Что такое композитный материал. Композитные материалы: что это такое, свойства, производство и применение Композиционный материал состоит из матрицы и

1. Композиционные или композитные материалы – материалы будущего.

После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов. Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много разпревышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами. Упервых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

Композиционный материал – конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы ввиде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия. Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемымизначениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

2. Типы композиционных материалов.

2.1. Композиционные материалы с металлической матрицей.

Композитные материалы или композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.

2.2. Композиционные материалы с неметаллической матрицей.

Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная.
Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ейформу. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов,нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава компонентов,их сочетания, количественного соотношения и прочности связи между ними.
Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.

Содержание упрочнителя в ориентированных материалах составляет 60-80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20-30 об. %. Чем выше прочность и модуль упругости волокон,тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.

По виду упрочнителя композитные материалы классифицируют настекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты иоргановолокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слоисобираются в пластины. Свойства получаются анизотропными. Для работыматериала в изделии важно учитывать направление действующих нагрузок. Можносоздать материалы как с изотропными, так и с анизотропными свойствами.
Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.

Применяется укладка упрочнителей из трех, четырех и более нитей.
Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.

Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивлениесдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях.
Однако создание четырехнаправленных материалов сложнее, чем трех направленных.

3. Классификация композиционных материалов.

3.1. Волокнистые композиционные материалы.

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму,по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композитые материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 10 %), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.

Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокондолжны быть значительно больше, чем прочность и модуль упругости матрицы.
Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.

Для упрочнения алюминия, магния и их сплавов применяют борные, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модульупругости. Нередко используют в качестве волокон проволоку из высокопрочных сталей.

Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных ивысокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбидабора и др.

Композиционные материалы на металлической основе обладают высокойпрочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исчезает внезапное хрупкое разрушение. Отличительной особенностью волокнистых одноосных композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность кконцентраторам напряжения.

Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напряжения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, доборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повышением температуры.

Основным недостатком композиционных материалов с одно и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого лишены материалы с объемным армированием.

3.2. Дисперсно-упрочненные композиционные материалы.

В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом,несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.
Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500нм и равномерном распределении их в матрице.
Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об. %.

Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов иредкоземельных металлов), нерастворяющихся в матричном металле, позволяетсохранить высокую прочность материала до 0,9-0,95 Т . В связи с этимтакие материалы чаще применяют как жаропрочные. Дисперсно-упрочненныекомпозиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.

Наиболее широко используют сплавы на основе алюминия – САП(спеченный алюминиевый порошок).

Плотность этих материалов равна плотности алюминия, они не уступают ему покоррозионной стойкости и даже могут заменять титан и коррозионно-стойкиестали при работе в интервале температур 250-500 °С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов САП-1 и САП-2 при 500 °С составляет 45-55 МПа.

Большие перспективы у никелевых дисперсно-упрочненных материалов.
Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2-3 об. % двуоксида тория или двуоксида гафния. Матрица этих сплавов обычно твердыйраствор Ni + 20 % Cr, Ni + 15 % Mo, Ni + 20 % Cr и Mo. Широкое применениеполучили сплавы ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель,упрочненный двуокисью гафния) и ВД-3 (матрица Ni +20 % Cr, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсно-упрочненные композиционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительностивыдержки при данной температуре.

3.3. Стекловолокниты.

Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качественаполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствиевлияния неоднородностей и трещин, возникающих в толстых сечениях). Свойства стекловолокна зависят также от содержания в его составе щелочи; лучшие показатели у бесщелочных стекол алюмоборосиликатногосостава.

Неориентированные стекловолокниты содержат в качестве наполнителя короткое волокно. Это позволяет прессовать детали сложной формы, сметаллической арматурой. Материал получается с изотопными прочностными характеристиками, намного более высокими, чем у пресс-порошков и дажеволокнитов. Представителями такого материала являются стекловолокниты АГ-4В, а также ДСВ (дозирующиеся стекловолокниты), которые применяют дляизготовления силовых электротехнических деталей, деталей машиностроения (золотники, уплотнения насосов и т. д.). При использовании в качествесвязующего непредельных полиэфиров получают премиксы ПСК (пастообразные) и препреги АП и ППМ (на основе стеклянного мата). Препреги можно применять для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпусаприборов и т. п.).

Ориентированные стекловолокниты имеют наполнитель в виде длинных волокон, располагающихся ориентированно отдельными прядями и тщательносклеивающихся связующим. Это обеспечивает более высокую прочность стеклопластика.

Стекловолокниты могут работать при температурах от –60 до 200 °С, атакже в тропических условиях, выдерживать большие инерционные перегрузки.
При старении в течение двух лет коэффициент старения К = 0,5-0,7.
Ионизирующие излучения мало влияют на их механические и электрические свойства. Из них изготовляют детали высокой прочности, с арматурой и резьбой.

3.4. Карбоволокниты.

Карбоволокниты (углепласты) представляют собой композиции,состоящие из полимерного связующего (матрицы) и упрочнителей в видеуглеродных волокон (карбоволокон).

Высокая энергия связи С-С углеродных волокон позволяет им сохранить прочность при очень высоких температурах (в нейтральной и восстановительнойсредах до 2200 °С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим
(низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержаниюкарбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6-2,5 раза. Применяется вискеризациянитевидных кристаллов TiO, AlN и SiN, что дает увеличениемежслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.

Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

Эпоксифенольные карбоволокниты КМУ-1л, упрочненные углероднойлентой, и КМУ-1у на жгуте, висскеризованном нитевидными кристаллами, могут длительно работать при температуре до 200 °С.

Карбоволокниты КМУ-3 и КМУ-2л получают наэпоксианилиноформальдегидном связующем, их можно эксплуатировать притемпературе до 100 °С, они наиболее технологичны. Карбоволокниты КМУ-2 и
КМУ-2л на основе полиимидного связующего можно применять при температуре до
300 °С.

Карбоволокниты отличаются высоким статистическим и динамическимсопротивлением усталости, сохраняют это свойство при нормальной и оченьнизкой температуре (высокая теплопроводность волокна предотвращаетсаморазогрев материала за счет внутреннего трения). Они водо- и химическистойкие. После воздействия на воздухе рентгеновского излучения и Епочти не изменяются.

Теплопроводность углепластиков в 1,5-2 раза выше, чемтеплопроводность стеклопластиков. Они имеют следующие электрическиесвойства: = 0,0024-0,0034 Ом·см (вдоль волокон); ? = 10 и tg =0,001 (при частоте тока 10 Гц).

Карбостекловолокниты содержат наряду с угольными стеклянныеволокна, что удешевляет материал.

3.5. Карбоволокниты с углеродной матриццей.

Коксованные материалы получают из обычных полимерныхкарбоволокнитов, подвергнутых пиролизу в инертной или восстановительнойатмосфере. При температуре 800-1500 °С образуются карбонизированные, при 2500-3000 °С графитированные карбоволокниты. Для получения пироуглеродныхматериалов упрочнитель выкладывается по форме изделия и помещается в печь,в которую пропускается газообразный углеводород (метан). При определенномрежиме (температуре 1100 °С и остаточном давлении 2660 Па) метанразлагается и образующийся пиролитический углерод осаждается на волокнахупрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет высокую прочностьсцепления с углеродным волокном. В связи с этим композиционный материалобладает высокими механическими и абляционными свойствами, стойкостью ктермическому удару.

Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениямпрочности и ударной вязкости в 5-10 раз превосходит специальные графиты;при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200
°С, на воздухе окисляется при 450 °С и требует защитного покрытия.
Коэффициент трения одного карбоволокнита с углеродной матрицей по другомувысок (0,35-0,45), а износ мал (0,7-1 мкм на тормажение).

3.6. Бороволокниты.

Бороволокниты представляют собой композиции из полимерногосвязующего и упрочнителя – борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге исрезе, низкой ползучестью, высокими твердостью и модулем упругости,теплопроводностью и электропроводимостью. Ячеистая микроструктура борныхволокон обеспечивает высокую прочность при сдвиге на границе раздела сматрицей.

Помимо непрерывного борного волокна применяют комплексныеборостеклониты, в которых несколько параллельных борных волокон оплетаютсястеклонитью, предающей формоустойчивость. Применение боростеклонитейоблегчает технологический процесс изготовления материала.

В качестве матриц для получения боровлокнитов используютмодифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и
КМБ-1к предназначены для длительной работы при температуре 200 °С; КМБ-3 и КМБ-3к не требуют высокого давления при переработке и могут работать притемпературе не свыше 100 °С; КМБ-2к работоспособен при 300 °С.

Бороволокниты обладают высокими сопротивлениями усталости, онистойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

3.7. Органоволокниты.

Органоволокниты представляют собой композиционные материалы,состоящие из полимерного связующего и упрочнителей (наполнителей) в видесинтетических волокон. Такие материалы обладают малой массой, сравнительновысокими удельной прочностью и жесткостью, стабильны при действиизнакопеременных нагрузок и резкой смене температуры. Для синтетическихволокон потери прочности при текстильной переработке небольшие; онималочувствительны к повреждениям.

К органоволокнитах значения модуля упругости и температурныхкоэффициентов линейного расширения упрочнителя и связующего близки.
Происходит диффузия компонентов связующего в волокно и химическоевзаимодействие между ними. Структура материала бездефектна. Пористось непревышает 1-3 % (в других материалах 10-20 %). Отсюда стабильностьмеханических свойств органоволокнитов при резком перепаде температур,действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700кДж/мІ). Недостатком этих материалов является сравнительно низкая прочностьпри сжатии и высокая ползучесть (особенно для эластичных волокон).

Органоволокниты устойчивы в агрессивных средах и во влажномтропическом климате; диэлектрические свойства высокие, а теплопроводностьнизкая. Большинство органоволокнитов может длительно работать притемпературе 100-150 °С, а на основе полиимидного связующего иполиоксадиазольных волокон – при температуре 200-300 °С.

В комбинированных материалах наряду с синтетическими волокнамиприменяют минеральные (стеклянные, карбоволокна и бороволокна). Такиематериалы обладают большей прочностью и жесткостью.

4. Экономическая эффективность применения композиционных материалов.

Области применения композиционных материалов не ограничены. Ониприменяются в авиации для высоконагруженных деталей самолетов (обшивки,лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора итурбины и т. д.), в космической технике для узлов силовых конструкцийаппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов,бамперов и т. д., в горной промышленности (буровой инструмент, деталикомбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементысборных конструкций высотных сооружений и т. д.) и в других областяхнародного хозяйства.

Применение композиционных материалов обеспечивает новыйкачественный скачек в увеличении мощности двигателей, энергетических итранспортных установок, уменьшении массы машин и приборов.

Технология получения полуфабрикатов и изделий из композиционныхматериалов достаточно хорошо отработана.

Композитные материалы с неметаллической матрицей, а именнополимерные карбоволокниты используют в судо- и автомобилестроении (кузовагоночных машин, шасси, гребные винты); из них изготовляют подшипники,панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульныекарбоволокниты применяют для изготовления деталей авиационной техники,аппаратуры для химической промышленности, в рентгеновском оборудовании идругом.

Карбоволокниты с углеродной матрицей заменяют различные типыграфитов. Они применяются для тепловой защиты, дисков авиационных тормозов,химически стойкой аппаратуры.

Изделия из бороволокнитов применяют в авиационной и космическойтехнике (профили, панели, роторы и лопатки компрессоров, лопасти винтов итрансмиссионные валы вертолетов и т. д.).

Органоволокниты применяют в качестве изоляционного иконструкционного материала в электрорадиопромышленности, авиационнойтехнике, автостроении; из них изготовляют трубы, емкости для реактивов,покрытия корпусов судов и другое.


Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Композитные материалы

Композицио́нный материа́л (компози́т, КМ ) - неоднородный сплошной материал, состоящий из двух или более компонентов , среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных ком­понентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов , повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Преимущества композиционных материалов

Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но,проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

  • высокая удельная прочность
  • высокая жёсткость (модуль упругости 130…140 ГПа)
  • высокая износостойкость
  • высокая усталостная прочность
  • из КМ возможно изготовить размеростабильные конструкции

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Большинство классов композитов (но не все) обладают недостатками:

  • высокая стоимость
  • анизотропия свойств
  • повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны

Области применения

Товары широкого потребления

Машиностроение

Характеристика

Технология применяется для формирования на поверхностях в парах трения сталь -резина дополнительных защитных покрытий . Применение технологии позволяет увеличить рабочий цикл уплотнений и валов промышленного оборудования, работающих в водной среде .

Композиционные материалы состоят из нескольких функционально отличных материалов. Основу неорганических материалов составляют модифицированные различными добавками силикаты магния , железа , алюминия . Фазовые переходы в этих материалах происходят при достаточно высоких локальных нагрузках, близких к пределу прочности металла . При этом на поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок, благодаря чему удается изменить структуру поверхности металла.

Технические характеристики

Защитное покрытие в зависимости от состава композиционного материала может характеризоваться следующими свойствами:

  • толщина до 100 мкм;
  • класс чистоты поверхности вала (до 9);
  • иметь поры с размерами 1 - 3 мкм;
  • коэффициент трения до 0,01;
  • высокая адгезия к поверхности металла и резины.

Технико-экономические преимущества

  • На поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок
  • Формируемый на поверхности политетрафторэтиленов слой имеет низкий коэффициент трения и невысокую стойкость к абразивному износу ;
  • Металлоорганические покрытия являются мягкими, имеют малый коэффициент трения, пористую поверхность, толщина дополнительного слоя составляет единицы микрон.

Области применения технологии

  • нанесение на рабочую поверхность уплотнений с целью уменьшения трения и создания разделительного слоя, исключающего налипание резины на вал в период покоя.
  • высокооборотные двигатели внутреннего сгорания для авто и авиастроения.

Авиация и космонавтика

Вооружение и военная техника

Благодаря своим характеристикам (прочности и лёгкости) композиционные материалы применяются в военном деле для производства различных видов брони :

  • брони для военной техники

См. также

  • IBFM_(Инновационные_строительные_и_отделочные_материалы)

Ссылки

Wikimedia Foundation . 2010 .

  • Композит
  • Морской энциклопедический справочник
  • Композитные гибкие связи - Рисунок 1. Схема трехслойной стены: 1. Внутренняя часть стены; 2. Гибкая связь; 3. Утеплитель; 4. воздушный зазор; 5. Облицовочная часть стены Композитные гибкие связи используются … Википедия

    IBFM (Инновационные строительные и отделочные материалы) - IBFM (сокращение от англ. Innovation Buildind and Facing Materials, Инновационные Строительные и Отделочные Материалы) это новая категория товаров для строительства, в которую объединяются строительные и отделочные материалы по принципу… … Википедия

    углепластики - Термин углепластики Термин на английском carbon fibre reinforced plastics Синонимы Аббревиатуры CFRP Связанные термины композиционные материалы, полимерные, углеродные наноматериалы Определение композитные материалы, состоящие из углеволокон и… … Энциклопедический словарь нанотехнологий

    ПЛАСТМАССЫ - (пластические массы, пластики). Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия. Эти вещества состоят в основном из углерода (C), водорода (H),… … Энциклопедия Кольера

    Нож - У этого термина существуют и другие значения, см. Нож (значения). Нож (праслав. *nožь от *noziti протыкать) режущий инструмент, рабочим органом которого является клинок полоса твёрдого материала (обычно металла) с лезвием на … Википедия

    Летно-технические характеристики вертолета Colibri EC120 B - Colibri EC120 B - многоцелевой легкий вертолет, способный перевозить до четырех пассажиров. Просторный грузовой отсек позволяет вместить пять больших чемоданов. Авария вертолета под Мурманском Разработчик: франко германо испанская Группа… … Энциклопедия ньюсмейкеров

    Углеродные нанотрубки - У этого термина существуют и другие значения, см. Нанотрубки. Схематическое изображение нанотрубки … Википедия

Композиционные материалы – это материалы, состоящие из двух или несколько компонентов, которые отличаются по своей природе или химическому составу, где компоненты объединены в единую монолитную структуру с границей раздела между компонентами, оптимальное сочетание которых позволяет получить комплекс физико-химических и механических свойств, отличающихся от комплекса свойств компонентов.

В широком смысле понятие «композиционный материал» включает в себя любой материал с гетерогенной структурой, т.е. структурой, состоящей из двух и более фаз.

Первым создателем композиционных материалов была сама природа. Множество природных конструкций (стволы деревьев, кости животных, зубы людей и т.д.) имеют характерную волокнистую структуру. Она состоит из сравнительно пластичного матричного вещества и более твердых и прочных веществ, имеющих форму волокон. Например: древесина – это композиция, состоящая из пучков высокопрочных целлюлозных волокон трубчатого строения, связанных между собой матрицей из органического вещества (лигнина), придающего древесине поперечную жесткость.

Примерами композиционных материалов могут быть и такие природные образования, как минералы. Нефрит – состоит из плотноупакованных игольчатых кристаллов, связанных друг с другом на поверхностях раздела. Такая структура обеспечивает высокую вязкость нефрита и поэтому различные племена использовали его как материал для изготовления топоров.

Общая характеристика композиционных материалов

И их классификация

Внимание к композиционным материалам в последнее время непрерывно возрастает. Это объясняется тем, что возможности повышения механических свойств традиционных конструкционных материалов в значительной степени исчерпаны.

Композиционные материалы по удельным прочности и жесткости, прочности при высокой температуре, сопротивлению усталостному разрушению и другим свойствам значительно превосходят все известные конструкционные сплавы. Уровень заданного комплекса свойств проектируется заранее и реализуется в процессе изготовления материала.

Рис. 20.1. Удельные прочность и жесткость стали, титановых, алюминиевых сплавов и композитов (КАС-1, ВКА-1Б).

Свойства композиционных материалов в основном зависят от физико-механических свойств компонентов и прочности связи между ними. Отличительной особенностью данных материалов является то, что в них проявляются достоинства компонентов, а не их недостатки. Вместе с тем композиционным материалам присущи свойства, которыми не обладают отдельно взятые компоненты, входящие в их состав. Для оптимизации свойств композиции выбирают компоненты с резко отличающимися, но дополняющими друг друга свойствами.

По своему составу композиционные материалы состоят из основы (матрицы) и наполнителя (упрочнителя, армирующего компонента).

Основой (матрицей) композиционных материалов служат металлы или сплавы, полимеры, углеродные и керамические материалы.

Матрица связывает композицию, придает ей форму. От свойств матрицы в значительной степени зависят технологические режимы получения композиционных материалов и такие важные эксплуатационные характеристики как: рабочая температура, сопротивление усталостному разрушению, плотность и удельная прочность.

Созданы композиционные материалы с комбинированными матрицами, состоящими из чередующихся слоев (двух и более) различного химического состава. Такие материалы называют полиматричными. Для полиматричных материалов характерен более обширный перечень полезных свойств. Например, использование в качестве матрицы наряду с алюминием титана увеличивает прочность композиционных материалов в направлении, перпендикулярном оси волокон. Алюминиевые слои в матрице способствуют уменьшению плотности материала.

В матрице равномерно распределен другой компонент, называемый арматурой или армирующим компонентом, или, иногда наполнителем. Понятие «армирующий» означает – «введенный в материал с целью изменения свойств», но не несет в себе однозначного понятия «упрочняющий».

Армирующие компоненты должны обладать высокими прочностью, твердостью, и модулем упругости. По этим свойствам они значительно превосходят матрицу.

Свойства композиционных материалов зависят также от формы или геометрии, размера, количества и характера распределения наполнителя (схемы армирования).

По форме наполнители разделяют на три основные группы:

1. Нульмерные наполнители, имеющие в трех измерениях очень малые размеры одного порядка (частицы);

2. Одномерные наполнители имеют малые размеры в двух направлениях и значительно превосходящий их размер в третьем измерении (волокна);

3. Двухмерные наполнители имеют два размера соизмеримых с размером композиционного материала и значительно превосходят третий (пластины, ткань).

Нитевидная форма армирующих элементов имеет как положительные так и отрицательные стороны. Преимущество их состоит в высокой прочности и возможности создать упрочнение только в том направлении, в котором это требуется конструктивно. Недостаток такой формы заключается в том, что волокна способны передавать нагрузку только в направлении своей оси, тогда как в перпендикулярном направлении упрочнения нет, а в некоторых случаях может проявиться даже разупрочнение.

Наполнители, используемые в качестве арматуры, должны иметь следующие свойства: высокую температуру плавления, малую плотность, высокую прочность во всем интервале рабочих температур, технологичность, минимальную растворимость в матрице, высокую химическую стойкость, отсутствие токсичности при изготовлении и в эксплуатации.

Композиционные материалы, которые содержат два и более различных наполнителя, называют полиармированными.

Если композиционные материалы состоят их трех и более компонентов, они называются гибридными.

Композиционные материалы классифицируются по нескольким основным признакам:

а) материалу матрицы и армирующих компонентов;

б) структуре: геометрии и рапсоложению компонентов;

в) методу получения;

г) области применения.

Рассмотрим некоторые классификационные характеристики композиционных материалов.

Особенности проектирования и внедрения изделий из КМ

При проектировании, изготовлении и внедрении изделий из компо­зиционных материалов на основе волокнистых наполнителей (ВКМ) не­ обходимо учитывать ряд особенностей, присущих этому классу мате­риалов:

а) Анизотропия физико-механических характеристик ВКМ.

Если традиционные материалы (сталь, чугун), а также дисперсно-упрочненные КМ обладают изотропностью свойств, то ВКМ имеют ярко выраженную анизотропию характеристик. При значительном различии характеристик волокнистой арматуры и матрицы соотношение между характеристиками ВКМ в различных направлениях может варьировать­ся в широких пределах: от 3-5 раз до 100 раз и более.

б) При проектировании конструкций, сооружений из традиционных материалов конструктор имеет дело с полуфабрикатами в виде листо­вого, профильного проката, литья и т.д. с гарантированными поставщи­ ком свойствами. Его задача состоит в выборе подходящих полуфабри­катов, определении геометрии, исходя из функционального назначения, и способов соединения отдельных деталей. Задача технолога - обес­печить заданную форму, размеры и качество соединения конструктив­ных элементов. Анализ процессов, протекающих на всех этапах созда­ния полуфабриката, получение материала с требуемым уровнем харак­ теристик относится к компетенции материаловедов. Сложилось вре­менное и организационное разделение процесса получения изделий из традиционных материалов на три этапа:

- материаловедческий - получение материала с требуемыми ха рактеристиками;

- конструкторский - проектирование изделий конструкций;

- технологический - изготовление изделий и машин.

Эти этапы разнесены по времени и могут считаться не связанными между собой, если конструктор руководствуется характеристиками ма­териала, достигнутыми материаловедами, и имеет общие представле­ния об уровне современных технологий.

Изготовление конструкций из КМ происходит, как правило, за одну технологическую операцию с созданием материала. При этом синхрон­но с изготовлением конструкции протекают сложные физико-химические и теплофизические процессы, связанные с образованием структуры и агрегатными превращениями матрицы, взаимодействием ее с арми­рующим материалом. Им сопутствуют механические явления, прямо влияющие на свойства материала и несущую способность композитных деталей, на образование в ней дефектов в ненагруженном состоянии. Поэтому конструктор, проектирующий изделия из КМ , должен знать и учитывать при разработке материаловедческие принципы создания КМ и технологические приемы получения изделий из КМ. Технолог без кон­структорских знаний по условиям нагружения и эксплуатации создавае­ мого изделия из ВКМ не может изготовить изделия, эффективно ис­пользуя отличия КМ от традиционных материалов, т.к. свойства КМ за­висят от структурно-геометрических факторов (объемного содержания армирующих волокон и матрицы, количества и расположения слоев и др.), которые заранее не известны. Поэтому подход должен быть кон структорско-технологическим, а это определяет организационные осо­ бенности производства изделий из КМ .

в) В связи с тесной взаимосвязью этапов изготовления конструк ций из КМ - создание материала, конструкций и технологии получения - более эффективно становится использовать специализированные КБ, имеющие конструкторский и технологический потенциал, оснащенные вычислительной техникой и мощным, но гибким опытным производ­ ством, потому как все конструктивные решения необходимо отрабаты вать на опытных образцах изделий. Такой поход в организации производства должен быть в каждой отрасли, где КМ находят широкое при­ менение: в строительстве, на транспорте, в авиации, химическом ма шиностроении, электротехнической промышленности и др., т.к. предъ являемые к ним требования сильно различаются.

г) При конструировании деталей из полимерных КМ необходимо учитывать их недостатки:

Малую сдвиговую прочность;

Невысокие характеристики при сжатии;

Повышенную ползучесть;

Сравнительно низкую теплостойкость ПКМ.

Особое внимание следует уделить соединениям изделий из ПКМ в связи с малой сдвиговой и контактной прочностью.

д) Несмотря на большой интерес к вопросам предельного состояния, надежных методик, позволяющих определить запасы прочности конструкционных элементов из КМ , нет. В связи со сложностью про блем, связанных с прочностью изделий из КМ , возрастает значение выбора методов при обработке результатов экспериментальных испыта ний.

В настоящее время оценка прочности конструкций из КМ состоит из комплекса испытаний, включающих:

100% испытания эксплуатационными нагрузками;

Выборочные испытания с доведением конструкции до разруше ния.

Гарантию качества и успешное прохождение этих двух видов испы­таний обеспечивает стабильность технологических процессов.

В последние годы на первый план выходит индивидуальная оценка прочности каждой детали с помощью неразрушающих методов испыта­ ния - ультразвук, акустическая эмиссия и др.

е) Определение допусков и посадок на детали из КМ .

Т.к. формирование поверхностей в изделиях из КМ происходит различными способами (намотка, прессование, выкладка и т.д.) и они чаще всего не подвергаются механической обработке, то система до пусков и требования к чистоте поверхности должны строится весьма гибко. Аналогичный подход должен быть и к регламентации разброса массы, связанной с разбросом параметров исходных материалов и их соотношением в КМ , появлением в ходе технологического процесса объемов, различающихся по ориентации наполнителя, и т.д.

ж) Переход на КМ при изготовлении машиностроительной продук­ции затрагивает вопросы детализации узлов машин. Т.к. материал конструируется под конкретные детали, которые в дальнейшем нежелательно подвергать механической обработке, то, естественно, встает вопрос стыковки отдельных деталей. Методы, принятые при изготовле­нии аналогичных узлов машин из металлов, в данном случае либо ма лоэффективны, либо вообще неприемлемы. В связи с этим целесооб­ разно изготавливать из КМ целиком узел, ранее расчленяемый на ряд деталей, которые затем собирались в изделие с помощью разъемных или неразъемных соединений. Это направление весьма эффективно, т.к. сокращаются трудозатраты и энергозатраты , хотя сокращение опе­ раций требует перестройки технологического оборудования и процесса производства.

Например, в США в 1970 г. в массовое производство легковых ав­томобилей была внедрена передняя панель с проемом под облицовку радиатора, впервые изготовлявшаяся из листового КМ . Помимо сниже­ ния массы на 50%, было достигнуто значительное сокращение расхо­ дов за счет объединения нескольких деталей в одну. Эта цельная па­нель исключила множество операций листовой штамповки, механиче­ской обработки на станках и сборки, устранила связанные с ними штам­ пы, формы и станочные зажимные приспособления. Она объединила 16 листовых штамповок и отлитых под давлением деталей в одну деталь из КМ . В 1979 г. на более чем 35 моделях легковых автомобилей стали применять передние панели из КМ , включающие корпуса и гнезда фар, стояночных фонарей, стоп-сигналов, сигналов поворота и габаритных огней.

з) Необходимо изменение подходов к определению экономической эффективности применения КМ . Как правило, экономический эффект от применения КМ образуется у «Потребителя» в виде повышения такти­ ко-технических, эксплуатационных характеристик изделия, его долго­вечности, ремонтопригодности и т.п. Поэтому экономический эффект можно определить только при использовании системного подхода, учи­тывающего все составляющие общего эффекта от замены традицион­ ного материала на КМ , и перехода на новую технологию при изготовле­нии деталей или конструкций в целом.

Только индивидуальный подход с учетом указанных особенностей делает переход к использованию КМ взамен металлов эффективным и перспективным, раскрывающим новые горизонты для развития и со­вершенствования техники.

Классификация композиционных материалов

По типу армирующих наполнителей современные КМ могут быть разделены на две группы:

Дисперсно-упрочненные;

Волокнистые.

Дисперсно-упрочненные композитные материалы (ДУКМ) представляют собой материа­лы, в матрице которых равномерно распределены мелкодисперсные частицы, которые призваны исполнять роль упрочняющей фазы. Дисперсные частицы наполнителя вводят в матрицу специальными технологическими приемами. Частицы не должны активно взаимодействовать с матрицей и не должны растворяться в ней вплоть дотемпературы плавления. В этих материалах основную нагрузку воспринимает матрица, в которой за счет армирующей фазы создается структура, затрудняю­щая движение дислокаций. Дисперсно-упрочненные КМ - изотропны. Их применяют в авиации, ракетостроении и др. Содержание дисперсной фазы составляет ~5-7% (трубки, проволоки, фольга, прутки и т.п.).

Механизм упрочняющего действия от включения дисперсных частиц в матрице, отличается для разных типов ДУКМ.

1) Дисперсно-упрочненные композиционные материалы «пластичная матрица – хрупкий наполнитель»

Для этого типа материалов матрица может быть представлена, например, следующими металлами: Al , Ag , Cu , Ni , Fe , Co , Ti . В качестве наполнителя чаще всего выбираются соединения из оксидов (Al 2 O 3 ; SiO 2 ; Cr 2 O 3 ; ThO 2 ; TiO 2), карбидов (SiC ; TiC ), нитридов (Si 3 N 4 ; AlN ), боридов (TiB 2 ; CrB 2 ; ZrB 2).

На основании опытных данных могут быть сформулированы следующие требования к материалу наполнителя, обеспечивающие наиболее эффективное его использование в качестве упрочняющей фазы. Он должен обладать:

Высокой тугоплавкостью (t пл . > 1000 ° С);

Высокой твердостью и высоким модулем упругости;

Высокой дисперсностью (удельная поверхность – S уд 10 м 2 /г);

Должна отсутствовать коалесценция (слияние) дисперсных частиц в процессе получения и эксплуатации;

Должно иметь место низкое значение скорости диффузиидисперсных частиц в металлическую матрицу.

Механизм упрочнения композиционные материалы «пластичная матрица – хрупкий наполнитель» .

Упрочнение идет по дислокационному механизму: если расстояние между частицами достаточно, то дислокация под действием касательного напряжения выгибается между ними, ее участки смыкаются за каждой частицей, образуя вокруг частиц петли. В областях между дислокационными петлями возникает поле упругих напряжений, затрудняющее проталкивание новых дислокаций между частицами (рис. 1). Этим достигается повышение сопротивления зарождению (инициированию) трещины.

Рис. 1. Схематическое изображение процесса формирования дислокационных петель в пластичной матрице:

1 – дисперсные частицы; 2 – линии дислокаций; 3 – дислокационные петли; 4 – поле упругих напряжений;

d – размер частицы наполнителя; L – расстояние между соседними частицами наполнителя;

τ – направление действия касательных напряжений.

Получение композиционных материалов «пластичная матрица – хрупкий наполнитель» .

В общем случае последовательность технологических операций для получения ДУКМ типа «пластичная матрица – хрупкий наполнитель» является следующей:

а) Получение композитного порошка;

б) Прессование;

в) Спекание;

г) Деформация полуфабриката;

д) Отжиг.

2) Дисперсно-упрочненные композиционные материалы «хрупкая матрица – пластичный наполнитель»

Структура таких ДУКМ представлена керамической матрицей с равномерно распределенными в ней дисперсными металлическими частицами наполнителя. Эти композиты относятся к классу керметов . Расстояние между соседними частицами задается путем варьирования их объемной доли, а эффект от армирования может проявляться при содержании частиц 15-20% объема.

В качестве керамической фазы могут использоваться тугоплавкие оксиды и некоторые тугоплавкие неоксидные соединения: Al 2 O 3 , 3Al 2 O 3 2SiO 2 , Cr 2 O 3 , ZrO 2 , ThO 2 , Y 2 O 3 , Si 3 N 4 , TiN , ZrN , BN, ZrB 2 , TiB 2 , NbB 2 , HfB 2 . В качестве металлической фазы – Fe , Co , Ni , Si , Cu , W, Mo , Cr , Nb , Ta , V, Zr , Hf , Ti . Выбор каждой конкретной керметной пары для получения композита обусловлен возможностью создания стабильной границы раздела в результате твердофазного взаимодействия при температуре, не превышающей температуру плавления наиболее легкоплавкой составляющей пары, либо температуру образования эвтектического расплава.

Механизм торможения разрушения композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Процесс разрушения таких композитов условно можно разделить на две стадии. На первой стадии в ходе нагружения сначала инициируется хрупкое разрушение в матрицевследствие повышенной концентрации напряженийна микронеоднородностях ее структуры: микропорах, границах зерен, крупных неравноосных зернах. При достижении некоторого критического уровня напряжений происходит старт трещины.

На второй стадии распространяющаяся трещина взаимодействует с пластичными металлическими частицами (рис. 2): у ее вершины действуют максимальные напряжения, которые приводят к деформации, удлинению и разрыву металлических частиц. При этом работа разрушения данного композита существенно возрастает по сравнению с таковой характеристикой для неармированного материала. Это происходит за счет затрат энергии трещины на работу пластической деформации всех частиц, попадающих во фронт трещины. В результате сопротивление развитию трещины повышается, поскольку ее берега перекрываются «мостиками связи» из пластичного металла.

Рис. 2. Иллюстрация процесса торможения разрушения в хрупкой матрице:

1 – металлические частицы перед фронтом трещины; 2 – «мостики связи» образованные деформированными

металлическими частицами; 3 – разрушенные металлические частицы; 4 – берега трещины; σ р – растягивающие напряжения

Получение композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Последовательность технологических операций, используемых для получения:

а) Получение композиционной порошковой смеси;

б) Введение в смесь органической связки;

в) Прессование;

г) Удаление органической связки;

д) Спекание;

е) Механическая обработка.

Для обеспечения прессуемости (придания пластичности) смеси порошков компонентов вводят органическую связку путем смешивания с раствором какого-либо органического вещества (поливиниловый спирт, поливинилбутираль , этиленгликоль, каучук и др.) с последующей сушкой для удаления растворителя. В результате выполнения этой операции каждая частица порошковой смеси покрыта тонким слоем пластификатора. Тогда при приложении давления прессования к порошковой смеси, засыпанной в пресс-форму, происходит связывание ее частиц по прослойкам пластификатора. После, путем термообработки изделий в вакууме или в порошковой засыпке из глинозема или сажи, происходит удаление связующего вещества при температуре термодеструкции или сгорания (300 – 400 ° С). После удаления органической связки частицы в объеме изделия удерживаются преимущественно за счет сил трения. Температура спекания композита лимитируется температурой спекания керамической матрицы. Оно проводится в нейтральных газовых средах (аргон, гелий) или в вакууме. В случае необходимости спеченный материал подвергают механической обработке с помощью алмазного инструмента.

Волокнистые КМ можно классифицировать по типу армирующего наполнителя. При их изготовлении в качестве арматуры применяются высокопрочные стеклянные, углеродные, борные, органические волок­на, металлические проволоки, нитевидные кристаллы ряда карбидов, оксидов, нитридов и др.

Армирующие материалы используются в виде моноволокон , нитей, жгутов, сеток, тканей, лент, холстов. Волокнистые КМ можно различать также по способу армирования: ориентированное и стохастическое (случайное). В первом случае композиты обладают четко выраженной анизотропией свойств; во втором - квизиизотропны . Объемная доля наполнителя в волокнистых КМ составляет 60-70%.

По типу матрицы композиты различают:

Полимерные (ПКМ);

Металлические (МКМ );

Керамические (ККМ);

- углерод-углеродные (УУКМ).

Полимерные композитные материалы – это гетерофазные композиционныематериалы с непрерывной полимерной фазой (матрицей), в которой хаотически или в определенном порядке распределены твердые, жидкие или газообразные наполнители. Эти вещества заполняют часть объема матрицы, сокращая тем самым расход дефицитного или дорогостоящего сырья, и (или) модифицируют композицию, придавая ей нужные качества, обусловленные назначением, особенностями технологических процессов производства и переработки, а также условиями эксплуатации изделий. К ним относятся подавляющее большинство пластмасс , резин, лакокрасочных материалов, полимерных компаундов, клеев и др.

В зависимости от типа полимерной матрицы различают наполненные реактопласты, термопласты (по­лиэтилен, поливинилхлорид, капрон и др.), синтетические смолы (полиэфирные, эпоксифенольные и др.) и каучуки. В зависимости от типа наполнителя ПКМ делят на дисперсно-наполненные пластики (наполнитель - дисперсные частицы разнообразной формы, в т. ч. измельченное волокно), армированные пластики (содержат упрочняющий наполнитель непрерывной волокнистой структуры), газонаполненные пластмассы, масло-наполненные каучуки; по природе наполнителя наполненные полимеры подразделяют на асбопластики (наполнитель-асбест), графито-пласты (графит), древесные слоистые пластики (древесный шпон), стеклопластики (стекловолокно), углепластики (углеродное волокно), органопластики (химические волокна), боропластики (борное волокно) и др., а также на гибридные, или поливолокнистые пластики (наполнитель-комбинация различных волокон).

По способу изготовления ПКМ можно разделить на полученные: выкладкой, намоткой, пултрузией , прессованием и др.

В истории развития техники может быть выделено два важных направления:

  • развитие инструментов, конструкций, механизмов и машин,
  • развитие материалов.

Какое из них главнее сказать сложно, т.к. они довольно тесно взаимосвязаны, но без развития материалов технический прогресс невозможен в принципе. Не случайно, историки подразделяют ранние цивилизационные эпохи на каменный век, бронзовый век и век железный.

Нынешний 21 век уже можно отнести к веку композиционных материалов (композитов).

Понятие композиционных материалов сформировалось в середине прошлого, 20 века. Однако, композиты вовсе не новое явление, а только новый термин, сформулированный материаловедами для лучшего понимания генезиса современных конструкционных материалов.

Композиционные материалы известны на протяжении столетий. Например, в Вавилоне использовали тростник для армирования глины при постройке жилищ, а древние египтяне добавляли рубленную солому в глиняные кирпичи. В Древней Греции железными прутьями укрепляли мраморные колонны при постройке дворцов и храмов. В 1555-1560 при постройке храма Василия Блаженного в Москве русские зодчие Барма и Постник использовали армированные железными полосами каменные плиты. Прямыми предшественниками современных композиционнных материалов можно назвать железобетон и булатные стали.

Существуют природные аналоги композиционных материалов - древесина, кости, панцири и т.д. Многие виды природных минералов фактически представляют собой композиты. Они не только прочны, но обладают также превосходными декоративными свойствами.

Композиционные материалы - многокомпонентные материалы, состоящие из пластичной основы - матрицы, и наполнителей, играющих укрепляющую и некоторые другие роли. Между фазами (компонентами) композита имеется граница раздела фаз.

Сочетание разнородных веществ приводит к созданию нового материала, свойства которого существенно отличаются от свойств каждого из его составляющих. Т.е. признаком композиционного материала является заметное взаимное влияние составных элементов композита, т.е. их новое качество, эффект.

Варьируя состав матрицы и наполнителя, их соотношение, применяя специальные дополнительные реагенты и т.д., получают широкий спектр материалов с требуемым набором свойств.

Большое значение расположение элементов композитного материала, как в направлениях действующих нагрузок, так и по отношению друг к другу, т.е. упорядоченность. Высокопрочные композиты, как правило, имеют высокоупорядоченную структуру.

Простой пример. Горсть древесных опилок, брошенная в ведро цементного раствора никак не повлияет на его свойства. Если опилками заменить половину раствора - то существенно изменится плотность материала, его теплофизические константы, себестоимость производства и др. показатели. Но, горсть полипропиленовых волокон сделает бетон ударопрочным и износостойким, а полведра фибры обеспечат ему упругость, совсем не свойственную минеральным материалам.

В настоящее время в область композиционных материалов (композитов), принято включать разнообразные искусственные материалы, разрабатываемые и внедряемые в различных отраслях техники и промышленности, отвечающие общим принципам создания композитных материалов

Почему интерес к композиционным материалам проявляется именно сейчас? Потому, что традиционные материалы уже не всегда или не вполне отвечают потребностям современной инженерной практики.

Матрицами в композиционных материалах являются металлы, полимеры, цементы и керамика. В качестве наполнителей используются самые разнообразные искусственные и природные вещества в различных формах (крупноразмерные, листовые, волокнистые, дисперсные, мелкодисперсные, микродисперсные, наночастицы).

Известны также многокомпонентные композиционные материалы, в т.ч.:

  • полиматричные, когда в одном композиционном материале сочетают несколько матриц,
  • гибридные, включающие несколько разных наполнителей, каждый из которых имеет свою роль.

Наполнитель, как правило, определяет прочность, жесткость и деформируемость композита, а матрица обеспечивает его монолитность, передачу напряжений и стойкость к различным внешним воздействиям.

Особое место занимают декоративные композиционные материалы, имеющие выраженные декоративне свойства.

Разрабатываются композитные материалы со специальными свойствами, например радиопрозрачные материалы и радиопоглощающие материалы, материалы для тепловой защиты орбитальных космических аппаратов, материалы с малым коэффициентом линейного термического расширения и высоким удельным модулем упругости и другие.

Композиционные материалы используются во всех областях науки, техники, промышленности, в т.ч. в жилищном, промышленном и специальном строительство, общем и специальном машиностроении, металлургии, химической промышленности, энергетике, электронике, бытовой технике, производстве одежды и обуви, медицине, спорте, искусствах и т.д.

Структура композиционных материалов.

По механической структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты.

Волокнистые композиты армируются волокнами или нитевидными кристаллами. Даже небольшое содержание наполнителя в композитах такого типа приводит к существенному улучшению механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон.

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в триплексах, фанере, клееных деревянных конструкциях и слоистых пластиках.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20-25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов еще меньше и составляют 10-100 нм.

Некоторые распространеные композиты

Бетоны - самые распространенные композиционные материалы. В настоящее время производится большая номенклатура бетонов, отличающихся по составам и свойствам. Современные бетоны производятся как на традиционных цементных матрицах, так и на полимерных (эпоксидных, полиэфирных, фенолоформальдегидных, акриловых и т.д.). Современные высокоэффективные бетоны по прочности приближаются к металлам. Популярными становятся декоративные бетоны.

Органопластики - композиты, в которых наполнителями служат органические синтетические, реже - природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, обладают относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе. К наиболее распространенным органопластикам относятся древесные композиционные материалы. По объемам производства органопластики превосходят стали, аллюминий и пластмассы.

В зарубежной литературе в последнее время становятся популярными новые термины - биополимеры, биопластики и соответственно - биокомпозиты.

Древесные композиционные материалы. К наиболее распространенным древесным композитам относятся арболиты, ксилолиты, цементностружечные плиты, клееные деревянные конструкции, фанеры и гнутоклееные детали, древесные пластики, древесностружечные и древесноволокнистые плиты и балки, древесные прессмассы и пресспорошки, термопластичные древесно-полимерные композиты.

Стеклопластики - полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Стеклопластики обладают высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом.

Углепластики - наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Матрицами в угепластиках могут быть как термореактивные, так и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики - очень легкие и, в то же время, прочные материалы.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы - наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С.

Боропластики - композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Пресспорошки (прессмассы). Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить др. Бакеланд (Leo H. Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола - вещество хрупкое, обладающее невысокой прочностью. Бакеланд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал - бакелит - приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя - пресс-порошок - под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это - ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются в самых разных областях техники. Для наполнения термореактивных и термопластичных полимеров применяются разнообразные наполнители - древесная мука, каолин, мел, тальк, слюда, сажа, стекловолокно, базальтовое волокно и др,

Текстолиты - слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х г.г. на основе фенолформальдегидной смолы. Полотна ткани пропитывают смолой, затем прессуют при повышенной температуре, получая текстолитовые пластины или фасонные изделия. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, а иногда и неорганические связующие на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон - хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Композиционные материалы с металлической матрицей. При создании композитов на основе металлов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Наполнителем служат высокопрочные волокна, тугоплавкие частицы различной дисперсности, нитевидными монокристаллы оксида алюминия, оксида бериллия, карбидов бора и кремния, нитридов алюминия и кремния и т.д. длиной 0,3-15 мм и диаметром 1-30 мкм.

Основными преимуществами композиционных материалов с металлической матрицей по сравнению с обычным (неусиленным) металлом являются: повышенная прочность, повышенная жесткость, повышенное сопротивление износу, повышенное сопротивление ползучести.

Композиционные материалы на основе керамики. Армирование керамических материалов волокнами, а также металлическими и керамическими дисперсными частицами позволяет получать высокопрочные композиты, однако, ассортимент волокон, пригодных для армирования керамики, ограничен свойствами исходного материала. Часто используют металлические волокна. Сопротивление растяжению растет незначительно, но зато повышается сопротивление тепловым ударам - материал меньше растрескивается при нагревании, но возможны случаи, когда прочность материала падает. Это зависит от соотношения коэффициентов термического расширения матрицы и наполнителя.

Армирование керамики дисперсными металлическими частицами приводит к новым материалам (керметам) с повышенной стойкостью, устойчивостью относительно тепловых ударов, с повышенной теплопроводностью. Из высокотемпературных керметов делают детали для газовых турбин, арматуру электропечей, детали для ракетной и реактивной техники. Твердые износостойкие керметы используют для изготовления режущих инструментов и деталей. Кроме того, керметы применяют в специальных областях техники - это тепловыделяющие элементы атомных реакторов на основе оксида урана, фрикционные материалы для тормозных устройств и т.д.