Физические приборы вокруг нас демонстрация опытов. Тема: Приборы по физике своими руками и простые опыты с ними. Задачи, решаемые в данной работе

МОУ «Средняя общеобразовательная школа №2» п. Бабынино

Бабынинского района Калужской области

X научно-исследовательская конференция

«Одаренные дети – будущее России»

Проект «Физика своими руками»

Подготовили ученицы

7 «Б» класса Ларькова Виктория

7 «В» класса Калиничева Мария

Руководитель Кочанова Е.В.

п. Бабынино, 2018 г

Оглавление

Введение стр.3

Теоретическая часть стр.5

Экспериментальная часть

Модель фонтана стр.6

Сообщающиеся сосуды стр. 9

Заключение стр. 11

Список литературы стр. 13

Введение

В этом учебном году мы окунулись в мир очень сложной, но интересной науки, необходимой каждому человеку. С первых уроков физика нас увлекла, хотелось узнавать все больше нового. Физика – это не только физические величины, формулы, законы, но и опыты. Физические опыты можно делать с чем угодно: карандашами, стаканами, монетами, пластиковыми бутылками.

Физика – это экспериментальная наука, поэтому создание приборов своими руками способствует лучшему усвоению законов и явлений. Много различных вопросов возникает при изучении каждой темы. Учитель, конечно, может ответить на них, но насколько интересно и увлекательно добыть ответы самому, тем более используя при этом приборы, сделанные своими руками.

Актуальность: Изготовление приборов не только способствует повышению уровня знаний, но является одним из способов активизации познавательной и проектной деятельности учащихся при изучении физики в основной школе. С другой стороны, такая работа служит хорошим примером общественно-полезного труда: удачно сделанные самодельные приборы могут значительно пополнить оборудование школьного кабинета. Изготавливать приборы на месте своими силами можно и нужно. Самодельные приборы имеют и другую ценность: их изготовление, с одной стороны, развивает у учителя и учащихся практические умения и навыки, а с другой - свидетельствует о творческой работе. Цель: Сделать прибор, установку по физике для демонстрации физических опытов своими руками, объяснить его принцип действия, продемонстрировать работу прибора.
Задачи:

1. Изучить научную и популярную литературу.

2. Научиться применять научные знания для объяснения физических явлений.

3. Сделать приборы в домашних условиях и продемонстрировать их работу.

4. Пополнение кабинета физики самодельными приборами, изготовленными из подручных материалов.

Гипотеза: Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке.

Продукт проекта: приборы, сделанные своими руками, демонстрация опытов.

Результат проекта: заинтересованность учащихся, формирование представления у них о том, что физика как наука не оторвана от реальной жизни, развитие мотивации к обучению физики.

Методы исследования: анализ, наблюдение, эксперимент.

Работа проводилась по следующей схеме:

    Изучение информации из разных источников по данной проблеме.

    Выбор методов исследования и практическое овладение ими.

    Сбор собственного материала – комплектование подручных материалов, проведение опытов.

    Анализ и формулировка выводов.

I . Основная часть

Физика – это наука о природе. Она изучает явления, которые происходят и в космосе, и в земных недрах, и на земле, и в атмосфере – словом, повсюду. Такие явления называются физическими явлениями. Наблюдая незнакомое явление, физики стараются понять, как и почему оно происходит. Если, например, явление происходит быстро или редко встречается в природе, физики стремятся увидеть его ещё столько раз, сколько необходимо для того, чтобы выявить условия, при которых оно происходит, и установить соответствующие закономерности. Если есть возможность, учёные воспроизводят изучаемое явление в специально оборудованном помещении – лаборатории. Они стараются не только рассмотреть явление, но и произвести измерения. Всё это учёные – физики называют опытом или экспериментом.

Мы загорелись идеей – сделать приборы своими руками. Проводя свои научные забавы в домашних условиях, разработали основные действия, которые позволяют успешно провести опыт:

Домашние эксперименты должны соответствовать таким требованиям:

Безопасность при проведении;

Минимальные материальные затраты;

Простота по выполнению;

Ценность в изучении и понимании физики.

Нами проведено несколько опытов по различным темам курса физики 7 класса. Представим некоторые из них, интересные и в то же время простые в выполнении.

    Экспериментальная часть.

Модель фонтана

Цель: Показать простейшую модель фонтана

Оборудование:

Большая пластиковая бутылка- 5 литров, маленькая пластиковая бутылка – 0,6 литра, коктейльная трубочка, кусочек пластика.

Ход проведения опыта

    Трубочку согнем у основания буквой Г.

    Зафиксируем с помощью маленького кусочка пластика.

    В трехлитровой бутылке вырежем небольшое отверстие.

    В маленькой бутылке отрежем дно.

    Закрепим маленькую бутылку в большой с помощью крышки,как показано на фото.

    Трубочку вставим в крышку маленькой бутылки. Закрепим с помощью пластилина.

    В крышке большой бутылки прорежем отверстие.

    Нальем в бутылку воды.

    Понаблюдаем за струей воды.

Результат : наблюдаем образование фонтана воды.

Вывод: На воду в трубочке действует давление столба жидкости, находящегося в бутылке. Чем больше воды в бутылке, тем больше будет фонтан, так как давление зависит от высоты столба жидкости.


Сообщающиеся сосуды

Оборудование: верхние части от пластиковых бутылок разных сечений, резиновая трубка.

    Отрежем верхние части пластиковых бутылок, высотой 15-20см.

    Соединим части между собой резиновой трубкой.

Ход проведения опыта №1

Цель : показать расположение поверхности однородной жидкости в сообщающихся сосудах.

1.Нальем в один из получившихся сосудов воду.

2.Видим, что вода в сосудах оказалась на одном уровне.

Вывод: в сообщающихся сосудах любой формы поверхности однородной жидкости устанавливаются на одном уровне (при условии, что давление воздуха над жидкостью одинаково).

Ход проведения опыта №2

1.Пронаблюдаем за поведением поверхности воды в сосудах наполненных разными жидкостями. Нальем одинаковое количество воды и моющего средства в сообщающиеся сосуды.

2.Видим, что жидкости в сосудах оказались на разных уровнях.

Вывод : в сообщающихся сосудах неоднородные жидкости устанавливаются на разных уровнях.

Заключение

Наблюдать за опытом проводимым учителем, интересно. Проводить его самому интереснее вдвойне. Проведенный опыт с прибором, сделанным своими руками, вызывает очень большой интерес у всего класса. Такие опыты помогает лучше понять материал, установить взаимосвязи и сделать правильные выводы.

Среди учащихся седьмых классов мы провели опрос и узнали, интереснее ли уроки физики с проведением опытов, хотели бы наши одноклассники сделать прибор своими руками. Результаты получились такими:

Большинство учащихся считают, что уроки физики становятся интереснее с проведением опытов.

Больше половины опрошенных одноклассников хотели бы изготовить приборы для уроков физики.

Нам понравилось делать самодельные приборы, проводить опыты. В мире физики столько интересного, поэтому в дальнейшем будем:

Продолжать изучение этой интересной науки;

Проводить новые эксперименты.

Список литературы

1. Л. Гальперштейн «Забавная физика", Москва, «Детская литература», 1993г.

Учебное оборудование по физике в средней школе. Под редакцией А.А Покровского «Просвещения», 2014 г

2. Учебник по физике А. В. Перышкина, Е. М. Гутник «Физика» для 7 класса; 2016 г

3. Я.И. Перельман «Занимательные задачи и опыты», Москва, «Детская литература», 2015г.

4. Физика:Справ.материалы:О.Ф. Кабардин Учеб.пособие для учащихся. – 3-е изд. – М.:Просвещение, 2014 г.

5.//class-fizika.spb.ru/index.php/opit/659-op-davsif

а- Давыдов Рома Руководитель: учитель физики- Ховрич Любовь Владимировна Новоуспенка – 2008


Цель: Сделать прибор, установку по физике для демонстрации физических явлений своими руками. Объяснить принцип действия данного прибора. Продемонстрировать работу данного прибора.


ГИПОТЕЗА: Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке. При отсутствии данного прибора в физической лаборатории, данный прибор сможет заменить недостающую установку при демонстрации и объяснении темы.


Задачи: Сделать приборы вызывающие большой интерес у учащихся. Сделать приборы отсутствующие в лаборатории. сделать приборы вызывающие затруднение в понимании теоретического материала по физике.


ОПЫТ 1: Вынужденные колебания. При равномерном вращении ручки мы видим, что на груз через пружину будет передаваться действие периодически измененной силы. Изменяясь с частотой, равной частоте вращения ручки, эта сила заставит груз совершать вынужденные колебания Резонанс-это явление резкого возрастание амплитуды вынужденных колебаний.


Вынужденные колебания


ОПЫТ 2: Реактивное движение. На штативе в кольце установим воронку, к ней прикрепим трубку с наконечником. В воронку нальем воду, и когда вода начнет вытекать с конца, то трубка отклонится в противоположную сторону. Это и есть реактивное движение. Реактивное движение- это движение тела, возникающее при отделении от него с какой либо скоростью некоторой его части.


Реактивное движение


ОПЫТ 3:Звуковые волны. Зажмем в тисках металлическую линейку. Но стоит заметить, что если тисками будет выступать большая часть линейки, то, вызвав ее колебания, мы не услышим порождаемые ею волны. Но если укоротить выступающую часть линейки и тем самым увеличить частоту ее колебаний, то мы услышим порожденные Упругие волны, распространяясь в воздухе, а так же внутри жидких и твердых телах, не видимы. Однако при определенных условиях их можно услышать.


Звуковые волны.


Опыт 4: Монета в бутылке Монета в бутылке. Хотите увидеть закон инерции в действии? Приготовьте пол-литровую бутылку из-под молока, кольцо из картона шириной 25 мм и 0 100 мм и двухкопеечную монету. Поставьте кольцо на горлышко бутылки, а сверху точно напротив отверстия горлышка бутылки положите монету (рис. 8). Просунув в кольцо линейку, ударьте ею по кольцу. Если вы это сделаете резко, кольцо отлетит, а монета упадет в бутылку. Кольцо переместилось настолько быстро, что его движение не успело передаться монете и та по закону инерции осталась на месте. А потеряв опору, монета упала вниз. Если кольцо отвести в сторону медленнее, монета «почувствует» это движение. Траектория ее падения изменится, и в горлышко бутылки она не попадет.


Монета в бутылке


Опыт 5: Парящий шарик Когда вы дуете, струя воздуха поднимает шарик над трубкой. Но давление воздуха внутри струи меньше, чем давление окружающего струю «спокойного» воздуха. Поэтому шарик находится в своеобразной воздушной воронке, стенки которой образует окружающий воздух. Плавно снижая скорость струи из верхнего отверстия, нетрудно «посадить» шарик на прежнее место Для этого опыта понадобится Г-образная трубка, например стеклянная, и легкий шарик из пенопласта. Закройте верхнее отверстие трубки шариком (рис. 9) и подуйте в боковое отверстие. Вопреки ожиданию шарик не отлетит от трубки, а начнет парить над ней. Почему так происходит?


Парящий шарик


Опыт 6: Движение тела по "мертвой петле " С помощью прибора "мертвая петля" можно демонстрировать ряд опытов по динамике материальной точки по окружности. Демонстрация проводится в следующем порядке:1. Шарик скатывают по рельсам с наивысшей точки наклонных рельсов, где он удерживается электромагнитом, который питается от 24в. Шарик устойчиво описывает петлю и с некоторой скоростью вылетает с другого конца прибора2. Шарик скатывают с наименьшей высоты, когда шарик только описывает петлю, не срываясь с верхней точки ее3. Еще с меньшей высоты, когда шарик, не доходя до вершины петли, отрывается от нее и падает, описав в воздухе внутри петли параболу.


Движение тела по "мертвой петле


Опыт 7: Воздух горячий и воздух холодный На горлышко обыкновенной пол-литровой бутылки натяните воздушный шарик (рис. 10). Поставьте бутылку в кастрюлю с горячей водой. Воздух, находящийся внутри бутылки, начнет нагреваться. Молекулы газов, входящих в его состав, станут двигаться все быстрее и быстрее по мере повышения температуры. Они сильнее будут бомбардировать стенки бутылки и шарика. Давление воздуха внутри бутылки начнет повышаться, а шарик-раздуваться. Через некоторое время переставьте бутылку в кастрюлю с холодной водой. Воздух в бутылке начнет остывать, движение молекул замедлится, давление понизится. Шарик сморщится, будто из него выкачали воздух. Вот так можно убедиться в зависимости давления воздуха от окружающей температуры


Воздух горячий и воздух холодный


Опыт 8: Растяжение твердого тела Взяв паралоновый брусок за концы, растягиваем его. Хорошо видно увеличение расстояний между молекулами. Можно имитировать также возникновение в этом случае меж молекулярных сил притяжения.


Растяжение твердого тела


Опыт 9: Сжатие твердого тела Сжимают поролоновый брусок вдоль его большой оси. Для этого его кладут на подставку, накрывают с верху линейкой и производят давление на нее рукой. Наблюдают уменьшение расстояния между молекулами и возникновение сил отталкивания между ними.


Сжатие твердого тела


Опыт 4: Конусдвойной, катящийся вверх. Этот опыт служит для демонстрации опыта, подтверждающего, что свободно перемещающийся предмет всегда располагается таким образом, чтобы центр тяжести занимал наинизшее из возможных для него положений. Перед демонстрацией планки расставляются на определенный угол. Для этого двойной конус помещают концами в вырезы, сделанные в верхней кромке планок. Затем переносят конус вниз, в начало планок и отпускают. Конус будет передвигаться вверх, пока своими концами не попадет в вырезы. Фактически центр тяжести конуса, лежащий на его оси, будет при этом смещаются вниз, что мы и видим.


Конусдвойной, катящийся вверх


Интерес учащихся на уроке с физическим опытом


Заключение: Наблюдать за опытом проводимым учителем, интересно. Проводить его самому интереснее вдвойне. А проводить опыт с прибором, сделанным и сконструированным своими руками, вызывает очень большой интерес у всего класса. В таких опытах легко установить взаимосвязь и сделать вывод как работает данная установка.

Бурденков Семен И Бурденков Юрий

Изготовление прибора своими руками –это не только процесс творчества, который побуждает проявить свою смекалку, изобретательность. Кроме того, в процессе изготовления, а тем более при демонстрации его перед классом или всей школой изготовитель получают массу положительных эмоций. Применение самодельных приборов на уроке развивает чувство ответственности и гордости за выполненную работу, доказывает ее значимость.

Скачать:

Предварительный просмотр:

Муниципальное казенное образовательное учреждение

Кукуйская основная общеобразовательная школа №25

Проект

Физический прибор своими руками

Выполнил: ученик 8 класса

МКОУ ООШ№25

Бурденков Ю.

Руководитель: Давыдова Г.А.,

Учитель физики.

  1. Введение.
  2. Основная часть.
  1. Назначение прибора;
  2. инструменты и материалы;
  3. Изготовление прибора;
  4. Общий вид прибора;
  1. Заключение.
  2. Список используемой литературы.
  1. Введение.

Для того, чтобы поставить необходимый опыт, нужно иметь приборы и измерительные инструменты. И не думайте, что все приборы делаются на заводах. Во многих случаях исследовательские установки сооружаются самими исследователями. При этом считается, что талантливее тот исследователь, который может поставить опыт и получить хорошие результаты не только на сложных, а и на более простых приборах. Сложное оборудование обоснованно применять только в тех случаях, когда без него нельзя обойтись. Так что не надо пренебрегать самодельными приборами- гораздо полезнее сделать их самим, чем пользоваться покупными.

ЦЕЛЬ:

Сделать прибор, установку по физике для демонстрации физических явлений своими руками.

Объяснить принцип действия данного прибора. Продемонстрировать работу данного прибора.

ЗАДАЧИ:

Сделать приборы вызывающие большой интерес у учащихся.

Сделать приборы отсутствующие в лаборатории.

Сделать приборы, вызывающие затруднение в понимании теоретического материала по физике.

ГИПОТЕЗА:

Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке.

При отсутствии данного прибора в физической лаборатории, данный прибор сможет заменить недостающую установку при демонстрации и объяснении темы.

  1. Основная часть.
  1. Назначение прибора.

Прибор предназначен для наблюдения расширения воздуха и жидкости при нагревании.

  1. Инструменты и материалы .

Обыкновенная бутылка, резиновая пробка, стеклянная трубка, наружный диаметр которой 5-6 мм. Дрель.

  1. Изготовление прибора.

В пробке проделать дрелью такое отверстие, чтобы трубка плотно входила в него. Далее наливаем в бутылку подкрашенную воду, чтобы удобнее было наблюдать. Наносим на горлышко шкалу. Затем вставим пробку в бутылку так, чтобы трубка в бутылке находилась ниже уровня воды. Прибор к опыту готов!

  1. Общий вид прибора.
  1. Особенности демонстрации прибора.

Для демонстрации прибора необходимо обхватить горлышко бутылки рукой и подождать некоторое время. Мы увидим, что вода начинает подниматься по трубке. Происходит это потому, что рука нагревает воздух, находящийся в бутылке. От нагревания воздух расширяется, давит на воду и вытесняет ее. Опыт можно проделать с различным количеством воды, и вы убедитесь, что уровень подъема будет разный. Если бутылка будет полностью заполнена водой, то можно уже наблюдать расширение воды при нагревании. Чтобы убедиться в этом, нужно бутылку опустить в сосуд с горячей водой.

  1. Заключение.

Наблюдать за опытом проводимым учителем, интересно. Проводить его самому интереснее вдвойне.

А проводить опыт с прибором, сделанным и сконструированным своими руками, вызывает очень большой интерес у всего класса. В таких опытах легко установить взаимосвязь и сделать вывод как работает данная установка.

  1. Литература.

1. Учебное оборудование по физике в средней школе. Под редакцией А.А Покровского «Просвещения» 1973

Фомин Даниил

Физика наука экспериментальная и создание приборов своими руками способствует лучшему усвоению законов и явлений. Много различных вопросов возникает при изучении каждой темы.На многие может ответить сам учитель, но насколько чудеснодобыть ответы путем собственного самостоятельного исследования.

Скачать:

Предварительный просмотр:

ОКРУЖНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ УЧАЩИХСЯ

СЕКЦИЯ «Физика»

Проект

Физический прибор своими руками.

Учащийся 8 а класса

ГБОУ СОШ № 1 пгт. Суходол

Сергиевского района Самарской области

Научный руководитель: Шамова Татьяна Николаевна

учитель физики

  1. Введение.
  1. Основная часть.
  1. Назначение прибора;
  2. инструменты и материалы;
  3. Изготовление прибора;
  4. Общий вид прибора;
  5. Особенности демонстрации прибора.

3.Исследования.

4.Заключение.

5. Список используемой литературы.

1.Введение.

Для того, чтобы поставить необходимый опыт, нужно иметь приборы и измерительные инструменты. И не думайте, что все приборы делаются на заводах. Во многих случаях исследовательские установки сооружаются самими исследователями. При этом считается, что талантливее тот исследователь, который может поставить опыт и получить хорошие результаты не только на сложных, а и на более простых приборах. Сложное оборудование обоснованно применять только в тех случаях, когда без него нельзя обойтись. Так что не надо пренебрегать самодельными приборами- гораздо полезнее сделать их самим, чем пользоваться покупными.

ЦЕЛЬ:

Сделать прибор, установку по физике для демонстрации физических явлений своими руками.

Объяснить принцип действия данного прибора. Продемонстрировать работу данного прибора.

ЗАДАЧИ:

Сделать приборы вызывающие большой интерес у учащихся.

Сделать приборы отсутствующие в лаборатории.

Сделать приборы, вызывающие затруднение в понимании теоретического материала по физике.

Исследовать зависимость периода от длины нити и амплитуды отклонения.

ГИПОТЕЗА:

Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке.

При отсутствии данного прибора в физической лаборатории, данный прибор сможет заменить недостающую установку при демонстрации и объяснении темы.

2.Основная часть.

2.1.Назначение прибора.

Прибор предназначен для наблюдения резонанса в механических колебаниях.

2.2.Инструменты и материалы .

Обыкновенная проволока, шарики, гайки, олово, леска. Паяльник.

2.3.Изготовление прибора.

Изогнуть проволоку в виде опоры. Протянуть общую леску. Припаять шарики к гайкам, отмерить леску 2 шт одинаковой длины,остальные должны быть короче и длиннее на несколько сантиметров, подвесить с их помощью шарики. Следить за тем, чтобы маятники с одинаковой длиной лески не оказались рядом. Прибор к опыту готов!

2.4.Общий вид прибора.

2.5.Особенности демонстрации прибора.

Для демонстрации прибора необходимо выбрать маятник, длина которого совпадает с длиной одного из трех оставшихся, если отклонить маятник от положения равновесия и предоставить его самому себе, то он будет совершать свободные колебания. Это вызовет колебания лески, в результате чего на маятники через точки подвеса будет действовать вынуждающая сила, периодически меняющаяся по модулю и направлению с такой же частотой, с какой колеблется маятник. Мы увидим, что маятник с совпадающей длиной подвеса начнет совершать колебания с той же частотой, при этом амплитуда колебаний этого маятника значительно больше амплитуд остальных маятников. В данном случае маятник колеблется в резонанс с маятником 3. Происходит это потому, что амплитуда установившихся колебаний, вызванных вынуждающей силы, достигает наибольшего значения именно при совпадении частоты изменяющей силы с собственной частотой колебательной системы. Дело в том, что в этом случае направление вынуждающей силы в любой момент времени совпадает с направлением движения колеблющегося тела. Таким образом создаются наиболее благоприятные условия для пополнения энергии колебательной системы за счет работы вынуждающей силы. Например, чтобы посильнее раскачать качели, мы подталкиваем их таким образом, чтобы направление действующей силы совпадало с направлением движения качелей. Но следует помнить, что понятие резонанса применимо только к вынужденным колебаниям.

3. Нитяной или математический маятник

Колебания! Наш взгляд падает на маятник стенных часов. Неугомонно спешит он то в одну, то в другую сторону, своими ударами как бы разбивая поток времени на точно размеренные отрезки. «Раз-два, раз-два», - невольно повторяем мы в такт его тиканию.

Отвес и маятник, – простейшие из всех приборов, какими пользуется наука. Тем удивительнее, что столь примитивными орудиями добыты поистине сказочные результаты: человеку удалось, благодаря им, проникнуть мысленно в недра Земли, узнать, что делается в десятках километров под нашими ногами.

Качание влево и обратно вправо, в исходное положение, составляет полное колебание маятника, а время одного полного колебания называют периодом колебания. Число колебаний тела в секунду называется частотой колебания. Маятник – это тело, подвешенное на нити, другой конец которой закреплен. Если длина нити велика по сравнению с размерами подвешенного на ней тела, а масса нити ничтожно мала сравнительно с массой тела, то такой маятник называют математическим или нитяным маятником. Практически маленький тяжелый шарик, подвешенный на легкой длинной нити, можно считать нитяным маятником.

Период колебаний маятника выражается формулой:

Т = 2π √ l / g

Из формулы видно, что период колебаний маятника не зависит от массы груза, амплитуды колебаний, что особенно удивительно. Ведь при различных амплитудах колеблющееся тело за одно колебание проходит разные пути, но время на это тратит всегда одно и то же. Продолжительность качания маятника зависит от длины его и ускорения свободного падения.

В своей работе мы и решили проверить экспериментально, что период не зависит от других факторов и убедиться в справедливости этой формулы.

Изучение зависимости колебаний маятника от массы колеблющегося тела, длины нити и величины начального отклонения маятника.

Исследование.

Приборы и материалы : секундомер, мерная лента.

Измерили период колебаний маятника сначала для массы тела 10 г и угла отклонения 20°, меняя при этом длину нити.

Также измерили период, увеличив угол отклонения до 40°, при массе 10 г и разной длине нити. Результаты измерений занесли в таблицу.

Таблица.

Длина нити

l, м.

Масса

маятника, кг

Угол отклонения

Число колебаний

Полное время

t. c

Период

T. c

0,03

0,01

0.35

0,05

0,01

0,45

0,01

0,63

0,03

0,01

0,05

0,01

0,01

Из опытов мы убедились, что период действительно не зависит от массы маятника и угла отклонения его, но с увеличением длины нити маятника период его колебания возрастет, но не пропорционально длине, а более сложно. Результаты опытов приведены в таблице.

Итак, период колебаний математического маятника зависит только от длины маятника l и от ускорения свободного падения g.

4.Заключение.

Наблюдать за опытом проводимым учителем, интересно. Проводить его самому интереснее вдвойне.

А проводить опыт с прибором, сделанным и сконструированным своими руками, вызывает очень большой интерес у всего класса. В таких опытах легко установить взаимосвязь и сделать вывод как работает данная установка.

5.Литература.

1. Учебное оборудование по физике в средней школе. Под редакцией А.А Покровского «Просвещения» 1973

2. Учебник по физике А. В. Перышкина, Е. М. Гутник «Физика» для 9 класса;

3.Физика:Справ.материалы:О.Ф. Кабардин Учеб.пособие для учащихся. – 3-е изд. – М.:Просвещение,1991.

МАОУ лицей №64 г. Краснодара Физика рук-ль Спицына Л.И.

Работа - участник Всероссийского фестиваля педагогического творчества в 2017 году

На сайте сайт размещается для обмена опытом работы с коллегами

САМОДЕЛЬНЫЕ ПРИБОРЫ ДЛЯ УЧЕБНЫХ ИССЛЕДОВАНИЙ

В ЛАБОРАТОРНОМ ПРАКТИКУМЕ по ФИЗИКЕ

Научно-исследовательский проект

"Физика и физические задачи повсюду существуют

в том мире, в котором мы живем, работаем,

любим, умираем." - Дж.Уокер.

Введение.

С раннего детства, когда с легкой руки воспитателя детского сада Зои Николаевны, ко мне приклеилось «Коля-физик», я интересуюсь физикой как наукой теоретической и прикладной.

Еще в начальной школе, изучая доступные мне материалы в энциклопедиях, определил для себя круг наиболее интересных вопросов; уже тогда радиоэлектроника стала основой внешкольного времяпрепровождения. В средней школе стал уделять особое внимание таким вопросам современной науки, как ядерная и волновая физика. В профильном классе на первый план вышло изучение проблем радиационной безопасности человека в современном мире.

Увлеченность конструированием пришла вместе с книгой Ревича Ю. В. «Занимательная электроника», моими настольными книгами стали трехтомный «Элементарный учебник физики» под редакцией Ландсберга Г. С., «Курс физики» Детлафа А.А. и другие.

Каждый человек, считающий себя «технарём», должен учиться воплощать свои, пусть даже самые фантастические замыслы и идеи, в самостоятельно изготовленные действующие модели, приборы и устройства, чтобы с их помощью подтвердить или опровергнуть эти замыслы. Тогда, завершив общее образование, он получает возможность искать пути, следуя которым сумеет идеи свои воплотить в жизнь.

Актуальность темы «Физика своими руками» определяется, во-первых, возможностью технического творчества для каждого человека, во-вторых, возможностью использовать самодельные приборы в образовательных целях, что обеспечивает развитие интеллектуальных и творческих способностей обучающегося.

Развитие коммуникационных технологий и поистине безграничные образовательные возможности Интернет-сети позволяют сегодня каждому желающему использовать их во благо своего развития. Что я хочу этим сказать? Только то, сейчас каждый, кто захочет, может «нырнуть» в бесконечный океан доступных сведений о чем угодно, в любой форме: видео, книги, статьи, сайты. Сегодня существует множество различных сайтов, форумов, каналов «YOUTUBE», которые с радостью поделятся с тобой знаниями в любой области, а в частности, в области прикладных радиоэлектроники, механики, физики атомного ядра и т.д. Было бы очень здорово, если бы больше людей имело тягу к освоению чего-то нового, тягу к познанию мира и позитивному его преобразованию.

Задачи, решаемые в данной работе:

- реализовать единство теории и практики через создание самодельныхучебных приборов, действующих моделей;

Применить теоретические знания, полученные в лицее, для выбора конструкции моделей, используемых для создания самодельного учебного оборудования;

На основе теоретических исследований физических процессов выбрать необходимое оборудование, соответствующее условиям эксплуатации;

Использовать доступные детали, заготовки для их нестандартного применения;

Популяризировать прикладную физику в молодежной среде, в том числе среди одноклассников, через привлечение их ко внеурочной деятельности;

Способствовать расширению практической части образовательного предмета;

Пропагандировать значимость творческих способностей обучающихся в познании окружающего мира.

ОСНОВНАЯ ЧАСТЬ

В конкурсном проекте представлены изготовленные учебные модели и устройства:

Миниатюрный прибор оценки степени радиоактивности на основе счетчика Гейгера-Мюллера СБМ-20(самого доступного из существующих образцов).

Действующая модель диффузионной камеры Ландсгорфа

Комплекс для наглядного экспериментального определения величины скорости света в металлическом проводнике.

Небольшой прибор для измерения реакции человека.

Представляю теоретические основы физических процессов, принципиальные схемы и особенности конструкции приборов.

§1. Миниатюрный прибор оценки степени радиоактивности на основе счетчика Гейгера-Мюллера - дозиметр собственного изготовления

Идея собрать дозиметр посещала меня очень долго, и однажды руки дошли, я его собрал. На фото слева - счетчик Гейгера промышленного производства, справа - дозиметр на его основе.

Известно, что основным элементом дозиметра является датчик излучения. Самый доступным из них является счетчик Гейгера-Мюллера, принцип действия которого основан на том, что ионизирующие частицы могут ионизировать вещество - выбивать электроны с внешних электронных слоев. Внутри счетчика Гейгера находится инертный газ аргон. По сути, счетчик - конденсатор, который пропускает ток только тогда, когда внутри образуются положительные катионы и свободные электроны. Принципиальная схема включения устройства приведена на рис. 170. Одной пары ионов недостаточно, но из-за относительно высокой разности потенциалов на выводах счетчика происходит лавинная ионизация и возникает достаточно большой ток, чтобы можно было засечь импульс.

В роли пересчетного устройства выбрана схема на основе микроконтроллера кампании Atmel - Atmega8A. Индикация значений осуществляется при помощи LCD-дисплея от легендарного Nokia 3310, и звуковая индикация - посредством пьезоэлемента, взятого из будильника. Высокое напряжение для питания счетчика достигается при помощи миниатюрного трансформатора и умножителя напряжения на диодах и конденсаторах.

Принципиальная электрическая схема дозиметра :

Прибор показывает значение мощности дозы γ и рентгеновского излучения в микрорентгенах, с верхним пределом в 65мР/ч.

При снятии крышки-фильтра открывается поверхность счетчика Гейгера и прибор может фиксировать β - излучение. Замечу - лишь фиксировать, не измерять, так как степень активности β - препаратов измеряется плотностью потока - количество частиц на единицу площади. Да и эффективность к β - излучению у СБМ-20 очень низка, рассчитан он только для фотонного излучения.

Схема понравилась мне тем, что в ней грамотно реализована высоковольтная часть - количество импульсов для зарядки конденсатора питания счетчика пропорционально количеству регистрируемых импульсов. Благодаря этому прибор уже полтора года без выключений работает, истратив 7 батареек типа АА.

Почти все компоненты для сборки я закупил на адыгейском радиорынке, за исключением счетчика Гейгера - его приобрел в Интернет-магазине.

Надежность и эффективность прибора подтверждается таким образом: непрерывная полуторогодовая работа прибора и возможность постоянного контроля показывают, что:

Показания прибора колеблются от 6 до 14 микрорентген в час, что не превышает допустимую норму в 50 микрорентген в час;

Радиационный фон в учебных кабинетах, в микрорайоне моего проживания, непосредственно в квартире полностью соответствует нормам радиационной безопасности (НРБ - 99/2009), утвержденные Постановление главного государственного санитарного врача Российской федерации от 07 июля 2009 года № 47.

В повседневной жизни, оказывается, человеку не так-то просто попасть в область с повышенной радиоактивностью. Если это случится - прибор осведомит меня звуковым сигналом, что делает самодельный прибор гарантом радиационной безопасности его конструктора.

§ 2. Действующая модель диффузионной камеры Лангсдорфа.

2.1. Основы радиоактивности и способы ее изучения.

Радиоактивность - способность атомных ядер самопроизвольно или под действием внешнего излучения распадаться. Открытие этого замечательного свойства некоторых химических веществ принадлежит Анри Беккерелю в феврале 1896 года. Радиоактивность - явление, доказывающие сложное устройство атомного ядра, при котором ядра атомов распадаются на части, при этом почти все радиоактивные вещества имеют определенный период полураспада - промежуток времени, за который в образце распадется половина всех атомов радиоактивного вещества. При радиоактивном распаде из ядер атомов испускаются ионизирующие частицы. Это могут быть ядра атомов гелия - α-частицы, свободные электроны или позитроны - β - частицы, γ - лучи - электромагнитные волны. К ионизирующим частицам еще относят протоны, нейтроны, обладающие высокой энергией.

Сегодня известно, что подавляющее большинство химических элементов имеют радиоактивные изотопы. Есть такие изотопы и среди молекул воды - источника жизни на Земле.

2.2. Как обнаружить ионизирующее излучение?

Детектировать, то есть обнаружить ионизирующие излучения в настоящее время можно при помощи счетчиков Гейгера-Мюллера, сцинтилляционных детекторов, ионизационных камер, трековых детекторов. Последние могут не только обнаружить факт наличия излучения, но и позволяют наблюдателю увидеть, как летели частицы по форме трека. Сцинтилляционные детекторы хороши высокой чувствительностью и пропорциональным энергии частиц световыходом - количеством фотонов, излучаемых при поглощении веществом определенного количества энергии.

Известно, что у каждого изотопа различная энергия испускаемых частиц, поэтому при помощи сцинтилляционного детектора можно идентифицировать изотоп без химического или спектрального анализа. При помощи трековых детекторов тоже можно идентифицировать изотоп, поместив камеру в однородное магнитное поле, при этом треки будут искривлены.

Ионизирующие частицы радиоактивных тел обнаружить, изучать их характеристики можно с помощью специальных приборов, получивших название «трековые». К ним относят приборы, которые могут показать след движущейся ионизирующей частицы. Это могут быть: камеры Вильсона, диффузионные камеры Ландсгорфа, искровые и пузырьковые камеры.

2.3. Диффузионная камера собственного изготовления

Вскоре после того, как самодельный дозиметр стал стабильно работать, я понял, что дозиметра мне не достаточно и нужно сделать что-нибудь еще. В итоге я собрал диффузионную камеру, изобретенную Александром Лангсдорфом в 1936 году. И сегодня для научных исследований может быть использована камера, схема которой представлена на рисунке:

Диффузионная - усовершенствованная камера Вильсона. Усовершенствование заключается в том, что для получения перенасыщенного пара используется не адиабатное расширение, а диффузия паров из нагретой области камеры в холодную, то есть пар, находящийся в камере, преодолевает некий градиент температур.

2.4. Особенности процесса сборки камеры

Для работы устройства обязательным условием является наличие перепада температур в 50-700С, при этом нагревать одну сторону камеры нецелесообразно, т.к. спирт будет быстро испаряться. Значит, нужно охлаждать нижнюю часть камеры до - 30°С. Такую температуру может обеспечить испаряющийся сухой лед или элементы Пельтье. Выбор пал в пользу последних, ибо доставать лед мне было, честно, лень, да и порция льда послужит один раз, а элементы Пельтье - сколько угодно. Принцип их работы основан на эффекте Пельтье - переносе теплоты при протекании электрического тока.

Первый эксперимент после сборки дал ясно знать, что одного элемента оказалось недостаточно для получения необходимого перепада температур, пришлось использовать два элемента. На них подается разное напряжение, на нижний - большее, на верхний - меньшее. Это связано вот с чем: чем меньшую температуру необходимо достичь в камере, тем больше теплоты нужно отводить.

Когда я раздобыл элементы, мне пришлось немало поэкспериментировать, чтобы достичь нужной температуры. Нижнюю часть элемента охлаждает компьютерный радиатор с тепловыми (аммиачными) трубками и двумя 120-миллиметровыми кулерами. По приблизительным расчетам, кулер рассеивает в воздух около 100 ватт тепла. С источником питания я решил не заморачиваться, поэтому использовал импульсный компьютерный, суммарной мощностью 250 ватт, этого после проведения измерений оказалось достаточно.

Далее, я соорудил корпус из листовой фанеры для цельности и удобства хранения прибора. Получилось не совсем аккуратно, но довольно практично. Саму камеру, где образуются треки движущихся заряженных частиц или фотонных лучей, я сделал из обрезанной трубы и оргстекла, но вертикальный обзор не давал хорошей контрастности изображению. Я ее сломал и выбросил, сейчас использую в качестве прозрачной камеры стеклянный бокал. Дешево и сердито. Внешний вид камеры - на фото.

В качестве "сырья" для работы может быть использован как изотоп тория-232, находящийся в электроде для аргонодуговой сварки (применяется он в них для ионизации воздуха возле электрода и как следствие - более легкого зажигания дуги), так и дочерние продукты распада (ДПР) радона, содержащегося в воздухе, поступающего, в основном, с водой и газом. Чтобы собрать ДПР использую таблетки активированного угля - неплохой абсорбент. Чтобы интересующие нас ионы притягивались к таблетке, к ней подключаю умножитель напряжения, отрицательным выводом.

2.5. Ловушка ионов.

Еще один важный элемент конструкции - ловушка ионов, образующихся в результате ионизации атомов ионизирующими частицами. Конструктивно представляет собой умножитель сетевого напряжения с коэффициентом умножения равным 3, причем на выходе из умножителя имеют место быть отрицательные заряды. Это обусловлено тем, что в результате ионизации с внешней атомной оболочки выбиваются электроны, вследствие чего атом становится катионом. В камере использована ловушка, схема которой основана на использовании умножителя напряжения Кокрофта - Уолтона.

Электрическая схема умножителя имеет вид:

Эксплуатация камеры, ее результаты

Диффузионная камера после многочисленных пробных запусков, была использована в качестве экспериментального оборудования при выполнении лабораторной работы по теме "Изучение треков заряженных частиц", состоявшейся в 11 классе МАОУ лицея № 64 одиннадцатого февраля 2015 года. Фотографии треков, полученных посредством камеры, были зафиксированы на интерактивной доске, и использованы для определения вида частиц.

Как и в промышленном оборудовании, в самодельной камере удалось наблюдать следующее: чем шире трек, тем больше там частиц, следственно, более толстые треки принадлежат альфа-частицам, имеющим большие радиус и массу, а как следствие, большую кинетическую энергию, большее число ионизированных атомов на миллиметр пролета.

§ 3. Комплекс для наглядного экспериментального определения величины

скорости света в металлическом проводнике.

Начну, пожалуй, с того, что скорость света всегда для меня считалась чем-то невероятным, непостижимым, в какой-то степени невозможным, пока я не нашел в Интернете принципиальные электрические схемы валявшегося у меня двухканального осциллографа со сломанной синхронизацией, что без ремонта не давало возможности исследованию форм электрических сигналов. Но судьба была весьма благосклонна ко мне, мне удалось определить причину поломки блока синхронизации и устранить ее. Выяснилось, что неисправна была микросборка - коммутатор сигналов. По схеме из Интернета сделал копию этой микросборки из деталей, купленных на любимом радиорынке.

Взял экранированный телевизионный двадцатиметровый провод, собрал простой генератор высокочастотных сигналов на инверторах 74HC00. Н один конец провода подавал сигнал, параллельно снимая его из той же точки первым каналом осциллографа, со второго сигнал снимал вторым каналом, фиксировал разницу во времени помеж фронтов получаемых сигналов.

Длину провода - 20 метров разделил на это время, получил нечто похожее на 3*108 м/с.

Прилагаю принципиальную электрическую схему (куда же без нее?):

Внешний вид высокочастотного генератора представлен на фото. Используя доступное (бесплатное) программное обеспечение "Sprint-Layout 5.0" создал чертеж платы.

3. 1. Немного об изготовлении плат:

Саму плату, как обычно, сделал по технологии "ЛУТ" - народная лазерно-утюжная технология, разработанная обитателями просторов Интернета. Технология заключается в следующем: берется одно или двухслойный фольгированный стеклотекстолит, тщательно обрабатывается наждачной бумагой до блеска, затем ветошью, смоченной бензином или спиртом. Далее на лазерном принтере распечатывается рисунок, который необходимо нанести на плату. В зеркальном отражении на глянцевую бумагу печатается рисунок, а потом при помощи утюга тонер на глянцевой бумаге переносится на медную фольгу, покрывающую текстолит. Позже под струей теплой воды бумага скатывается пальцами с платы, остается плата с нанесенным рисунком. Теперь погружаем этот продукт в раствор хлорного железа, помешиваем порядка пяти минут, затем вынимаем плату, на которой медь осталась только под тонером из принтера. Наждачной бумагой удаляем тонер, опять обрабатываем спиртом или бензином, дальше покрываем паяльным флюсом. При помощи паяльника и залуженной оплетки телевизионного кабеля водим по плате, тем самым покрывая медь слоем олова, необходимого для последующей пайки компонентов и для защиты меди от коррозии.

Отмываем от флюса плату при помощи ацетона, например. Производим пайку всех компонентов, проводов и покрываем токонепроводящим лаком. Ждем сутки, пока лак сохнет. Готово, плата готова к работе.

Таким методом пользуюсь далеко не первый год, ни разу способ меня не подвел.

§ 4. Небольшое устройство для измерения реакции человека.

Работа по совершенствованию этого прибора идет и сейчас.

Используется устройство следующим образом: после подачи питания на микроконтроллер прибор переходит в режим циклического перебора значений некой переменной «С». После нажатия кнопки программа приостанавливается и присваивает значение, которое в тот момент было в переменной, значение которой циклически менялось. Таким образом, в переменной «С» получается случайное число. Сказали бы Вы: «А почему бы не воспользоваться функцией random() или чем-то вроде этого?».

А дело в том, что в языке, на котором я пишу - в BASCOM AVR, нет такой функции из-за его неполноценного набора команд, так как это язык для микроконтроллеров с малым объемом оперативной памяти, малой вычислительной способностью. После нажатия кнопки программа зажигает на табло четыре нуля и запускает таймер, ожидающий промежуток времени, пропорциональный значению переменной «С». После истечения заданного промежутка времени программа зажигает четыре восьмерки и запускает таймер, считающий время до того момента, пока не будет нажата кнопка.

Если нажать кнопку в момент между зажиганием нулей и восьмерок, то программа остановится, выведет на дисплей прочерки. Если кнопка была нажата после появления восьмерок, то программа выведет на дисплей время в миллисекундах прошедшее после зажжения восьмерок и до нажатия кнопки, это и будет время реакции человека. Остается лишь вычислить среднее арифметическое результатов нескольких измерений.

В данном устройстве используется микроконтроллер фирмы «Atmel» модель «ATtiny2313». На своем борту микросхема имеет два килобайта флэш-памяти, 128 байт оперативной, восьмибитный и десятибитный таймеры, четыре канала широтно-импульсной модуляции (ШИМ), пятнадцать полностью доступных портов ввода-вывода.

Для вывода информации используется семисегментный четырехразрядный светодиодный индикатор с общим анодом. Индикация реализована динамическая, то есть все сегменты всех разрядов соединены параллельно, а общие выводы не параллельны. Таким образом, получается у индикатора двенадцать выводов: четыре вывода - общие для разрядов, остальные восемь распределены так: семь сегментов для цифр и один для точки.

Заключение

Физика - фундаментальная естественная наука, изучение которой позволяет познавать окружающий ребенка мир через деятельность учебную, изобретательскую, конструкторскую, творческую.

Ставя цель: сконструировать физические приборы для использования их в образовательном процессе, я ставил задачу популяризировать физику, как науку не только теоретическую, но и прикладную, среди сверстников, доказывая, что понять, почувствовать, принять окружающий нас мир можно только через познание и творчество. Как гласит пословица «лучше один раз увидеть, чем сто раз услышать», то есть, чтобы хоть чуть-чуть объять необъятный мир, нужно научиться взаимодействовать с ним не только посредством бумаги и карандаша, но и с помощью паяльника и проводов, деталей и микросхем.

Апробация и эксплуатация самодельных приборов доказывает их жизнеустойчивость и конкурентноспособность.

Я бесконечно благодарен тому, что мою жизнь, начиная с трехлетнего возраста, направил в техническое, изобретательско - конструкторское русло мой дедушка, Диденко Николай Андреевич, более двадцати лет преподававший физику и математику в Абадзехской средней школе, и более двадцати лет работавший программистов в научно-техническом центре РОСНЕФТЬ.

Список использованной литературы .

Наливайко Б.А. Справочник Полупроводниковые приборы. Сверхвысокочастотные диоды. МГП "РАСКО" 1992, 223 с.

Мякишев Г. Я., Буховцев Б. Б. Физика 11 класс, М., Просвещение, 2014, 400 с.

Ревич Ю. В. Занимательная электроника.2-е изд-е, 2009 БХВ-Петербург, 720 с

Том Тит. Научные забавы: физика без приборов, химия без лаборатории. М., 2008, 224 с.

Чечик Н. О. Файнштейн С.М. Электронные умножители, ГИТТЛ 1957, 440 с.

Шилов В.Ф. Самодельные приборы по радиоэлектронике, М., Просвещение, 1973, 88 с.

Википедия - свободная энциклопедия. Режим доступа