, при котором нарушается диффузная способность легких и вторично развивается гипоксия). Некоторые примеси в атмосферном воздухе могут оказывать кан- церогенное и сенсибилизирующее действие. Хроническое неспецифическое воздействие загрязнений атмосферного воздуха вызывает ослабление иммунозащитных свойств организма и нарушения физического развития детей, повышает уровень заболеваемости инфекционными и неинфекционными болезнями, способствует обострению различных хронических заболеваний: бронхитов, эмфиземы легких, дерматитов, конъюнктивитов, острых респираторных заболеваний.

Рефлекторное и раздражающее воздействие загрязнений атмосферного воздуха проявляется различными рефлекторными реак- циями (кашель, тошнота, головная боль). Кроме того, атмосферные загрязнения понижают общесанитарные условия жизни населения, ухудшают микроклимат и световой климат, способствуют гибели растений и животных, разрушают бетонные и металлические конструкции, наносят большой экономический ущерб.

Необходимо учитывать, что в воздухе может находиться одновременно несколько различных химических веществ, оказывающих совместное воздействие на организм. Если объединенному действию химических факторов подвергается одна и та же система организма, то имеет место взаимозависимое действие, которое может проявляться как синергизм (усиление влияния в случае однонаправленного действия) или как антагонизм (снижение эффекта при разнонаправленном действии). При независимом одновременном действии химических веществ проявляется аддитивный эффект (суммация эффекта). Наконец, при совместном действии факторов разной природы может проявиться новый эффект (коалитивный), не присущий ни одному из факторов при их раздельном воздействии.

Для оценки уровня загрязнения атмосферного воздуха при одновременном совместном присутствии в атмосферном воздухе нескольких веществ в случае непревышения уровня ПДК сумма отношений концен- траций каждого вещества к его ПДК не должна превышать единицу:

С1/ПДК1 + С2/ПДК2 +...-+ Сn/ПДКn <1,

где: С\, С 2, С п - фактические концентрации веществ в атмосферном воздухе;

ПДК1, ПДК2, ПДКn - ПДК тех же веществ в атмосферном воздухе.

В условиях одинаковой степени превышения уровня ПДК с учетом того, что степень выраженности биологических эффектов при воздействии веществ разных классов опасности различна, для оценки реальной степени опасности многокомпонентного загрязнения атмосферного воздуха необходимо использование коэффициентов кратности превышения ПДК веществ 3-го класса: 1,7, 1,3, 1,0, 0,9 соответственно для веществ 1, 2, 3, 4-го классов опасности. Отсюда расчет комплексного показателя загрязнения атмосферы (К) вычисляется по формуле:

Показатель «К» используется в методических документах санитарно-эпидемиологической службы, а в документах Федеральной службы гидрометеорологии и мониторинга окружающей среды (Росгидромет) в качестве критерия уровня загрязнения атмосферного воздуха поселений применяется аналогичный показатель - комплексный индекс загрязнения атмосферы (КИЗА). КИЗА используется при текущем наблюдении (мониторировании) и анализе динамики состава атмосферного воздуха во времени. Уровень загрязнения воздуха считается низким при КИЗА ниже 5, повышенным от 5 до 6, высоким от 7 до 13 и чрезвычайно высоким при КИЗА, равным или выше 14. В ежегодных отчетах Росгидромета отмечаются города с самым высоким уровнем загрязнения атмосферного воздуха (КИЗА >14). Обычно это города, в которых размещены крупные пред- приятия цветной и черной металлургии, нефтеперерабатывающей, нефтехимической и химической промышленности, крупные энергетические мощности.

Человек без воздуха может существовать не более 5 мин. Суточная потребность человека в воздухе составляет 12 м 3 (около 15 кг). Но дышать человек вынужден только тем атмосферным воздухом, который есть в месте его пребывания, и при этом происходит постоянное, круглосуточное поступление загрязняющих воздух веществ в

организм, прервать этот процесс человек не волен. Поэтому защита атмосферного воздуха поселений от неблагоприятного техногенного воздействия, предупреждение возможного его загрязнения в целях охраны как здоровья населения, так и окружающей среды в широком смысле этого слова является острой социально обусловленной проблемой.

Охрана атмосферного воздуха - это система мероприятий, направленная на уменьшение техногенного воздействия на атмос- ферный воздух, обеспечивающая сохранение здоровья и благоприятную среду обитания, а также учитывающая экономические аспекты. Эта система подразделяется на технологические, направленные на максимальное сокращение вредных выбросов в атмосферу, санитарно-технические, применяющиеся для снижения вредности выбросов или их очистки, планировочные, осуществляющие пространственное удаление источника выбросов от среды обитания человека, и административные действия, способствующие своевременной реализации всех перечисленных выше мероприятий. К технологическим мероприятиям относятся замена источников энергии менее вредными, сырья - менее токсичными, предварительная обработка топлива или сырья с целью снижения вредности выброса, совершенствование технологического процесса для уменьшения объема выброса или его вредности (использование мокрых технологических процессов взамен сухим), герметизация технологического оборудования, аппаратуры. Санитарно-технические мероприятия включают физические методы улавливания пыли (аэрозоля), дыма, капелек тумана или брызг с помощью специальных сооружений: циклонов, мультициклонов, мокрых скрубберов, тканевых фильтров, электрофильтров, а также химические методы очистки атмосферного воздуха за счет адсорбции жидкостью или твердыми веществами или применения каталитических нейтрализаторов. Планировочными мероприятиями являются функциональное зонирование территории населенных пунктов с учетом розы ветров, их благоустройство (озеленение, обводнение, асфальтирование улиц), рациональная планировка жилых районов, организация безсветофорных транспортных развязок путем строительства подземных туннелей, надземных эстакад, строительство обводных или кольцевых дорог для исключения транзитных потоков автотранспорта через территорию городской застройки, организация санитарнозащитных зон.

Система контроля и наблюдения за атмосферным воздухом осуществляется в нашей стране Росгидрометом на основе требований ГОСТ 17.2.3.01-86 «Охрана природы. Атмосфера. Правила контроля качества воздуха населенных мест» и РД 52.04 186-89 «Руководство по контролю загрязнения атмосферы». Основные требования к охране атмосферного воздуха, т.е. обеспечение непревышения нормативов качества атмосферного воздуха в соответствии с санитарно-гигиеническими нормами и правилами изложены в Федеральных законах: «Об охране атмосферного воздуха» и «О санитарно-эпидемиологическом благополучии населения». Органом исполнительной власти в области охраны атмосферного воздуха является Федеральная служба в сфере экологии и природопользования (Росприроднадзор), которая производит учет объектов, оказывающих вредное воздействие на атмосферный воздух, организует и проводит государственную экологическую экспертизу проектов промышленных объектов при наличии санитарно-эпидемиологического заключения по проекту. Обеспечение санитарно-эпидемиологического надзора за охраной атмосферного воздуха населенных мест является основной задачей Госсанэпиднадзора, входящего в систему Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, который строит свою работу на основе СанПиН 2.1.6.1032-01 «Гигиенические требования к обеспечению качества атмосферного воздуха населенных мест». Основным положением СанПиН является запрещение размещения, проектирования, строительства и ввода в эксплуатацию объектов, в выбросах которых присутствуют вещества, не имеющие утвержденных гигиенических нормативов (ПДК или ОБУВ). Важными этапами санитарно-эпидемиологического надзора являются: участие в выборе места под строительство объекта, участие в разработке проекта объекта и его экспертиза и проекта организации и благоустройства санитарно-защитной зоны, надзор за соблюдением гигиенических требований к охране атмосферного воздуха на стадии строительства объекта и ввода его в эксплуатацию. В СанПиН включены вопросы, связанные с организацией производственного контроля загрязнения атмосферного воздуха, результаты которого должны представляться в санитарно-эпидемиологическую службу в установленные сроки.

Отбор проб воздуха для анализов

Способы взятия проб воздуха разнообразны, что устанавливается спецификой химического анализа определяемого вещества. Они разделяются на две группы: динамические и одномоментные.

Анализ атмосферного воздуха и воздуха помещений может производиться в пробах, которые отбираются однократно для обнаружения максимальных концентраций, например, в момент наибольшего выброса загрязнений, с подветренной стороны от источника загрязнения, а также в среднесуточных пробах, когда воздух отбирают непрерывно в течение суток или не менее 4 раз в сутки через равные интервалы с усреднением полученных данных. Продолжительность отбора (не более 15-20 мин) зависит от чувствительности метода и от содержания примесей вредных веществ в воздухе. Отбор проб воздуха для анализа принято производить в зоне дыхания взрослого человека, т.е. на высоте 1,5 м от пола. Если для анализа требуется сравнительно небольшой объем воздуха, пробы отбирают в газовые пипетки, откалиброванные бутыли, резиновые камеры или пластмассовые мешки. При отборе больших количеств воздуха его пропускают с помощью аспирационного устройства (водяного или электрического аспиратора) через специальные поглотители или фильтры, задерживающие исследуемый газ или аэрозоль. Скорость втягивания воздуха в электроаспираторе определяется по шкале реометров, отградуированной в литрах в 1 мин (л/мин): два реометра (от 0 до 3 л/мин) служат для отбора проб воздуха с целью определения в нем содержания газов, еще два реометра (от 0 до 20 л/мин) - для отбора проб воздуха с целью определения в нем содержания пыли. В зависимости от метода химического анализа в качестве поглотительных сред для паров и газов используются твердые сорбенты (активированный уголь, силикагель, графит, каолин), полимерные сорбенты (порапак, полисорб, хромосорб, тенакс), поглотительные растворы, для определения в воздухе высокодисперсных аэрозолей (дымов, туманов, пыли) применяются различные фильтры (АФА).

Пробы воздуха отбираются в различных температурных условиях, поэтому для получения сопоставимых результатов исследований его объем необходимо привести к нормальным условиям, т.е. к температуре 0 ?С и барометрическому давлению 760 мм рт.ст. Расчет проводится по формуле:

V 0 = / [(273 + t?) 760],

где: V) - объем воздуха при t? = 0 ?С и В = 760 мм рт.ст.; V 1 - объем воздуха, взятый для анализа; B - атмосферное давление, мм рт.ст.;

t? - температура воздуха в момент отбора проб воздуха, ?С; 273 - коэффициент расширения газов.

Гигиеническая характеристика воздуха жилых и общественных зданий

Основными источниками загрязнения воздуха закрытых помещений являются атмосферный воздух, проникающий в помещение через оконные проемы и неплотности строительных конструкций, строительные и отделочные полимерные материалы, выделяющие в воздух разнообразные, токсичные для человека вещества, многие из которых являются высокоопасными (бензол, толуол, циклогексан, ксилол, ацетон, бутанол, фенол, формальдегид, ацетальдегид, этиленгликоль, хлороформ), продукты жизнедеятельности человека и его бытовых занятий (антропотоксины: угарный газ, аммиак, ацетон, углеводороды, сероводород, альдегиды, органические кислоты, диэтиламин, метилацетат, крезол, фенол и др.), накапливающиеся в воздухе невентилируемых помещений с большим числом людей. Многие вещества являются высокоопасными, относящимися ко 2-му классу опасности. Это диметиламин, сероводород, диоксид азота, окись этилена, индол, скатол, меркаптан. Наибольший суммарный риск имеют бензол, хлороформ, формальдегид. Присутствующие одновременно даже в небольших количествах, они свидетельствуют о неблагополучии воздушной среды, оказывающей отрицательное воздействие на состояние умственной трудоспособности людей, находящихся в этих помещениях.

Кроме того, выдыхаемый людьми воздух по сравнению с атмосферным содержит меньше кислорода (до 15,1-16%), в 100 раз больше углекислого газа (до 3,4-4,7%), насыщен водяными парами, нагрет до температуры тела человека и деионизирован в процессе его прохождения через системы приточной вентиляции из-за задержки легких положительных и отрицательных аэроионов в воздуховодах, калориферах и фильтрах приточных систем вентиляции или кондиционеров, в результате поглощения легких аэроионов в процессе дыхания людей, адсорбции их кожей и одеждой, а также за счет превращения

легких аэроионов в тяжелые вследствие оседания их на частицах витающей в воздухе пыли. Ионизация воздуха имеет гигиеническое значение, поскольку изменение ионизационного режима, т.е. соотно- шения легких и тяжелых аэроионов может служить чувствительным индикатором санитарного состояния воздуха закрытых помещений (табл. 5).

Таблица 5. Нормативные величины ионизации воздушной среды помещений в общественных зданиях

Высокая степень ионизации за счет увеличения количества легких отрицательных аэроионов благоприятно воздействует на самочувствие людей, повышает их работоспособность. Преобладание числа тяжелых положительных аэроионов над легкими отрицательными ионами, что характерно для душных, запыленных помещений, вызывает сонливость, головную боль, снижение умственной работоспособности.

В воздух поступает значительное количество микробов, среди которых могут быть и патогенные. Чем больше в воздухе поме- щений пыли, тем обильнее в нем микробное загрязнение. Пыль в воздухе помещений разнообразна по химическому составу и происхождению. Сорбционная способность частиц пыли способствует увеличению поступления в дыхательные пути химических веществ, мигрирующих в воздух из строительных и отделочных материалов. Пыль является фактором передачи инфекционных болезней с аэрозольным механизмом распространения и бактериальных инфекций (например, туберкулеза). Пыль, содержащая плесневые грибы родов Penicillium и Mukor, вызывает аллергические заболевания.

Воздействие различных факторов на человека внутри помещения может вызвать нарушения состояния его здоровья, т.е. «забо- левания, связанные со зданием», например, парами формальдегида, выделяющегося из полимерных и древесно-стружечных материалов.

Симптомы заболевания сохраняются долго, даже после устранения источника вредного воздействия. «Синдром больного здания» прояв- ляется в виде острых нарушений состояния здоровья и дискомфорта (головной боли, раздражения глаз, носа и органов дыхания, сухого кашля, сухости и зуде кожи, слабости, тошноте, повышенной утомляемости, восприимчивости к запахам), возникающих в конкретных помещениях и почти полностью исчезающих при выходе из него. Развитие этого синдрома связывается с комбинированными и сочетанными действиями химических, физических (температура, влажность) и биологических (бактерии, неизвестные вирусы и др.) факторов. Его причинами чаще всего является недостаточная естественная и искусственная вентиляция помещений, строительные и отделочные полимерные материалы, выделяющие в воздух разнообразные токсичные для человека вещества, нерегулярная уборка помещений. Химическое и биологическое загрязнение воздуха способствует развитию синдрома хронической усталости (синдрома иммунной дисфункции), т.е. ощущению выраженной усталости, отмечающейся на протяжении не менее 6 мес и сочетающейся с нарушением кратковременной памяти, дезориентацией, нарушением речи и затруднением при выполнении счетных операций. Синдром множественной химической чувствительности, характеризующийся нарушением процессов адаптации организма к действию различных факторов на фоне наследственной или приобретенной чувствительности к химическим веществам, чаще всего развивается у людей, имевших в прошлом острые отравления химическими веществами (органическими растворителями, пестицидами и раздражающими веществами).

Изменение физико-химических свойств воздуха неблагоприятно сказывается на самочувствии человека и его работоспособности. Присутствие в воздухе жилых и общественных помещений огромного количества биологически активных химических веществ в самых разных концентрациях и постоянно меняющихся комбинациях, ухудшающих свойства воздуха, делает невозможным определение каждого из них отдельно и заставляет использовать интегральный показатель загрязнения воздуха. Качество воздушной среды принято оценивать косвенно по интегральному санитарному показателю чистоты воз- духа - содержанию углекислого газа (показателю Петтенкофера), а в качестве предельно допустимого норматива (ПДК) использовать его концентрацию в помещениях - 1,0 или 0,1% (1000 см 3 в 1 м 3). Углекислый газ постоянно выделяется в воздух закрытых помеще-

ний при дыхании, наиболее доступен простому определению и имеет достоверную прямую корреляцию с суммарным загрязнением воздуха. Показатель Петтенкофера является не предельно допустимой кон- центрацией самого диоксида углерода, а показателем вредности концентраций многочисленных метаболитов человека, накопившихся в воздухе параллельно с диоксидом углерода. Более высокое содержание СО2 (>1,0%о) сопровождается суммарным изменением химического состава и физическим свойством воздуха в помещении, которые неблагоприятно влияют на состояние находящихся в нем людей, хотя сам по себе диоксид углерода и в значительно более высоких концентрациях не проявляет токсические для человека свойства. При оценке качества воздуха и проектировании систем вентиляции помещений с большим количеством людей содержание диоксида углерода служит основной расчетной величиной.

Мерами предупреждения загрязнения воздуха помещений является их проветривание, если это возможно, соблюдение чистоты путем регулярной влажной уборки помещений, соблюдение установленных норм площади и кубатуры помещений, санация воздуха с помощью дезинфицирующих средств и бактерицидных ламп.

Лабораторная работа «Оценка содержания пыли и некоторых химических веществ в воздухе помещений»

Задания студенту

1. Ознакомиться с имеющимися в учебной комнате образцами поглотительных приборов, фильтров, устройством и принципами работы аппаратов, используемых для отбора проб воздуха на газы и пыль (электрического аспиратора с реометрами).

2. Произвести расчет запыленности воздуха в помещении с помощью весового аспирационного метода, используя данные ситуационной задачи, и дать заключение о степени запыленности воздуха, сравнив полученные расчетные данные с соответствующими нормативами.

3. Провести анализ воздуха с целью определения содержания в нем оксида углерода, сернистого ангидрида, аммиака. Дать гигиеническое заключение о степени загрязнения воздуха путем сопоставле- ния концентраций этих веществ с соответствующими гигиеническими нормативами.

4. Определить экспресс-методом концентрацию углекислого газа в воздухе учебной комнаты. Дать гигиеническое заключение о чистоте воздуха помещения по интегральному санитарному показателю (СО 2) путем сопоставления концентрации СО 2 с соответствующим гигиеническим нормативом. Разработать мероприятия по снижению уровня загрязненности воздуха исследуемой комнаты.

Методика работы

1. Определение и оценка запыленности воздушной среды Методы определения запыленности воздуха делятся на две группы:

основанные на выделении дисперсной фазы (пылинок) из дисперсионной среды (воздуха): седиментационный (весовой и счетный), аспирационный (весовой и счетный);

Без выделения дисперсной фазы: оптические, фотометрические, электрометрические.

Определение запыленности воздушной среды производится чаще всего аспирационным весовым (гравиметрическим) методом. Метод основан на улавливании пыли из просасываемого через фильтр воздуха при скорости аспирации 10-20 л/мин.

Ход работы. Негигроскопичный аэрозольной фильтр (АФА), изготовленный из специальной ткани ФПП-15, взвесить вместе с бумажным кольцом на аналитических весах с точностью до 0,0001 г и укрепить в металлическом или пластмассовом аллонже (патроне) с помощью завинчивающегося кольца. Воздух в течение 5-10 мин пропустить через фильтр с помощью аспиратора, оснащенного рео- метром, позволяющим регулировать скорость аспирации. В условиях учебного исследования достаточно отбирать пробу в течение 2-5 мин со скоростью 10- 20 л /мин. Осторожно вынутый из патрона фильтр повторно взвесить на аналитических весах. Из веса фильтра после отбора пробы вычитается его первоначальный вес. Объем протянутого воздуха вычисляется при умножении скорости аспирации (в л/мин) на время отбора пробы в минутах.

Расчет количества пыли производится по формуле:

Х = [(Л 2 -Л 1) 1000] / V

где: Х - запыленность воздуха, мг/м 3 ;

А 2 - вес фильтра с пылью после отбора пробы, мг;

А 1 - вес фильтра до отбора пробы, мг; V - объем протянутого воздуха, л.

2. Методы определения содержания некоторых химических веществ в воздухе помещений

Для анализа отобранных проб воздуха в санитарных лабораториях промышленных предприятий применяют разнообразные методы: оптические, электрохимические, хроматографические. Для быстрого определения степени загрязнения воздушной среды вредными веществами применяют экспресс-методы. Экспресс-исследования проводятся путем колориметрии растворов по стандартным шкалам или с применением реактивной бумаги, индикаторных трубок. В основе этих методов почти всегда лежат цветные реакции.

*Экспресс-метод определения концентрации диоксида серы (сернистого ангидрида)

Сернистый ангидрид (SO2) - бесцветный газ, обладающий острым, раздражающим запахом. Это наиболее распространенный загрязнитель атмосферного воздуха. Основным источником загрязнения SO2 являются предприятия теплоэнергетики (ТЭЦ, ГРЭС, котельные) и выбросы автотранспорта. В результате реакции SO 2 с парами воды, присутствующими в атмосферном воздухе, образуется серная кислота, которая при определенных условиях в виде аэрозоля выпадает в составе «кислотных дождей». SO 2 увеличивает общую распространенность респираторных заболеваний неинфекционной и инфекционной природы, вызывает развитие хронических ринитов, фарингитов, хронических бронхитов, часто с астматическими компонентами, воспаление слухового прохода и евстахиевой трубы.

Принцип метода - восстановление йода сернистым ангидридом до НI. Ход работы. В поглотитель Полежаева налить 1 мл поглотительного раствора, состоящего из смеси 0,0001 н. раствора йода с крахмалом. Через поглотитель с помощью электроаспиратора протянуть воздух из бутыли со скоростью 10 мл /мин (при такой скорости можно легко сосчитать проходящие через поглотительный раствор пузырьки воздуха) до исчезновения окраски поглотительного раствора. Объем прошедшего через поглотитель воздуха определить, умножив 10 мл /мин на время аспирации в минутах. Концентрацию SO 2 в воздухе определить по табл. 6.

Таблица 6. Зависимость концентраций сернистого газа от объема воздуха, обесцвечивающего поглотительный раствор

Объем поглощенного

воздуха, мл

Концентрация SO 2, мг/м 3

Объем поглощенного воздуха, мл

Концентрация SO 2 , мг/м 3

Определение концентрации аммиака в воздухе Аммиак (NH3) - бесцветный газ с острым запахом. В воздушную среду поступает с выбросами промышленных предприятий, от животноводческих комплексов, антропотоксин жилых и общественных помещений. Аммиак обладает раздражающим действием на слизистые оболочки верхних дыхательных путей и глаз, вызывая приступы кашля, слезотечение и боль в глазах, головокружение и рвоту.

Ход работы. В поглотительный сосуд с пористой пластинкой внести 5 мл 0,01 н. раствора Н2SО4 и подсоединить к бутыли с анализируемым воздухом. Затем отобрать пробу с помощью электроаспиратора в течение 5 мин со скоростью 1 л/мин. Раствор из поглотительного сосуда в количестве 5 мл внести в пробирку и добавить 0,5 мл реактива Несслера, взболтать и через 5-10 мин фотометрировать в кюветах с толщиной слоя 10- 20 мм при синем светофильтре, сравнивая с контролем, который готовят одновременно и аналогично пробам. При взаимодействии аммиака с реактивом Несслера образуется соединение, окрашенное в желто-бурый цвет. Интенсивность окраски пропорциональна количеству ионов аммония. Содержание аммиака в анализируемом объеме определить по предварительно построенному градуировочному графику. Для построения градуировочного графика приготовить шкалу стандартов согласно табл. 7.

Таблица 7. Шкала стандартов для определения аммиака

Состав раствора

Пробирки шкалы

контроль

1

2

3

4

5

6

Рабочий стандартный раствор с содержанием 10 мкг/мл

Поглотительный раствор, мл

Все пробирки шкалы обработать аналогично пробам, измерить оптическую плотность и построить график. Шкалой стандартов можно пользоваться и для визуального определения, ее готовят в колориметрических пробирках одновременно с пробами.

С = а / V,

где: а - количество аммиака в анализируемом объеме пробы, мкг; V - объем воздуха, отобранного для анализа, л.

Экспресс-метод определения концентрации диоксида серы (углекислого газа) в воздухе закрытых помещений

Углекислый газ (СО 2) - бесцветный газ без запаха, в 1,5 раза тяжелее воздуха. Углекислый газ выделяется в воздух в результате естественных процессов дыхания людей и животных, процессов окисления органических веществ при горении, брожении, гниении. Кроме того, значительные количества диоксида углерода образуются в результате работы промышленных предприятий и автотранспорта, сжигающих огромные количества топлива. Наряду с процессами образования в природе идут процессы ассимиляции диоксида углерода - активное поглощение растениями в процессе фотосинтеза и вымывание СО 2 осадками. Увеличение содержания диоксида углерода до 3% вызывает одышку, головную боль, снижение работоспособности. Смерть может наступить при содержании СО2 8-10%. Содержание СО 2 - санитарный показатель, по которому оценивают степень чистоты воздуха помещения. Экспресс-метод определения

концентрации СО 2 в воздухе основан на реакции углекислоты с раствором соды.

Ход работы. В стеклянный шприц с градуировкой до 100 мл набрать 20 мл 0,005% раствора соды с фенолфталеином, имеющим розовую окраску, а затем набрать в тот же шприц 80 мл воздуха (до отметки 100 мл) и встряхивать в течение 1 мин.

Таблица 8. Зависимость содержания СО 2 в воздухе от объема воздуха, обесцвечивающего 20 мл 0,005% раствора соды

Объем воздуха, мл

Концентрация

СО 2,

Объем воздуха, мл

Концентрация

СО 2,

Объем воздуха, мл

Концентрация

СО 2,

3,20

1,16

0,84

2,08

1,12

0,80

1,82

1,08

0,76

1,56

1,04

0,70

1,44

1,00

0,66

1,36

0.96

0,60

1,28

0,92

0,56

1,20

0,88

0,52

Если не произошло обесцвечивания раствора, воздух из шприца осторожно выдавить, оставив в нем раствор, вновь набрать такую же порцию воздуха и встряхивать ее еще 1 мин. Если после встряхивания раствор не обесцветился, эту операцию следует повторить еще несколько раз до полного обесцвечивания раствора, добавляя воздух небольшими порциями, по 10-20 мл, каждый раз встряхивая шприц в течение 1 мин. Подсчитав общий объем воздуха, прошедшего через шприц и обесцветившего раствор соды, определить концентрацию СО 2 в воздухе помещения по табл. 8.

Образец протокола для выполнения лабораторного задания «Оценка содержания пыли и некоторых химических веществ в воздухе помещений»

1. Определение и оценка запыленности воздуха помещения (ситуационная задача).

Вес фильтра до отбора пробы, мг (А1) ...

Вес фильтра с пылью после отбора пробы, мг (А 2) . Расчет количества пыли по формуле: ...

Гигиеническая оценка степени запыленности воздуха на основе сопоставления результатов анализов воздуха с ПДК аэрозоля в воздухе.

Заключение (образец).

1. Проведенный анализ показал, что в воздухе помещения содержится. мг/м 3 пыли, что ниже или превышает величину ПДК пыли (максимально разовой или среднесуточной). Необходимо указать меры по снижению запыленности воздуха помещения (например, проводить регулярную влажную уборку помещения и пр.).

2. Определение концентрации диоксида углерода в помещении с помощью экспресс-метода:

Объем воздуха, обесцвечивающий 20 мл 0,005% раствора соды.

Количество СО 2 в воздухе помещения (табл. 8) .

Гигиеническая оценка степени загрязнения воздуха помещения на основе сопоставления концентрации СО 2 с ПДК СО 2 в воздухе помещений.

  • ТЕМА 16. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЗАСТРОЙКИ, ПЛАНИРОВКИ И РЕЖИМА ЭКСПЛУАТАЦИИ ОПТОВЫХ ФАРМАЦЕВТИЧЕСКИХ ОРГАНИЗАЦИЙ (АПТЕЧНЫХ СКЛАДОВ) И КОНТРОЛЬНО- АНАЛИТИЧЕСКИХ ЛАБОРАТОРИЙ
  • Воздушный куб.

    При температуре воздуха в помещении 20 °С взрослый человек выделяет в среднем 21,6л углерода диоксида за 1 ч, находясь в состоянии относительного покоя. Необходимый объем вентиляционного воздуха для одного человека при этом будет составлять 36 м3/ч.

    не дает возможности широко применять эти показатели для нормирования воздухообмена.

    Величины рекомендованного объема вентиляции очень вариабельны, так как на порядок отличаются между собой. Гигиенистами установлена оптимальная цифра - 200 м3/ч, соответствующая строительным нормам и правилам, - не менее 20 м3/ч для общественных помещений, в которых человек находится

    беспрерывно не дольше 3 ч.

    Ионизация воздуха. Для обеспечения воздушного комфорта в закрытом помещении имеет значение также электрическое состояние воздушной среды.

    Ионизация воздуха изменяется интенсивнее при увеличении количества людей в помещении и уменьшении его кубатуры. При этом снижается содержание легких аэроионов вследствие поглощения их в процессе дыхания, адсорбции поверхностями и пр., а также превращения части легких ионов в тяжелые количество которых резко возрастает в выдыхаемом воздухе и при поднятии в воздух пылевых частиц. С уменьшением количества легких ионов связывают потерю освежающей способности воздуха, снижение физиологической

    и химической активности.

    Ионизованность воздуха жилых помещений следует оценивать по таким критериям.

    Оптимальными уровнями ионизованности воздуха предложено считать концентрации легких ионов обоих знаков в пределах 1000-3000 ионов/см3,


    Освещение и инсоляция . Световой фактор, сопровождающий человека в течение жизни, обеспечивает на 80% информацией, имеет большое биологическое действие, играет первоочередную роль в регулировании самых важных жизненных функций организма.

    Рациональным, с гигиенической точки зрения, является такое освещение, которое обеспечивает:

    а) оптимальные величины освещенности на окружающих поверхностях;

    б) равномерное освещение во времени и пространстве;

    в) ограничение прямой блесткости;

    г) ограничение отраженной блесткости;

    д) ослабление резких и глубоких теней;

    е) увеличение контраста между деталью и фоном, усиление яркости и цветового контраста;

    ж) правильное различие цветов и оттенков;

    з) оптимальную биологическую активность светового потока;

    и) безопасность и надежность освещения.

    Оптимальные условия для выполнения зрительных работ при низких значениях коэффициента отражения фона можно обеспечить только при освещенности 10 000-15 000 лк

    а для общественных и жилых помещений максимальная освещенность - 500 лк.

    Освещение помещений обеспечивают за счет естественного света (естественное), световой энергии искусственных источников (искусственное) и, наконец, комбинации естественных и искусственных источников (комбинированное освещение).

    Естественное освещение помещений и территорий создается главным образом за счет прямого, рассеянного, а также отраженного от окружающих предметов солнечного света. Естественное освещение необходимо предусматривать во всех помещениях, предназначенных для длительного пребывания людей.

    Уровни освещенности естественным светом оценивают при помощи относительного

    показателя КЕО (коэффициент естественного освещения) - это отношение уровня естественной освещенности внутри помещения (на самой отдаленной от окна рабочей поверхности или на полу) к одновременно определенному уровню освещенности снаружи (под открытым небом), умноженное на 100. Он показывает, какой процент от наружной освещенности составляет освещенность внутри помещения. Потребность в нормировании относительной величины связана с тем, что естественное освещение зависит от многих факторов, прежде всего, от нару ной освещенности, которая постоянно изменяется и образует переменный ре им внутри помещений. Кроме того, естественное освещение зависит от светового климата местности

    Комплекса показателей ресурсов природно-световой энергии и солнечности

    климата. Совмещенное освещение - система, где недостаток естественного света компенсируется

    искусственным, т. е. естественный и искусственный свет совместно нормируются.

    Для жилых комнат в условиях теплых климатических районов световой коэффициент должен быть 1:8

    Искусственное освещение. Преимуществом искусственного освещения является возможность обеспечить в любом помещении желательный уровень

    освещенности. Существуют две системы искусственного освещения: а) общее освещение; б) комбинированное освещение, когда общее дополняют местным, концентрирующим свет непосредственно на рабочих местах.

    Искусственное освещение должно соответствовать следующим санитарно гигиеническим требованиям: быть достаточно интенсивным, равномерным; обеспечивать правильное тенеобразование; не ослеплять и не искажать цвета; быть безопасным и надежным; по спектральному составу приближаться к дневному

    освещению.

    Инсоляция. Облучение прямым солнечным светом является крайне необходимым фактором, оказывающим оздоровительное действие на организм человека и бактерицидное на микрофлору окружающей среды.

    Положительный эффект солнечного излучения о мечается как на открытых территориях, так и внутри помещений. Однако эта способность реализуется лишь при достаточной дозе прямых солнечных лучей, что определяется таким показателем, как продолжительность инсоляции.

    Профилактика неблагоприятного воздействия физических химических факторов на организм при эксплуатации бытовой техники.

    Все бытовые приборы, работающие от электрического тока, образуют вокруг себя электромагнитные поля. Электромагнитное излучение опасно тем, что человек не ощущает их действия и поэтому не может определить степень их опасности без специальных приборов. Человеческий организм очень чувствителен к электромагнитному излучению. Если в маленькой кухне расположить электроплиту, микроволновую печь, телевизор, стиральную машинку, холодильник, обогреватель, кондиционер, электрический чайник и кофеварку, то среда обитания человека может стать опасным для здоровья человека.

    При длительном нахождении в таком помещении наблюдается нарушения работы сердца, мозга, эндокринной и иммунной системы. Особую опасность электромагнитные излучения представляют детям и беременным женщинам. Самый высокий уровень электромагнитного излучения зафиксирован в сотовом телефоне, микроволновой печи, компьютереи на верхней крышке телевизора.

    Уменьшить влияние электромагнитных полей помогает постоянное проветривание помещения и прогулки на свежем воздухе. Старайтесь не ставить телевизор и компьютер в комнате, где вы спите. Если вы живете в однокомнатной квартире или коммунальной комнате, то не устанавливайте компьютер, телевизор и сотовый телефон на расстоянии менее 1,5 метра от кровати. На ночь не оставляйте технику в режиме, когда красный огонек панели остается гореть.

    Опасность для здоровья представляют телевизоры старого поколения с электронно-лучевой трубкой, которая сама по себе представляет активный излучатель. В жидкокристаллических телевизорах принцип работы иной, внутри них находятся специальные осветительные элементы, которая меняет свою прозрачность. Вредное излучение и мерцание экрана у них отсутствует.

    Смотреть телевизоры с жидкокристаллическим экраном можно практически с любого расстояния. Но злоупотреблять временем при просмотре телевизора нельзя, это приводит к переутомлению глаз и ухудшению зрения. Глаза устают очень быстро, если человек смотрит телевизор под углом, который неудобно для видения. Чтобы избежать ухудшения зрения, через каждый час просмотра телевизора надо дать отдых глазам хотя бы 5 минут.

    Самым безопасным для зрения расстоянием просмотра телевизора является место, которое дает возможность смотреть телевизор на расстоянии равном величине диагонали телевизора умноженной на пять.

    Гигиена сельских населенных мест. Особенности планировки, застройки и благоустройства современных сельских населенных мест, сельского жилища.
    Урбанизация как мировой исторический процесс определила глубокие струк­турные преобразования не только городов, но и сельских районов. Это касает­ся в первую очередь жилищного строительства, технической оснащенности, распространения городского образа жизни. Новая деревня имеет благоустро­енное жилье, хозяйственные постройки, электростанции, школы, клубы, дет­ские ясли, больницы.

    Естественно, что благоустройство села необходимо осуществлять в полном соответствии с основными требованиями гигиенической науки. Однако пла­нировка и застройка сельских населенных пунктов связаны с при­родными условиями, спецификой труда в сельском хозяйстве, работой на при­усадебных участках и др.

    Наиболее целесообразен компактный тип планировки села с выраженным делением на жилые кварталы с несколькими параллельными и перпендику­лярными улицами. Линейное расположение зданий вдоль транспортной маги­страли, напропгив, нежелательно.

    Планировка сельского населенного пункта должна предусматривать разде­ление его территории на две зоны - хозяйственно-производственную и жи­лую. Выделяется и общественный центр, где размещаются административные и культурные учреждения.

    Правильная планировка населенных пунктов способствует защите населе­ния от шума, пыли, газов, связанных с передвижением механизированного транспорта, работой ремонтных мастерских, зерносушилок и др.

    В производственной зоне, где располагаются животноводческие постройки, птицефермы и навозохранилища, образуются места выплода мух и др.Воз­можно заражение почвы яйцами гельминтов и возбудителями опасных для людей зоонозов.

    Производственные объекты размешают с подветренной стороны по отно­шению к жилым кварталам и ниже по рельефу. Между ними располагаются озелененные незастроенные участки - санитарно-защитные зоны шириной от 150 до 300 м.

    Значительные расстояния от жилого массива предусматриваются при раз­мещении животноводческих ферм и особенно водохранилищ. Жилая зона, включающая в себя усадьбы колхозников, общественные центры, культурнобытовые, детские, медицинские учреждения, должна располагаться на наибо­лее благоприятной территории. По внутренней планировке она существенно отличается от городского жилого района. Каждый сельский двор имеет при­усадебный участок площадью около 0,25 га. В результате плотность застройки составляет 5-6%, а заселенность - 20-25 человек на I га.

    Первичным элементом жилой зоны является сельская усадьба, от плани­ровки и санитарного состояния которой в итоге зависят гигиеническое благо­получие всего населенного пункта и здоровье сельских жителей. Непремен­ным условием гигиенического благополучия сельского населенного пункта является правильная организация водоснабжения. В настоящее время почти во всех крупных поселках имеются водопроводные сооружения, в мелких пока существует децентрализованное водоснабжение. Там, где используются шахт­ные колодцы, особенно необходимо соблюдать санитарные требования («гли­няный замок» и т.д.).

    Большую роль в улучшении условий жизни сельского населения играют благоустройство и инженерное оборудование сельского поселения, улучшение его водоснабжения, водоотведения и очистки от твердых отходов. Работы по мелиорации территории и вертикальной планировке сельского населенного пункта включают борьбу с затоплением и подтоплением территорий, снижение уровня грунтовых вод, регулирование водотоков, осушение пойменных мест и устройство открытого дренирования. Все эти мероприятия

    улучшают санитарное состояние территории, зданий и сооружений. Вопрос об инженерном оборудовании сельских населенных пунктов следует решать комплексно для селитебной и производственной зон с учетом очередности строительства и соблюдением нормативов. При проектировании, а также реконструкции сельского населенного пункта решаются задачи снабжения населения водой. Она должна отвечать гигиеническим нормам, независимо от того, строится ли сельский водопровод или используется сооружение местного водоснабжения. В проекте планировки должны быть указаны источники водоснабжения, а также вариант размещения сооружений и прокладывания инженерных сетей. Выбор способов обработки воды, состав и расположение основных сооружений, а также очередность строительства этих объектов зависят от оценки санитарной ситуации в населенном пункте и принятой в проекте системы застройки селитебной зоны (этажность домов, размеры приусадебных участков, протяженность уличной сети и пр.). При решении вопроса канализации сельского населенного пункта следует в первую очередь предусмотреть возможность и технико-экономическую целесообразность объединения ее с системой города или поселка, а также промышленного предприятия, которые могут прилегать к населенному пункту. Рекомендации по канализованию сельских населенных пунктов содержат обычно две очереди в осуществлении этого вида благоустройства: на первой очереди строительства предусмотрено сооружение местных систем, на второй

    Развитие централизованных систем канализации с соответствующими очистными сооружениями. Очистные сооружения малой канализации выбирают в зависимости от количества поступающих сточных вод. Канализационные выпуски из зданий к местным очистным сооружениям малой канализации необходимо

    проектировать с учетом дальнейшего их использования в процессе функционирования централизованной системы канализации. Систему и способы очистки сточных вод выбирают в соответствии с местными

    условиями: санитарной характеристикой водоема в местах возможного выпуска сточных вод, наличием земельных участков, характером почвы и т. д. Санитарная очистка сельских населенных мест должна отвечать тем же требованиям, что и в условиях города. Однако необходимо учитывать также особенности,

    как более тесный, чем в городе, контакт населения с почвой; отсутствие необходимости вывозить отбросы из усадеб; использование пищевых отходов для откорма домашних животных и т. д. Все это заслуживает внимания, так как повышает опасность заражения зоонозами. Поэтому санитарное состояние

    хозяйственного двора, способ складирования навоза, содержание дворовых уборных и пр. должны быть предметом санитарного просвещения населения. Современное село, построенное заново или реконструированное, имеет много новшеств, однако остаются неизменными приусадебная застройка, близость

    к сельскохозяйственным угодьям, что значительно облегчает решение задач санитарной очистки.

    3.4 Освещение. Ра­циональное освещение необходимо прежде всего для оптимальной функции зрительного анализатора. Свет обладает и психофизиологическим действием. Рациональное освещение положительно сказывается на функциональном состоянии коры большого мозга, улучшает функцию других анализаторов. В целом световой комфорт, улучшая функциональное состояние центральной нервной системы и повышая работоспособность глаза, приводит к повышению производительности и качества труда, отдаляет утомление, способствует уменьшению производственного травматизма. Изложенное относится как к естественному, так и к искусственному освещению. Но естественное освещение, помимо того, оказывает выраженное общебиологическое действие, является синхронизатором биологических ритмов, обладает тепловым и бактерицидным действием (см. главу III). Поэтому жилые, производственные и общественные здания должны быть обеспечены рациональным дневным освещением.

    С другой стороны, с помощью искусственного освещения можно создать в любом месте помещения заданную и стабильную в течение дня освещенность. Роль искусственного освещения в настоящее время высока: вторые смены, ночной труд, подземные работы, вечерние домашние занятия, культурный досуг и др.

    К основным показателям, характеризующим освещение, относятся: 1) спектральный состав света (от источника и отраженного), 2) освещенность, 3) яркость (источника света, отражающих поверхностей), 4) равномерность освещения.

    Спектральный состав света. Наибольшая производительность труда и наименьшая утомляемость глаза бывает при освещении стандартным дневным светом. За стандарт дневного света в светотехнике принят спектр рассеянного света с голубого небосвода, т. е. поступающего в помещение, окна которого ориентированы на север. Наилучшее цветоразличение отмечается при дневном свете. Если размеры рассматриваемых деталей один миллиметр и более, то для зрительной работы примерно одинаково освещение источниками, генерирующими белый дневной свет и желтоватый.

    Спектральный состав света важен и в психофизиологическом аспекте. Так, красный, оранжевый и желтый цвета по ассоциации с пламенем, солнцем вызывают ощущение теплоты. Красный цвет возбуждает, желтый - тонизирует, улучшает настроение и работоспособность. Голубой, синий и фио­летовый кажутся холодными. Так, окраска стен горячего цеха в синий цвет создает ощущение прохлады. Голубой цвет - успо­каивает, синий и фиолетовый - угнетают. Зеленый цвет - нейтральный - приятный по ассоциации с зеленой растительностью, он меньше других утомляет зрение. Окраска стен, машин, крышек парт в зеленые тона благоприятно сказывается на самочувствии, работоспособности и зрительной функции глаза.

    Окраска стен и потолков в белый цвет издавна считается гигиенической, так как обеспечивает наилучшую освещенность помещения из-за высокого коэффициента отражения 0,8-0,85. Поверхности, окрашенные в другие цвета, имеют меньший коэффициент отражения: светло-желтый - 0,5-0,6, зеленый, серый - 0,3, темно-красный- 0,15, темно-синий - 0,1, черный -- 0,01. Но белый цвет (из-за ассоциации со снегом) вызывает ощущение холода, он как бы увеличивает размер помещения, де­лает его неуютным. Поэтому стены чаще окрашивают в светло-салатовый, светло-желтый и близкие к ним цвета.

    Следующий показатель, характеризующий освещение,- освещенность. Освещенностью называют поверхностную плотность светового потока. Единицей освещенности является 1 люкс - освещенность поверх­ности 1 м 2 , на которую падает и равномерно распределяется световой поток в один люмен. Люмен - световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площади 0,53 мм 2 . Освещенность обратно пропорциональна квадрату расстояния между источ­ником света и освещаемой поверхностью. Поэтому, чтобы экономно создать высокую освещенность, приближают источник к освещаемой поверхности (местное освеще­ние). Освещенность определяют люксметром.

    Гигиеническое нормирование освещенности сложно, так как она влияет на функцию центральной нервной системы и на функцию глаза. Эксперименты показали, что с увеличением освещенности до 600 лк значительно улучшается функциональное состояние центральной нервной системы; дальнейшее увеличение освещенности до 1200 лк в меньшей мере, но также улучшает ее функцию, освещенность выше 1200 лк почти не оказывает влияния. Таким образом, везде, где работают люди, желательна освещенность порядка 1200 лк, минимум 600 лк.

    Освещенность влияет на зрительную функцию глаза при различной величине рассматриваемых предметов. Если рассматриваемые детали имеют размер менее 0,1 мм, при освещении лампами накаливания нужна освещенность 400-1500 лк", 0,1-0,3 мм -300- 1000 лк, 0,3-1 мм -200-500 лк, 1 - 10 мм - 100-150 лк, более 10 мм – 50- 100 лк. При этих нор­мативах освещенность достаточна для функции зрения, но в ряде случаев она ме­нее 600 лк, т. е. недостаточна с психофизиологической точки зрения. Поэтому при освещении люминесцентными лампами (поскольку они экономичней) все перечисленные нормы увеличиваются в 2 раза и тогда освещенность приближается к оптимальной и в психофизиологическом отношении.

    При письме и чтении (школы, библиотеки, аудитории) освещенность на рабочем месте должна быть не менее 300 (150) лк, в жилых комнатах 100 (50), кухнях 100 (30).

    Для характеристики освещения большое значение имеет яркость . Яркость - сила света, излучаемого с единицы поверхности. Фактически при рассматривании предмета мы видим не освещенность, а яркость. Единица яркости - кандела на квадратный метр (кд/м 2) - яркость равномерно светящей плоской поверхности, излучающей в перпендикулярном направлении с каждого квадратного метра силу света, равную одной канделе. Яркость определяют яркомером.

    При рациональном освещении в поле зрения человека не должно быть ярких источников света или отражающих поверхностей. Если рассматриваемая поверхность чрезмерно яркая, то это негативно отразится на работе глаза: появляется ощущение зрительного дискомфорта (с 2000 кд/м 2), падает производительность зрительной работы (с 5000 кд/м 2), вызывает слепимость (с 32 000 кд/м 2) и даже болевое ощущение (с 160 000 кд/ м 2). Оптимальная яркость рабочих поверхностей - несколько сот кд/ м 2 . Допустимая яркость источников освещения, находящихся в поле зрения человека, желательна не более 1000-2000 кд/ м 2 , а яркость источников, редко попадающих в поле зрения человека, не более 3000-5000 кд/ м 2

    Освещение должно быть равномерным и не создавать теней . Если в поле зрения человека часто меняется яркость, то наступает утомление мышц глаза, принимающих участие в адаптации (сужение и расширение зрачка) и синхронно с ней происходящей аккомодации (изменение кривизны хрусталика). Равномерной должна быть освещенность по помещению и на рабочем месте. На расстоянии 5 м пола помещения отношение наибольшей освещенности к наименьшей не должно превышать 3:1, на расстоянии 0,75 м рабочего места - не больше 2:1. Яркость двух соседних поверхностей (например, тетрадь - парта, школьная доска - стена, рана - операционное белье) не должна отличаться больше, чем 2:1-3:1.

    Освещенность, создаваемая общим освещением, должна быть не менее 10% величины, нормируемой при комбинированном, но не менее 50 лк при лампах накаливания и 150 лк при люминесцентных лампах.

    Естественное освещение. Солнце создает освещенность вне помещений обычно порядка де­сятков тысяч люкс. Естественное освещение помещений зависит от светового климата местности, ориентации окон зданий, наличия затеняющих объектов (здания, деревья), устройства и размеров окон, ширины межоконных простенков, отражающей способности стен, потолка, пола, чистоты стекол и др.

    Для хорошего дневного освещения площадь окон должна соответствовать площади помещений. Поэтому распространенным способом оценки естественного освещения помещений является геометрический, при котором вычисляют так называемый световой коэффициент , т. е. отношение застекленной площади окон к площади пола. Чем больше величина светового коэффициента, тем лучше освещение. Для жилых помещений световой коэффициент должен быть не меньше 1/8-1/10, для классов и больничных палат 1/5- 1/6, для операционных 1/4-1/5, для подсобных помещений 1/10-1/12.

    Оценка естественного освещения только по световому коэффициенту может оказаться неточной, так как на освещенность оказывает влияние наклон световых лучей к освещаемой поверхности (угол падения лучей). В том случае если из-за противостоящего здания или деревьев в комнату попадает не прямой солнечный свет, а только отраженные лучи, их спектр лишен коротковолновой, самой эффективной в биологическом отношении части – ультрафиолетовых лучей. Угол, в пределах которого в определенную точку помещения попадают прямые лучи с небосвода, носит название угла отверстия.

    Угол падения образован двумя линиями, одна из которых идет от верхнего края окна к точке, где определяются условия освещения, вторая – линия на горизонтальной плоскости, соединяющая точку измерения со стеной, на которой расположено окно.

    Угол отверстия образуется двумя линиями, идущими от рабочего места: одна – к верхнему краю окна, другая – к самой верхней точке противостоящего здания или какого-либо ограждения (забор, деревья и т.п.). Угол падения должен быть не менее 27º, а угол отверстия – не менее 5 º. Освещенность у внутренней стены помещения зависит также от глубины помещения, в связи с чем для оценки условий дневного освещения определяют также коэффициент заглубления - отношение расстояния от верхнего края окна до пола к глубине комнаты. Коэффициент заглубления должен быть не менее 1:2.

    Ни один из геометрических показателей не отражает полноту влияния на естественное освещение всех факторов. Влияние всех факторов учитывается светоте­ническми показателем- коэффициентом естественной освещенности (КЕО). КЕО = Е п: Е 0 *100%, где Е п - освещенность (в лк) точки, находящейся внутри помещения в 1 м от стены, противоположной окну, : Е 0 - освещенность (в лк) точки, расположенной вне помещения, при условии ее освещения рассеянным светом (сплошная облачность) всего небосвода. Таким образом, КЕО определяется как отношение освещенности внутри помещения к одновременной освещенности вне помещения, выраженное в процентах.

    Для жилых помещений КЕО должен быть не менее 0,5%, для больничных палат- не менее 1%, для школьных классов- не менее 1,5%, для операционных - не менее 2,5%.

    Искусственное освещение должно отвечать следующим требованиям: быть достаточно интенсивным, равномерным; обеспечивать правильное тенеобразование; не ослеплять и не искажать цвета: не нагревать; по спектральному составу приближаться к дневному.

    Существует две системы искусственного освещения: общее и комбинированное , когда общее дополняют местным, концентрирующим свет непосредственно на рабочих местах..

    Основными источниками искусственного освещения являются лампы накаливания и люминесцентные. Лампа накаливания- - удобный и без­отказный источник света. Одними из ее недостатков являются небольшая светоотдача, преобладание в спектре желтых и красных лучей и меньшее содержание синего и фиолетового. Хотя в психофизиологическом отношении такой спектральный состав делает излучение приятным, теплым. В отношении зрительной работы свет лампы накаливания уступает дневному лишь при необходимости рассматривания очень мелких деталей. Он непригоден в тех случаях, когда требуется хорошее цветоразличение. Поскольку поверхность нити накала ничтожно мала, я­кость ламп накаливания значительно превышает ту, которая слепит . Для борьбы с яркостью применяют защищающую от ослепляющего действия прямых лучей света осветительную арматуру и подвешивают светильники вне поля зрения людей.

    Различают осветительную арматуру прямого света, отраженного, полуотраженного и рассеянного . Арматура прямого света направляет свыше 90% света лампы на освещаемое место, обеспечивая его высокую освещенность. В то же время создается значительный контраст между освещенными и неосвещенными участками помещения. Образуются резкие тени, и не исключено ослепляющее действие. Эта арматура применяется для освещения вспомогательных помещений и санитарных узлов. Арматура отраженного света характеризуется тем, что лучи от лампы направляются на потолок и на верхнюю часть стен. Отсюда они отражаются и равномерно, без образования теней, распределяются по помещению, освещая его мягким рассеянным светом. Этот вид арматуры создает наиболее приемлемое с ги­гиенической точки зрения освещение, но оно не экономично, так как при этом теряется свыше 50% света. Поэтому для освещения жилищ, классов, палат часто применяют более экономную арматуру полуотраженного и рассеянного света. При этом часть лучей освещает помещение, пройдя через молочное или матовое стекло, а часть - после отражения от потолка и стен. Подобная арматура создает удовлетворительные условия освещения, она не слепит глаза и при ней не образуется резких теней.

    Люминесцентные лампы отвечают большинству требований, приведенных выше. Люминесцентная лампа представляет собой трубку из обычного стекла, внутренняя поверхность которой покрыта люминофором. Трубка заполнена парами ртути, с обеих концов ее впаяны электроды. При включении лампы в электрическую сеть между электродами возникает электрический ток («газовый разряд»), генерирующий ультрафиолетовое излучение. Под воздействием ультрафиолетовых лучей начинает светиться люминофор. Путем подбора люминофоров изготавливают люминесцентные лампы с различным спектром видимого излучения. Наиболее часто применяют лампы дневного света (ЛД), лампы белого света (ЛБ) и тепло-белого света (ЛТБ). Спектр излучения лампы ЛД приближается к спектру естественного освещения помещений северной ориентации. При нем глаза утомляются наименьше даже при рассматривании деталей небольшого размера. Лампа ЛД незаменима в помещениях, где требуется правильное цветоразличение. Недостатком лампы является то, что кожа лица людей выглядит при этом свете, богатом голубыми лучами, нездоровой, цианотичной, из-за чего эти светильники не применяют в больницах, школьных классах и ряде подобных помещений. По сравнению с лампами ЛД спектр ламп ЛБ богаче желтыми лучами. При освеще­нии этими лампами сохраняется высокая работоспособность глаза и лучше выглядит цвет кожи лица. Поэтому лампы ЛБ применяют в школах, аудиториях, жилищах, палатах больниц и т. п. Спектр ламп ЛТБ богаче желтыми и розовыми лучами, что несколько снижает работоспособность глаза, но значительно оживляет цвет кожи лица. Эти лампы применяют для освещения вокзалов, вестибюлей ки­нотеатров, помещений метро и т. п.

    Разнообразие спектра является одним из гигиенических п реимуществ этих ламп. Светоотдача люминесцентных ламп в 3-4 раза больше ламп накаливания (с 1 Вт 30-80 лм), поэтому они экономичней . Яркость люминесцентных ламп 4000- 8000 кд/м 2 , т. е. выше допустимой. Поэтому и их применяют с защитной арматурой. При многочисленных сравнительных испытаниях с лампами накаливания на производстве, в школах, аудиториях объективные показатели, характеризующие состояние нервной системы, утомление глаза, работоспособность, почти всегда свидетельствовали о гигиеническом преимуществе люминесцентных ламп. Однако для этого требуется квалифицированное применение их. Необходим правильный выбор ламп по спектру в зависимости от назначения помещения. Так как чувствительность зрения к свету люминесцентных ламп, так же, как и к дневному свету, ниже, чем к свету ламп накаливания, нормы освещенности для них устанавливают в 2-3 раза выше, чем для ламп накаливания (табл. 7.6.).

    Если при люминесцентных лампах освещенность ниже 75-150 лк, то наблюдается «сумеречный эффект», т.е. освещенность воспринимается как недостаточная даже при рассматривании крупных деталей. Поэтому при люминесцентных лампах освещенность должна быть не ниже 75-150 лк.