Геркон характеристики напряжение. Геркон (герметизированный контакт), нормально открытый. Преимущества реле на герконах

Герконы это один из элементов коммутации в электрических цепях, которые успешно применяются при определенных условиях. В некоторых случаях реле на герконах являются более эффективной альтернативой электромагнитным реле.

Область применения герконов

Контактные группы на герконах активно используют в электрических схемах охранной сигнализации. Группа контактов на герконах в одном корпусе может одновременно делать переключения в нескольких электрических цепях не связанных друг с другом. В сигнализации это применяют для включения звуковой, световой индикации сработки, для передачи сигналов на дежурный пульт управления.

На предприятиях с взрывоопасными примесями эффективно используют герконы для коммутации электрооборудования различного назначения, так как при замыкании и размыкании контактов нет искр выходящих за пределы герметичной стеклянной колбы корпуса. Для запуска мощных электродвигателей применяют герконы способные подключать цепи с нагрузкой до 45 кВт.

Кроме низковольтного оборудования, есть модели герконов которые используются для замыкания цепей с напряжением от 1000 В до 100 кВ, в релейной защите высоковольтных воздушных линиях для передачи электроэнергии. На таких элементах устанавливают дугогасящие конструкции и дэмпферные приспособления для гашения вибрационных колебаний контактов. Герконовые изделия для коммутации предоставляют возможность развития новых направлений в приборостроении, автоматических устройств управления и защиты в релейных системах.

Принцип работы герконов

Работа основана на использовании магнитных сил поля возникающих между ферромагнитными элементами в герконе. Эти силы могут деформировать и перемещать, феритовые пластины контактов, при этом они замыкаются или размыкаются. Магнитное поле для намагничивания ферромагнитных контактов в зоне размещения прибора создается двумя способами:

  • Катушкой наматываемой на корпус, на которую подается постоянный ток;

Совет №1 величину магнитного потока можно регулировать самостоятельно, наматывая провод на корпус катушки до момента срабатывания контактов

  • Внешним постоянным магнитом.


Простейшая конструкция геркона

Виды герконовых реле

Большой спрос на использование герконов в самых различных отраслях с учетом условий производства порождает большое количество моделей изделия. Все герконовые реле можно разделить по виду контактов:

  • С разомкнутыми контактами в исходном состоянии;
  • С замкнутыми контактами в исходном состоянии;
  • С комбинированными группами контактов, когда в одном корпусе находятся нормально замкнутые и разомкнутые герконы.

По виду конструкции герконовые реле разделяют на два вида:

  • Сухие – с наполнением колбы инертным газом или с вакуумом внутри, это делается для увеличения устойчивости контактов к большим токовым нагрузкам;
  • Мокрые – герконы в точках соприкосновения контактов имеют жидкий металл, ртуть при вибрации играет роль амортизатора, предотвращая размыкание.

Основные технические характеристики герконов

По причине большого разнообразия конструкций герконовых реле, с различными функциональными назначениями есть характеристики, которые актуальны только для конкретного вида. Рассмотрим основные, которые присущи для всех разновидностей герконовых реле:

  • Уровень вибрации — при превышении заданного уровня стеклянные колбы герконов могут треснуть, контакты замкнуться или разомкнуться. Измеряется та величина количеством колебаний в секунду;
  • Максимальное для контактов напряжение в коммутируемой электросети измеряется в вольтах и кВ, зависит от сечения и материала контактов, записывается как Uмах;
  • Допустимая мощность , при которой контакты не теряют своих ферромагнитных свойств и способности выполнять свои функции. Мощность геркона определяют материал и сечениеконтактов, чем больше сечение тем больше допускается электрическая мощность сети, обозначается в технической документации как Рmax измеряется в Вт; кВт;
  • Число коммутационных циклов – количество размыканий и замыканий до износа контактов, при котором они уже не могут выполнять своего функционального назначения. В некоторых технических источника это называется ресурс работы, обозначается как N мах, где N – количество срабатываний обычно исчисляется от 4-5 милиардов;
  • Время отпускания – промежуток времени от момента обесточивания катушки до перехода контактов в исходное состояние 0,2 — 1мкс;
  • Время реакции – время от момента подачи тока на катушку до замыкания или размыкания контактов 0,5 – 2 мкс;
  • Емкость контактов – Ск, может быть только в разомкнутом состоянии контактов, зависит от промежутка между ними и геометрических размеров контактных пластин.

Последние два параметра в технической документации могут формулировать как скорость замыкания и размыкания контактов в миллисекундах, записываются как Тср и Тотп. Эти величины показывают быстродействие геркона, малогабаритные модели имеют более высокое быстродействие. Частота коммутационных циклов может достигать 1000 Гц.

  • Напряжение пробоя – величина напряжения (десятки кВольт), при которой между ферритовыми контактами в разомкнутом состоянии пробивает электрическая дуга или искра. Это напряжение характеризует электрическую прочность геркона, которая во многом зависит от материалов, из которых сделаны контакты, покрытия и зазора между ними;
  • Напряженность поля – величина, при которой происходит переключение контактов, иногда этот параметр называют магнитодвтжущая сила Vср – срабатывания. Под срабатыванием понимается замыкание контактов и Vотп. Отпускания, подразумевают размыкание контактов.
  • Сопротивление контактного перехода – имеет два значения, измеряется в замкнутом состоянии Rк (контакта) очень малые величины. В разомкнутом состоянии Rиз(изоляции) – сопротивление изоляции в пределах десятков МОм.

Таблица: ХАРАКТЕРИСТИКИ ГЕРКОНОВ НА ЗАМЫКАНИЕ КОНТАКТОВ

Модель геркона KЭM-1 KЭM-6 MK36701 MKA-27101
Вид модификации геркона стандарт стандарт промежуточные промежуточные
сила магнитного поля, А 54…110,1 37…50 51…80 31…60
Интервал времени срабатывания, мс 3 2 2 1,5
31 11 20 11
221 151 101 111
Величина тока коммутации, А 1,1 0,26 0,36 0,36
Напряжение пробоя, В 501 501 501
Сопротивление контактов замкнутого геркона, Ом 0,09 0,11 0,071 0,121
частота замыканий, Гц 101 21 50 100
Рабочая температура, °С -61…+123 -61…+125 -61…+100 -61…+100
Допустимый диапазон частот вибрации, Гц 1…601 1…50 1…600 1…601
Длина и Ø баллона, мм 50/80 36/63,5 36/63,5 27/45,6

Параметры переключающих и измерительных герконов

Марки герконов МКС-27102 КЭМ-3 МКС-15101 МКА-52181 МКА-27801
сила магнитного потока, А 51…74 31…100 31…45 81 31…100
1,51 1,51 1,51 2.1 2.1
Допустимая мощность коммутации, Вт 31 31 0,36.1 1,49 1
Допустимое напряжение коммутации, В 151 125 35 35 301
Допустимый ток коммутации, А 1.1 1.1 0,011 0,11 0,011
Сопротивление замкнутых контактов, Ом 0,151 0,31 0,151 0,081 0,11
частота замыканий и размыканий, Гц 51 101 100,1 100,1 50.1
Интервалы рабочей температуры, °С -61… + 125 -61… + 125 -61… + 125 -61… + 85 -61… + 85
Диапазон сачтоы вибрации, Гц 1…2000.1 1…2000.1 1…2000,1 1…601 5…601
Длина и Ø баллона, мм 27/67 18/54 15/50 53/79,5 28/52,3

герконы с большой мощностью

Марка геркона MKA-52141 MKA-52142 MKA-52202
Модификация геркона высоковольтный высоковольтный мощный
Сила магнитного потока переключения, А 100…200,1 300.1 180…300.1
Временной интервал переключения, мс 3,1 3,1 8,1
Допустимая мощность коммутации, Вт 51 51 251
Допустимое напряжение коммутации, В 5000.1 10000.1 380.1
Допустимый ток коммутации, А 3,1 3,1 4,1
Напряжение пробоя, В 10000.1 15000.1 800.1
Сопротивление между замкнутыми контактами, Ом 0,1 0,1 0,3
Диапазон рабочих температур, °С -40…+85 -60…+100 -45…+60
Допустимые частоты вибрационные нагрузки, Гц 1…600 1…60 1…10
Длина колбы и Ø мм 53/5,4/80 52/5,5/90 52/7,0/0

Особенности управления контактами геркона

Можно выделить два способа управления, каждый из которых имеет свои конструктивные особенности:

Управления по средствам магнитного поля от постоянного магнита.

Геркон устанавливается неподвижно, магнит перемещается в пространстве относительно геркона, при приближении на расстояние когда сила магнитного поля достаточная для переключения контактов происходит срабатывание. Аналогично при удалении магнита от геркона, поле ослабеет, и контакты геркона возвращаются в исходное состояние.

Классическим примером такого варианта является применение геркона в системах охранной сигнализации, когда геркон устанавливается на дверную коробку, а магнит на двери, можно наоборот.


Пример монтажа герконовых датчиков на двери
А – контакты находятся в разомкнутом состоянии;
Б – контакты замыкаются сигнализация срабатывает:

Совет №2 Рекомендуется в этом случае использовать датчики цилиндрической формы в пластиковом корпусе. Они незаметно устанавливаются в просверленные отверстия в коробке и двери. Для маскировки сверху можно наклееить эластичные заглушки соответствующего цвета.


В зависимости от условий эксплуатации и функционального назначения, конструктивные решения могут быть разные:

  • Магнит может вращаться вокруг оси, меняя полярности тем самым переключать контакты геркона.
  • Между герконом и магнитом может перемещаться экранирующая магнитная шторка, для шунтирования поля;
  • Подвижным может быть любой элемент, несколько, элементов или все, шторка, магнит и геркон, все определяют условия конкретного объекта.

Управление герконом по средствам катушки, через которую пропускается постоянный ток

Такой способ получил широкое применение в конструкциях герконовых реле с небольшим количеством групп контактов. В полый сердечник корпуса, на который намотана обмотка, помещают один или несколько герконов.


Примером такого использования являются токовые датчики защиты в электросетях питающих оборудование. Катушки наматываются достаточно толстым проводом, чтобы выдерживать токовые нагрузки, используемые на производственном процессе. При превышении тока магнитное поле отключает контакты геркона, оборудование обесточивается. Настройка осуществляется перемещением по резьбовому соединению геркона внутри катушки вдоль оси.

Достоинства герконовых переключателей

  • В отличие от обычных реле с электромагнитными катушками и сердечником в герконовых нет механических элементов, привода рычага для перемещения контактов и стального сердечника в катушке. За счет этого конструкция получается меньших габаритов.
  • Многие показатели герконовых реле в сотни раз выше, чем обычных реле, сопротивление изоляции, пробивное напряжение, соответственно электрическая прочность.
  • Очевидно, что обычные реле не могут сравниться с герконами по быстродействию. Частота коммутации контактов на герконах 1000Гц;
  • Ресурс работы герконов исчисляется в миллиардах циклах переключений;

Недостатки

Не смотря, на все совершенства, имеются и недостатки:

  • Не большая мощность;
  • Не большое количество контактов в одной колбе;
  • В сухих вариантах может быть механическое дребезжание контактами;
  • Хрупкий корпус стеклянного баллона;
  • В неэкранированном корпусе может быть влияние сторонних магнитных полей.

Герконы имеют ряд механических и электрических параметров, которые характеризуют их свойства. Эти параметры можно разделить на две большие группы: механические и электрические.

Механические параметры герконов

К механическим параметрам относится магнитодвижущая сила срабатывания . Этот параметр показывает, при каком значении напряженности магнитного поля происходит срабатывание и отпускание контакта. В технической документации это называется как магнитодвижущая сила срабатывания (обозначается Vср) и магнитодвижущая сила отпускания (обозначается Vотп).

Немаловажными параметрами геркона, в ряде случаев основными, является скорость его срабатывания и отпускания . Эти параметры измеряются обычно в миллисекундах и обозначаются соответственно как tср и tотп, которые в целом характеризуют быстродействие геркона. Герконы, имеющие меньшие геометрические размеры обладают более высоким быстродействием.

Максимальное число срабатываний , или попросту ресурс, также относится к группе механических параметров. Этот параметр оговаривает, при каком числе срабатываний все свойства геркона, как механические, так и электрические сохраняются в пределах допустимых значений. В технической документации обозначается как Nmax.

Электрические параметры герконов

Эти параметры такие же, как у обычных механических контактов. Сопротивление, измеренное между замкнутыми контактами называется сопротивлением контактного перехода и обозначается как Rк, а сопротивление, измеренное между разомкнутыми контактами есть не что иное, как сопротивление изоляции Rиз.

Электрическая прочность геркона . Этот параметр характеризует пробивное напряжение Uпр. Это напряжение в основном определяет качество изоляции между контактами, которое в свою очередь обусловлено качеством вакуума или заполнения колбы инертными газами. Кроме этого пробивное напряжение зависит от величины зазора между контактами и качества их покрытия.

Мощность, коммутируемая герконом определяется в основном его конструкцией: материалом и размерами контактов, а также типом покрытия контактных площадок. В технической документации этот параметр обозначается как Pmax.

Емкость , измеренная между разомкнутыми контактами обозначается как Cк. Она зависит лишь от геометрических размеров геркона и расстояния между разомкнутыми контактами.

Способы управления герконами

Их можно разделить на две большие группы: управление постоянным магнитом и управление при помощи катушки с током. Эти способы показаны на рисунке 1.

Рисунок 1. Различные способы управления герконами

Управление герконом при помощи постоянного магнита

Наиболее прост и распространен способ управления с линейным перемещением магнита. Здесь вполне уместно вспомнить , где магнит укреплен на двери и заставляет срабатывать геркон, когда дверь закрыта.

Способ с угловым перемещением магнита используется намного реже, как правило, в тех случаях, когда другие способы применить по какой -либо причине невозможно.

Перекрытие магнитного поля шторкой использовалось в клавиатурах различных вычислительных устройств, вплоть до девяностых годов прошлого столетия, а может быть можно встретить где-нибудь и до сих пор.

Управление герконом при помощи катушки с постоянным током

Этот способ получил наибольшее распространение при создании герконовых реле . Конструкция этих реле достаточно проста: внутрь катушки с током просто помещается геркон, и при этом не требуется никаких дополнительных пружинок и рычагов, как у обычного реле. Единственный в этом случае недостаток это небольшое количество контактных групп.

Если катушку выполнить достаточно толстым проводом, способным пропустить большой ток, то можно получить герконовое токовое реле. Такие реле широко применялись в мощных источниках постоянного тока в качестве датчика системы защиты от перегрузок. Точная настройка уровня срабатывания такого датчика осуществляется резьбовым механизмом, позволяющем плавно перемещать геркон вдоль оси катушки.

П реимущества и недостатки герконов

Как и любая вещь герконы имеют свои недостатки и преимущества. Сначала поговорим, естественно, о преимуществах.

По сравнению с обычными коммутирующими контактами герконы имеют чуть ли не в 100 раз большую надежность по сравнению с обычными открытыми контактами. Эта надежность обусловлена более высоким сопротивлением изоляции (достигает десятков МегаОм), и большей электрической прочностью: пробивное напряжение у некоторых типов герконов достигает нескольких десятков киловольт.

Неоспоримым преимуществом герконов является их быстродействие: у некоторых моделей герконов частота коммутации достигает 1000Гц, а скорость срабатывания и отпускания находится в пределах (0,5 - 2,0мс) И (0,2 - 1,0мс) соответственно.

Срок службы некоторых герконов доходит до 4 - 5 млрд. срабатываний, что намного выше аналогичного показателя для обычных не защищенных контактов. Также к достоинствам герконов следует отнести легкий способ согласования с нагрузкой а также работа герконов без применения источников электрической энергии.

Недостатки герконов

На фоне достоинств недостатки, наверно, не так уж и велики. Во-первых, это небольшая коммутируемая мощность. Кроме того малое количество контактных групп в одном баллоне а для «сухих» герконов дребезг контактов. К недостаткам же можно отнести также хрупкость стеклянного баллона и в некоторых случаях высокую чувствительность к внешним магнитным полям.

Борис Аладышкин

Геркон – сверхточный быстродействующий герметичный переключатель, управляемый магнитным полем . Количество его срабатываний – до пяти миллиардов раз. На его основе выпускаются датчики магнитного поля и герконовые реле для самых различных применений – от бытовой техники до авиации и космонавтики. В статье описаны особенности выбора герконов и дан табличный обзор широкой линейки этих изделий производства Littelfuse .

Слово «геркон» является сокращением слов «герметичный контакт». Первый геркон был разработан в 1936 году американской компанией Bell Telephone Laboratories. Впоследствии они стали широко применяться в качестве датчиков, и на их основе были созданы герконовые реле.

Геркон (рисунок 1) состоит из двух ферромагнитных проводников, имеющих плоские контакты, герметизированные в стеклянной капсуле. Без внешнего магнитного поля контакты разомкнуты, и между ними есть небольшой диэлектрический зазор. В магнитном поле контакты замыкаются. Контактная область обеих пластин имеет напыленное или гальваническое покрытие, выполненное из очень стойкого к эрозии металла (обычно – родий, иридий или рутений). Структура слоев покрытия контактов приведена на рисунках 2а и 2б для родия и иридия соответственно.

Иридий, рутений и родий – очень стойкие к эрозии металлы платиновой группы. Благодаря напылению из этих металлов количество срабатываний контактов достигает пяти миллиардов раз. В полость капсулы обычно закачивают азот. Некоторые типы герконов вакуумируются для увеличения максимально допустимого коммутируемого напряжения. Контакты геркона в магнитном поле намагничиваются, и между ними возникает магнитодвижущая сила, равная напряженности магнитного поля. Если напряженность магнитного поля достаточно велика, чтобы преодолеть упругие силы в контактах, возникающие при их упругой деформации, то контакты замыкаются. Когда поле ослабевает, контакты снова размыкаются.

Существует два типа герконов: SPST-NO (Single Pole, Single Throw Normally Open, то есть «один полюс, один канал») – обычный выключатель, в котором два контакта нормально разомкнуты; SPDT-CO (Single Pole, Double Through Change Over, то есть «один полюс, два канала – переключение») – переключатель, в котором один контакт всегда нормально замкнут, а второй нормально разомкнут.

Геркон, описанный выше и представленный на рисунке 3, относится к SPST-типу.

На рисунке 4 представлен геркон SPDT-типа.

Общая пластина является единственной подвижной частью такого геркона, в отсутствие магнитного поля она замкнута с нормально замкнутым контактом реле. При возникновении магнитного поля соответствующей силы общая пластина замыкается с нормально разомкнутым контактом. Обе пластины нормально разомкнутого и нормально замкнутого контактов являются неподвижными. Разомкнутые контакты имеют ферромагнитное покрытие, а нормально замкнутый контакт выполнен из немагнитного материала. При помещении в магнитное поле подвижный и нормально-разомкнутый контакт намагничиваются в одинаковом направлении, и при достаточной напряжённости магнитного поля происходит замыкание подвижного контакта с неподвижным ферромагнитным контактом. При исчезновении внешнего магнитного поля намагниченность контактов ослабевает, и они размыкаются. Для того, чтобы остаточная намагниченность была минимальной, при изготовлении герконов применяют высокотемпературную обработку контактов. В качестве источника магнитного поля для геркона чаще всего используют постоянный магнит (рисунок 5) или соленоид.

Рассмотрим несколько наиболее распространённых систем геркон-магнит.

  1. Приближение и удаление магнита перпендикулярно (рисунок 6) или под углом (рисунок 7) к главной геометрической оси геркона:

В данном случае геркон будет замыкаться при приближении и размыкаться при отдалении магнита. Рассмотрим более подробно, обратившись к рисунку 8.

Концентрация силовых линий магнита уменьшается при удалении магнита от геркона. Наиболее сконцентрированы магнитные линии на полюсах магнита. Наиболее обширная зона взаимодействия магнита с герконом находится в центре геркона. При нахождении постоянного магнита в пределах этой зоны магнитное поле является достаточным для надежного срабатывания контактной группы. Пунктиром показана зона гистерезиса – при вхождении магнита в эту зону магнитное поле еще не обладает достаточной напряженностью для срабатывания контактной группы, но ее достаточно для удержания контактной группы в сработавшем состоянии. В случае иной конфигурации контактной группы геркона, отличной от рассматриваемой SPST, под срабатыванием будет пониматься размыкание нормально-замкнутого контакта и замыкание подвижного контакта с нормально-разомкнутым контактом SPDT геркона. Замыкание контактов геркона может активироваться с помощью параллельного движения кольцевого магнита вдоль оси геркона, как показано на рисунке 9.

Конфигурация зон взаимодействия будет схожа с предыдущей системой, так как ось геркона и направление магнитных линий магнита будут совпадать с описанной выше ситуацией, как видно на рисунке 10.

  1. Геркон может активироваться при помощи плоского магнита или кольцевого магнита с двумя или 2N полюсами (рисунок 11).

Для понимания зон взаимодействия геркона обратимся к рисункам 12 и 13.

Как видно, зоны взаимодействия находятся на концах геркона. В центральной части геркона находится «мертвая зона», в которой геркон остается открытым. Таким образом, двигающийся перпендикулярно геркону магнит, чьи полюса расположены подобным образом, активировать геркон не будет (рисунок 14).

  1. Геркон можно экранировать с помощью магнитного материала (например, стального листа). На рисунке 15 изображены неподвижный геркон и неподвижный магнит между которыми движется экранирующий предмет.

Основные типы герконов, выпускаемые компанией Littelfuse, приведены в таблице 1.

Таблица 1. Серии герконов Littelfuse

Серия Длина корпуса, мм Нагрузочная способность
(Стандартная: ≤10 Вт, ≤0,5 A, ≤200 В)
Тип контактов Key Features
7 Стандартная SPST Супер-компактный (7 мм стеклянный корпус)
10 Стандартная SPST Очень компактный (10 мм стеклянный корпус)
13 Стандартная SPST Компактный (12.7 мм стеклянный корпус)
14 Стандартная SPST Дешевый, более гибкие выводы
14 Стандартная SPST Малый гистерезис
15 Стандартная SPST Низкая цена
15 ~240 В (20 Вт) SPST ~ 240 В макс. рабочее напряжение
15 20 Вт SPST Малый гистерезис
15 20 Вт SPST Длинные выводы, повышенный ресурс
19 1000 В SPST Высоковольтный
20 ~240 В, 50 Вт SPST Напряжение переключения ~240 В, высокая мощность
50 100 Вт, 3 A, 400 В SPST Большой, высокая мощность
15 Стандартная SPDT Малый корпус
40 30 Вт, 0.5 A, 500 В SPDT Высокая мощность
40 50 Вт, 1.5 A, 500 В SPDT Большой, высокая мощность

Основные параметры герконов

Время срабатывания время между моментом приложения магнитного поля и моментом замыкания контактов геркона.

На рисунке 16 представлен график зависимости величины магнитного поля от времени. Вначале геркон помещают в сильное магнитное поле до момента насыщения (при этом даже при увеличении магнитной индукции намагниченность, достигнув максимума, остается неизменной). После этого магнитное поле ослабляют до 0 и начинают постепенно увеличивать. Рабочая точка на данном графике означает такую величину магнитного поля, при которой контакты геркона замыкаются. Точка рассоединения – соответствует величине магнитного поля, при которой контакты размыкаются. Нужно заметить, что сила поля в точке рассоединения всегда ниже, чем в рабочей точке. Это связано с тем, что у контактов геркона всегда остается небольшая намагниченность.

Временем отпускания называется интервал между рабочей точкой и точкой рассоединения.

Магнитодвижущая сила (МДС) срабатывания ( pull in ) – это величина силовой характеристики магнитного поля, при которой происходит замыкание контактов геркона. В системе СИ единицами измерения магнитодвижущей силы являются Ампер*витки (AT или Amper*turns). Когда измеряют магнитодвижущую силу с помощью соленоида, рабочая точка (замыкание) обычно дается при температуре 20°С, так как из-за термического расширения медного провода в катушке магнитное поле будет меняться приблизительно на 0,4%/°С.

Отношение между размыканием и замыканием, выраженное, как правило, в процентах, называется гистерезисом. В зависимости от материалов металлических контактов, их жесткости, длины, площади соприкосновения, гистерезис будет сильно меняться (рисунок 17).

Гистерезис – это отношение магнитодвижущей силы срабатывания к магнитодвижущей силе в точке рассоединения. Обычно этот параметр выражают в процентах. Компания Littelfuse выпускает специальные серии герконов (MACD-14, MASM-14), в которых гистерезис сведен к минимуму. Обычно такие герконы применяются в датчиках уровня жидкостей, в системах позиционирования.

Контактное сопротивление ( contact resistance ) – максимальное сопротивление геркона в замкнутом состоянии.

Удельное сопротивление контактов геркона или герконового реле очень мало и обычно составляет от 7,8х10 -8 до 10х10 -8 Ом/м. Это выше удельного сопротивления меди, которое равняется 1,7х10 -8 Ом/м. Контактное сопротивление герконов обычно составляет около от 70 до 200 мОм, а сопротивление контактов в герконовом реле – около 150 мОм.

Динамическое сопротивление контактов ( Dynamic Contact Resistance ( DCR ) – это сопротивление контактов геркона в рабочем/динамическом режиме. Статичное контактное сопротивление геркона – достаточно малоинформативный параметр, который не позволяет выявить проблемы, связанные с реальным состоянием контактов. Замыкание и размыкание контактов геркона с частотой от 50 до 200 Гц дает намного больше информации. Подача на геркон напряжения 0,5 В и тока 50 мА может помочь выявить потенциальные проблемы. Эти измерения могут быть выполнены с помощью осциллографа и легко оцифрованы при автоматическом контроле качества (рисунок 18). Не стоит использовать более высокое напряжение, чтобы не изнашивать контакты геркона. Если на производстве контакты геркона не были правильно очищены перед корпусированием, то на них может находиться тончайшая диэлектрическая пленка толщиной в несколько ангстрем. Из-за нее может быть нарушена коммутация слабых сигналов. При использовании более высокого напряжения эта проблема может никак не проявиться.

Если на катушку подать сигнал с частотой 50…200 Гц, ток коммутации будет порядка 0,5 мА. Дребезг контактов после замыкания может продолжаться около 100 мс, и за ним последует динамический шум, который будет длиться около 0,5 мс. Природа этого динамического шума состоит в том, что после замыкания контактов происходят гармонические колебания, и в месте контакта изменяется сопротивление из-за меняющегося в зоне контакта давления. При этом размыкания не происходит. На рисунке 19 видно, что после завершения фазы динамического шума начинается «волновая» фаза, длящаяся 1 мс или чуть более. Вибрация контактов геркона в магнитном поле соленоида через 2…2,5 мс прекращается, и сопротивление стабилизируется.

Наблюдая за осциллограммой этого динамического теста, мы можем сделать некоторые выводы о качестве тестируемого геркона. Как только на соленоид подается напряжение, колебательный процесс должен завершиться за время, приблизительно равное 1,5 мс. Если колебания продолжаются более 2,5 мс, это может означать, что контакты плохо намагничиваются. В результате ресурс данного геркона будет небольшим, особенно если он будет работать с большой нагрузкой (рисунок 20).

Если динамический шум или дребезг контактов длятся значительно дольше 3 мс, это может быть следствием нарушения герметичности геркона, трещины в корпусе, перегрузки по току или напряжению. Также это может быть следствием загрязнения контактов при производстве или попадания влажного воздуха внутрь корпуса геркона. На рисунках 21 и 22 изображены такие случаи.

На рисунке 23 изображен случай, когда после завершения фазы динамического шума продолжаются стохастические колебания контактов, вследствие которого динамическое сопротивление контактов не стабилизируется.

Напряжение переключения/коммутации ( switching voltage ) – это обычно максимальное постоянное напряжение, которое может быть приложено к геркону в момент замыкания контактов. Если напряжение на герконе выше 5…6 В, при этом может произойти перенос микроскопического количества металла с одного контакта на другой. Несмотря на это, при работе с напряжениями до 12 В герконы и герконовые реле имеют наработку на отказ в десятки миллионов раз срабатываний. А при напряжении 5 В и меньше количество срабатываний увеличивается до миллиардов раз. Высококачественные герконовые реле Littelfuse могут работать в слабосигнальных цепях с напряжениями всего в несколько нановольт.

Ток переключения или коммутационный ток ( switching current ) – это максимальный постоянный ток или амплитудное значение переменного тока в момент замыкания контактов геркона. В случае превышения этого значения срок службы геркона значительно сократится.

Несущий ток ( carry current ) – это максимальное значение тока при замкнутых контактах геркона. Микросекундные импульсы тока могут значительно превосходить это значение без сокращения срока службы геркона. В то же время длительные импульсы тока или постоянный ток, превышающий несущий, приведут к сокращению срока службы геркона или выходу его из строя. Герконы и герконовые реле в отличие от своих электромеханических собратьев могут работать с очень малыми токами, на уровне нескольких фемтоампер (фемто = 10 -15).

Эквивалентная емкость ( contact capacitance ) – емкость геркона в замкнутом состоянии. Для герконов SPST-типа эта величина обычно составляет 0,1…0,2 пФ. Для переключающих герконов SPDT-типа эквивалентная емкость обычно составляет 1…2 пФ.

Этот параметр имеет большое значение при применении геркона в высокочастотных цепях.

Коммутируемая мощность ( switching power ) – это максимальная мощность, которая может потребляться нагрузкой, подключенной через геркон. Так как мощность рассчитывается как произведение коммутируемого напряжения и тока переключения, то для 10 Вт геркона не стоит пропускать ток более 500 мА при напряжении 200 В, для такого тока максимальное коммутационное напряжение составит всего 20 В. Превышение данного параметра также неминуемо влечет за собой сокращение срока службы геркона.

Сопротивление изоляции ( insulation resistance ) сопротивление геркона в открытом состоянии. По этому параметру герконы превосходят большинство существующих на сегодняшний день ключей, так как их сопротивление изоляции измеряется в тераомах. Величина токов утечки геркона в открытом состоянии составляет единицы пикоампер.

Диэлектрическая абсорбция ( dielectric absorbtion ) – это эффект, связанный с поляризацией диэлектриков в герконе при разряде емкостного заряда контактов. Данный эффект проявляется в виде задержки или уменьшения протекания через замкнутый геркон очень малых токов на уровне наноампер.

Резонансная частота ( resonance frequency ) – это частота собственных колебаний геркона, при которой начинаются собственные вибрации контактов, которые, в свою очередь, влияют на такие параметры геркона как напряжение пробоя и напряжение коммутации. Герконы с капсулами 20 мм обычно имеют резонансную частоту в диапазоне 1500…2000 Гц. Более компактные 10 мм герконы имеют более высокую резонансную частоту: 7000…8000 Гц. Для того, чтобы избежать проблем в работе геркона, нужно учесть вибрации среды эксплуатации и резонансную частоту геркона.

Защита герконов и герконовых реле

В цепях, где геркон работает с индуктивной нагрузкой, такой как катушка реле, соленоид, трансформатор или миниатюрный мотор, энергия магнитного поля, накопленная в индуктивных компонентах, при коммутации будет испытывать высокие нагрузки по напряжению и току. Это обстоятельство будет негативно сказываться на сроке службы геркона.

Существует несколько способов устранить эту проблему.

  1. Использование шунтирующего диода (в зарубежной литературе он часто встречается под названием flyback или freewheeling diode) возможно в цепях постоянного тока (рисунок 24). Для переменного напряжения придется использовать защитный диод Зенера (он же лавинный диод или TVS-диод), варистор или RC-цепочку (снабберную RC-цепь). Каждый из способов имеет как достоинства, так и недостатки.

  1. Использование подавляющих RC-цепей (снабберных цепей).

Существует два варианта подключения снабберной цепи: параллельно геркону (рисунок 26) или параллельно нагрузке (рисунок 27). Первый способ является предпочтительным. Он позволяет снизить напряжение при коммутации и таким образом избежать образования искр. Но в этом случае при коммутации через геркон будет протекать больший ток, обусловленный разрядом конденсатора.

Таким образом, мы столкнемся с решением задачи по выбору подходящего по сопротивлению резистора и конденсатора по емкости. Малая емкость будет плохо сглаживать скачки напряжения при переходных процессах, особенно при большой реактивной составляющей нагрузки. А большая повысит стоимость снабберной цепи и при этом увеличит коммутационный ток, что также негативно скажется на долговечности геркона. Для ограничения тока во время замыкания контактов геркона используется резистор. Посчитаем сопротивление:

По закону Ома:

Напряжение на герконе должно лежать в пределах 0,5 от максимального пикового значения Vpk напряжения (1)

(1)

и троекратного его превышения 3*Vpk. Производим расчет по формуле (2):

(2)

где Isw – ток коммутации геркона.

Уменьшение сопротивления резистора в снабберной цепи уменьшит износ контактов геркона от электрических дуг, при этом высокое сопротивление будет положительно влиять на ограничение тока «конденсатор-геркон». Для подбора подходящей емкости рекомендуется начать с 0,1 мкФ. Это очень распространенная емкость и ее цена очень мала. Если этой емкостью не удается избавиться от искр при замыкании контактов геркона, то попробуйте ее постепенно увеличивать до исчезновения искр при коммутации. Параллельно с этим не забывайте про ток коммутации.

Формовка и обрезка выводов герконов

Длина и форма аксиальных выводов герконов не всегда удобны для применения в конкретном приборе. Однако необдуманная модификация может значительно сказаться на работе геркона. При резке и формировании выводов герконов важно использовать правильные опорные и режущие инструменты, чтобы избежать повреждения герметичных уплотнений «стекло-металл». Поврежденный корпус может иметь как незаметные глазу сколы, так и крупные трещины. Такие дефекты могут быть обнаружены визуально с использованием микроскопа с небольшим увеличением. Но бывают случаи, когда нарушается герметизация корпуса, и даже описанная выше методика измерения динамического сопротивления может не выявить заметного ухудшения. С течением времени в геркон будет попадать влага, и его функционирование будет нарушаться.

Для того, чтобы избежать повреждений, рекомендуется оставлять 1 мм длины вывода между точкой формовки либо обрезки – и корпусом геркона. При этом вывод геркона должен быть полностью зафиксирован, чтобы механическое напряжение при формовке или обрезке не передавалось на остальную часть вывода.

Рассмотрим основные способы формовки и обрезки выводов геркона.

  1. Обрезка выводов геркона с помощью бокорезов с двусторонней заточкой (рисунок 28) недопустима, так как при этом сила, деформирующая вывод, будет передаваться в сторону корпуса.

Обрезка выводов бокорезами с односторонней заточкой допустима (рисунок 29), при этом надо помнить, что плоская сторона губок бокорезов должна находится со стороны корпуса геркона. Также следует обратить внимание на качество заточки и наличия люфта у используемого инструмента.

  1. Обрезка выводов с помощью зажима, жестко фиксирующего контакты геркона (рисунки 30 и 31).

Обрезка выводов геркона с частичной фиксацией (рисунок 32) недопустима.

  1. Формовка выводов геркона без фиксации вывода запрещена (рисунок 33), так как в таком случае деформации подвергается и часть вывода, уходящая в корпус геркона.

Формовка выводов геркона при фиксации вывода в двух точках, как показано на рисунке 34, допустима, так как опора В не дает деформироваться выводу в направлении от нее к корпусу геркона.

Формовка при полной фиксации вывода геркона, как показано на рисунках 35 и 36, также допустима.

После правильной формовки и обрезки выводов геркона можно получить распространенные конфигурации, изображенные на рисунке 37.

Выбор магнитов

Для общего применения в основном используются четыре группы магнитов: ферросплавы, альнико AlNiCo, неодимовые NdFeB и самариевые SmCo (таблица 2). Для того чтобы подобрать подходящий магнит, следует учитывать такие факторы как температура среды, размагничивание близкорасположенными источниками магнитных полей, свободное пространство для движения, химический состав окружающей среды.

Неодимовые магниты обладают наибольшей энергией, наибольшей остаточной намагниченностью и коэрцитивной силой. Они имеют сравнительно невысокую цену и более высокую механическую прочность, чем самариевые SmCo. Могут использоваться при температурах среды до 200°C. Не рекомендуется использовать эти магниты в средах с повышенным содержанием кислорода.

Самариевые SmCo имеют высокую энергию и подходят для применений, где требуется высокая стойкость к размагничиванию. Имеют великолепную термическую стабильность и могут использоваться в средах до 300°C, обладают высокой коррозийной стойкостью. При этом их цена – самая высокая среди всех типов магнитов. Их недостатком является очень высокая хрупкость.

Альнико AlNiCo намного дешевле, чем магниты из редкоземельных элементов и подходят для большинства применений. Имея низкую коэрцитивную силу, отличаются великолепной термической стабильностью вплоть до 550°C.

Ферритовые магниты являются самыми дешевыми, но при этом хрупкими. Имеют неплохую термическую стабильность и могут использоваться при температурах до 300 °C. Очень стойки к коррозии. Требуют механической обработки для соответствия жестким габаритным допускам.

Таблица 2. Выбор магнитов для управления герконами

Показатели Увеличение показателей →
Цена Феррит AlNiCo NdFeB SmCo
Энергия Феррит AlNiCo SmCo NdFeB
Диапазон рабочих температур NdFeB Феррит SmCo AlNiCo
Коррозионная стойкость NdFeB SmCo AlNiCo Феррит
Коэрцитивная сила AlNiCo Феррит NdFeB SmCo
Механическая прочность Феррит SmCo NdFeB AlNiCo
Температурный коэффициент AlNiCo SmCo NdFeB Феррит

Заключение

В современном мире с каждым днем становится все больше «умных вещей», которые значительно упрощают наши повседневные задачи. Немалую роль в этом сыграли датчики на основе герконов. Фантастическая надежность, четкость срабатывания, отсутствие потребности в питании, простота применения и великолепные коммутационные свойства для слабосигнальных цепей сделали герконы одними их самых распространенных электронных компонентов, применяющихся всюду, от холодильников до самолетов.

Устройства коммутации, или контакты применяют в радиотехнике и электронных устройствах. В электромагнитном реле контакты – это ненадежная конструкция, имеются трущиеся детали из металла. Они изнашиваются, работоспособность реле снижается. Герконы – это магнитоуправляемые герметические контакты. Выключатели на герконах были придуманы для качественной эксплуатации, повышения срока службы. Первые устройства на основе герконов возникли в прошлом веке в 30-е годы, а изобретен геркон был в 1922 году.

В современное время герметические контакты применяются не слишком широко, их постепенно вытесняют датчики Холла. Но есть места, где геркон не имеет конкурентов, он простой в использовании, имеет сухой контакт, гальваническую развязку. До сих пор магнитоуправляемый контакт используется в электронике. Герконы устанавливают там, где нужна долговечность коммутации, надежность работы. Они входят в разные датчики, реле, позиционные выключатели.

Виды

Как и все контактные группы, герметические контакты разделяются на виды по функциям:
  • Замыкающие.
  • Переключающие.
  • Размыкающие.
По технологии изготовления и конструкции, герконы разделяются на группы:
  • Сухие.
  • Ртутные.

Сухие магнитные контакты работают как обычные. В ртутных образцах внутри корпуса из стекла расположены контакты с капелькой ртути. Капля ртути нужна для смачивания контактов в работе, улучшения контакта, уменьшить сопротивление перехода, устранить дребезг контактов.

Дребезг – это вибрация контактной группы при срабатывании на замыкание или размыкание. При одной сработке возникает ложная коммутация сигнала передачи, повышается время срабатывания. Если дребезг окажется в усилителе звука при включении сигнала, то произойдет искажение звука, работа усилителя нарушится. При использовании геркона в цифровых микросхемах необходимо подавлять дребезг фильтрами RS триггеров или RC цепочек. Герконовые контакты используют в схемах микроконтроллеров, в которых дребезг герконов устраняют с помощью программ, что уменьшает скорость работы системы.

Устройство

Конструкция магнитоуправляемого контакта выполнена из стеклянного баллона. В баллоне расположены контакты, изготовленные из магнитных сердечников, которые приварены с торцов колбы. Наружные элементы магнитных сердечников подключены к сети питания. Это видно на схеме.

  1. Колба стеклянная.
  2. Контакт переключения.
  3. Стационарный контакт.

Наиболее распространены замыкающие герметические контакты. У них контакты из проволоки прямоугольного сечения, с ферромагнитными свойствами. Также сердечники могут быть выполнены из пермаллоевой проволоки. Это зависит от размера и мощности герконового датчика. Покрытие контактов выполняют также из родия, золота и т.д.

В колбу закачивают инертный газ, либо создают вакуум. Это не позволяет развиваться коррозии и ржавчине в датчике геркона. При производстве герконов необходимо учитывать, что имеется промежуток между сердечниками.

Работа геркона

Простое реле с контактами замыкания имеет в составе два сердечника с контактами, имеющие повышенную магнитную проницаемость. Они находятся в герметичном баллоне из стекла, с инертным газом, либо смесь газов. Создается давление в баллоне 50 кПа. Среда инертности не дает окисляться контактам.

Баллон геркона ставится внутри управляющей обмотки, подключенной к постоянному току. При включении питания на реле образуется магнитное поле, проходящее по сердечникам контактов, по зазору и замыкается по управляющей катушке. Магнитный поток создает тяговую силу, соединяющую контакты друг с другом.

Чтобы сопротивление контактов сделать наименьшим, касающиеся поверхности покрыты серебром, радием, палладием и т.д. При выключении питания в катушке электромагнита геркона усилие исчезает, пружины размыкают контакты. В герконовых реле нет поверхностей трения деталей, контакты имеют много функций, выполняют работу магнитопровода, проводника и пружины.

Чтобы уменьшить габариты катушки магнита, повышают плотность тока. Применяют провод в эмали для намотки катушки. Детали геркона штампованные, соединения производятся пайкой или сваркой. В герконах используются магнитные экраны для снижения зоны состояния включения.

Пружины в герконовых реле установлены без дополнительного натяга, они включаются сразу, не тратя время на старт. Вместо электромагнита могут применяться также постоянные магниты. Такие герконы называются поляризованными. Усилие нажатия контактов герконового реле обуславливается магнитной силой катушки, в отличие от обычных электромагнитных реле, у которых усилие зависит от пружин.

На размыкание геркон работает по-другому. Система магнитов реле при действии электромагнитной силы намагничивают сердечники одноименно, которые отталкиваются между собой и размыкают цепь.

У геркона с переключением один из 3-х контактов замкнутый, выполнен из немагнитного металла. Остальные два контакта сделаны из ферромагнитного состава. Под действием магнитного поля разомкнутые контакты замыкаются, а замкнутый немагнитный размыкается. Хотя магнитное поле есть всегда, как поле Земли, но такого поля не хватает для срабатывания геркона, поэтому им пренебрегают.

Применение герконов

Герконовые датчики и выключатели используют:
  • Медицинские приборы и аппараты коммуникации.
  • Аппараты для подводников.
  • Синтезаторы и клавиатуры.
  • Тестирующие приборы, измерители.
  • Приборы автоматики и безопасности.

В охранных системах датчики на герконах применяют в качестве реле. Охранный датчик включает магнит и геркон. Простейшее герконовое реле состоит из обмотки и геркона.

Достоинствами реле на герконах можно назвать:
  • Небольшие габариты, простое устройство.
  • Защита от влаги, подгорания контактной группы.
  • Нет трущихся частей.

Такие датчики на герконах широко применяются, но в них имеются и недостатки, такие как подверженность к механическим повреждениям. Это большой минус для применения во многих системах.

В системах сигнализации герконы незаменимы. Установить датчик не составляет большого труда. Когда дверь закрыта, то контакт геркона замкнут. При открывании двери магнит, закрепленный на косяке, отходит от геркона, магнитная сила снижается, цепь питания размыкается. Это служит сигналом для срабатывания схемы оповещения.

Похожая ситуация с применением геркона в лифтах. Чтобы определить расположение кабины лифта, используют герконы. С помощью магнитов и геркона просто управлять оборудованием освещения. В счетчиках учета электроэнергии также присутствуют герконы.

При использовании герконовых реле или датчиков можно дать несколько советов, которые учитывают нюансы применения таких устройств:
  • При монтаже герконов по возможности избегайте источников ультразвука, он может отрицательно влиять на электрические параметры датчика, изменять их.
  • Находящийся рядом источник магнитного поля также может менять характеристики и свойства магнитного выключателя.
  • Герконовые реле и датчики боятся ударов и механических повреждений. Инертный газ внутри датчика при ударе может выйти вследствие нарушения герметичности резервуара с газом. Это выведет геркон из строя.
  • При осуществлении пайки необходимо руководствоваться предписаниями инструкции производителя герконового датчика.
Герсиконы

Реле на герконах имеет широкий разброс коэффициента возврата по причине погрешности технологии изготовления. Чтобы повысить номинальную мощность и ток коммутации в герконовые реле встраивают вспомогательные контакты для погашения дуги.

Такие реле получили название герсиконов, или силовых герметичных контактов. Промышленное производство выпускает герсиконы на силу тока до 180 ампер. У них частота коммутации достигает до 1200 включений в час. Герсиконами запускают асинхронные с номинальной мощностью до 3000 Вт.

Ферритовые герконовые реле

Это особый класс реле на герконах с ферритовыми сердечниками. Они имеют функцию памяти. Чтобы сделать переключение в герконах такого типа, нужно подать токовый импульс обратной полярности для того, чтобы размагнитить сердечник из феррита. Их называют запоминающими герметичными контактами, или гезаконами.

Преимущества реле на герконах
  • Абсолютная герметичность контактов дает возможность применять их в агрессивных средах, при условиях запыленности, влажности и т.д.
  • Небольшие габариты, малый вес, простая конструкция датчика.
  • Повышенная скорость работы дает возможность применять герконы при высокой коммутационной частоте.
  • Безотказность эксплуатации в широком интервале температур (от -60 до +120 градусов).
  • Широкая сфера применения в сочетании с функциональностью реле.
  • Наличие гальванической развязки цепей коммутации и управляемости реле на герконах.
  • Повышенная прочность электрических контактов.
  • Продолжительный срок службы датчика.
Недостатки герконов
  • Малая чувствительность магнитов герконов.
  • Излишняя восприимчивость устройства датчика к магнитным полям. Это требует защитных мер от воздействия магнитных сил.
  • Баллон геркона из хрупкого материала, чувствительного к повреждениям и ударам.
  • Мощность коммутации небольшая, как у герсиконов, так и у герконов.
  • При больших токах контакты герконов самопроизвольно размыкаются.
  • При работе на низкочастотном напряжении контакты размыкаются и замыкаются без контроля.