Свойства силикатных материалов и изделий. Искусственные каменные материалы. Автоклавные силикатные материалы на основе извести

АВТОКЛАВНОГО ТВЕРДЕНИЯ

7.1 Общие сведения и классификация

Силикатными называются искусственные каменные материалы и изделия, получаемые из извести, кремнеземистых составляющих и воды, затвердевших в результате автоклавной тепловлажностной обработки. Сущность автоклавного твердения состоит в следующем. Изделия на основе извести в нормальных условиях имеют небольшую прочность. Набор ее происходит исключительно за счет твердения извести. В среде насыщенного пара при температуре 174,5–200 °С и давлении 0,8–1,5 МПа кремнезем приобретает активность и взаимодействует с известью по схеме

Ca (OH) 2 SiO 2 + (n – 1) H 2 O → CaO SiO 2 n H 2 O.

Образуется гидросиликат кальция – вещество высокой прочности и водостойкости. Запаривание изделий выполняется в автоклавах.

Способ изготовления мелких камней из известково-песчаной смеси с последующей автоклавной обработкой был предложен немецким ученым В. Михаэлисом в 1880 г. Большой вклад в разработку технологии изготовления и применения силикатных материалов внесли П. И. Боженов, А. В. Волженский и другие ученые.

К группе силикатных материалов и изделий относят бетоны и изделия из них, кирпич и камни силикатные.

7.2 Силикатные бетоны и изделия из них

Силикатные бетоны подразделяются на плотные и легкие ячеистые. Основным сырьем для плотных бетонов служат известь и кварцевый песок. Рекомендуется применять быстрогасящуюся кальциевую известь с активностью более 70 %. Лучшим является песок с шероховатой поверхностью.

Для повышения прочности бетона применяют известково-кре-мнеземистое вяжущее, получаемое совместным помолом негашеной извести и кварцевого песка до удельной поверхности 3000–5000 см²/г, взятых в соотношении от 30: 70 до 50: 50 %.

Тонкомолотый песок оказывает большое влияние на свойства бетонов. С возрастанием его дисперсности повышаются прочность, морозостойкость изделий.

В качестве кремнеземистого компонента вместо кварцевого песка могут применяться кварцево-полевошпатовые пески, металлургические шлаки, золы ТЭС, нефелиновый шлам, отходы производства аглопорита, керамзита.

Вода не должна содержать вредных примесей.

Силикатные бетоны могут изготавливаться мелкозернистыми только на природных и дробленых песках и с применением крупных плотных или пористых заполнителей с размером зерен не более 20 мм.

В качестве заполнителей рекомендуется применять щебень из доменного шлака, щебень и песок аглопоритовые, гравий и песок керамзитовые, щебень и песок пористый из металлургического шлака. К заполнителям предъявляются те же требования, что и для цементного бетона.

Изделия из силикатного бетона изготавливаются чаще всего на оборудовании для изготовления изделий на цементах.

Производство изделий включает следующие технологические операции: приготовление известково-кремнеземистого вяжущего, силикатобетонной смеси, формование изделий и тепловлажностную их обработку в автоклавах.

Измельчение извести с песком до необходимой дисперсности, т.е. получение известково-кремнеземистого вяжущего, производится в шаровых мельницах. Приготавливают смесь в бетоносмесителях принудительного смешивания. Основной способ формования изделий – вибрирование. Тепловлажностную обработку силикатных изделий выполняют в автоклавах, которые представляют собой цилиндрические горизонтальные сосуды диаметром 2,0–3,6 и длиной 19–40 метров, закрываемые герметически крышками. По длине автоклава проложены рельсы, по которым загружаются вагонетки с изделиями. Автоклав оборудован магистралями для впуска и выпуска насыщенного пара. После загрузки автоклава крышки закрывают и впускают пар по определенному режиму. Температура пропаривания составляет 174,5–200 °С, давление, как правило, – 0,8–1,3 МПа. Общее время тепловлажностной обработки – 8–17 часов.

Плотные силикатные бетоны по прочности на сжатие подразделяются на классы от В5 до В60; на марки: по морозостойкости от F35 до F600, по водонепроницаемости от W2 до W10, по средней плотности от Пл 1000 до Пл 2400.

Из плотного силикатного бетона изготавливают железобетонные плиты для покрытия городских дорог, трамвайных путей, тротуарные плитки, бортовые камни, несущие армированные конструкции для промышленного и гражданского строительства, которые успешно заменяют конструкции из цементного железобетона. Имеется опыт применения тяжелых силикатных бетонов для изготовления шпал с предварительно напряженной арматурой, тюбингов для тоннелей.

Арматурная сталь в конструкциях, эксплуатируемых при относительной влажности воздуха до 60 % , не корродирует. При повышенной влажности среды арматуру необходимо защищать от коррозии.

Силикатные бетоны на пористых заполнителях – керамзите, аглопорите, шлаковой пемзе и других применяются для изготовления ограждающих конструкций зданий.

В 1880 г. Немецкий ученый В. Михаэлис изобрел метод, который был использован для производства силикатного (известково-песчаного) кирпича. К началу двадцатого века в России было уже пять заводов, выпускающих силикатный кирпич.

До 50-х годов единственным видом силикатных автоклавных изделий были силикатный кирпич и небольшие камни из ячеистого силикатного бетона. Однако благодаря работам российских ученых впервые в мире было создано производство крупноразмерных силикатобетонных автоклавных изделий для сборного строительства. В настоящие время почти все элементы зданий и сооружений (панели, плиты перекрытий, элементы лестниц и др.) могут быть изготовлены из армированного силикатного бетона, который по своим свойствам почти не уступает железобетонным, а благодаря применению местных сырьевых материалов и промышленных отходов обходится на 15…20% дешевле, чем аналогичные железобетонные элементы на портландцементе.

Сырье для силикатных материалов и изделий

Одним из основных компонентов сырьевой смеси, из которой формуются изделия, служит известь, которая обладает большой химической активностью к кремнезему при термовлажностной обработке. Именно поэтому вторым основным компонентом сырьевой смеси является кварцевый песок или другие минеральные вещества, содержащие кремнезем, например шлаки, золы и др. Чтобы химическое взаимодействие проходило достаточно интенсивно, кремнеземистый компонент подвергают тонкому измельчению. Чем более тонким измельчение песка, тем выше должно быть относительное содержание извести в смеси. В качестве других компонентов могут быть также введены заполнители в виде немолотого кварцевого песка, шлака, керамзита, вспученного перлита и т. п.

Для современного производства силикатного кирпича используют сырьевую смесь, в состав которой входит 90…95% песка, 5…10% молотой негашеной извести и некоторое количество воды.

3. Общая технология получения силикатных материалов

Технология получения силикатных изделий обычно складывается из следующих этапов:
1. Получение сырьевой смеси.
2. Прессование изделий.
3. Обработка в автоклаве изделий.
4. Выдержка готовых изделий.

Производство силикатных строительных материалов базируется на гидротермальном синтезе гидросиликатов кальция, который осуществляется в реакторе-автоклаве в среде насыщенного водяного пара давлением 0,8-1,3 МПа и температурой 175-200°С. Для гидротермального синтеза можно использовать при надлежащем обосновании иные параметры автоклавизации, применять обработку не только паром, но и паровоздушной или парогазовой смесью, водой.

В данном производстве большой объем работ составляет процесс получения извести для сырьевой смеси. В технологический процесс производства извести входят следующие операции: добыча известкового камня в карьерах, дробление и сортировка его по фракциям, обжиг в шахтных вращающихся и других печах, дробление или помол комовой извести (получение негашеной извести).
Получение сырьевой смеси осуществляется двумя способами: барабанным и силосным, которые отличаются друг от друга приготовлением известково-песчаной смеси.

Автоклав представляет собой горизонтально расположенный стальной цилиндр с герметически закрывающимися с торцов крышками. В автоклаве в атмосфере насыщенного пара при давлении 0,8-1,3 МПа и температуре 175-200°С кирпич твердеет 8…14ч.

Прочность автоклавных материалов формируется в результате взаимодействия двух процессов: структурообразования, обусловленного синтезом гидросиликатов кальция, и деструкции, обусловленной внутренними напряжениями.

Для снижения внутренних напряжений автоклавную обработку проводят по определенному режиму, включающему постепенный подъем давления пара в течение 1,5-2 ч, изотермическую выдержку изделий в автоклаве при температуре 175-200°С и давлении 0,8-1,3 МПа в течение 4-8 ч и снижение давления пара в течение 2-4 ч. После автоклавной обработки продолжительностью 8-14 ч получают силикатные изделия.

Из автоклава выгружают почти готовые изделия, которые выдерживают 10…15дней для карбонизации непрореагировавшей извести с углекислым газом воздуха, в результате чего повышается водостойкость и прочность изделий. Температура обработки и общие энергозатраты при производстве силикатного кирпича существенно ниже, чем при производстве керамического, поэтому силикатный кирпич экономически эффективнее.

К числу автоклавных силикатных изделий относят силикатный кирпич, крупные силикатные блоки, плиты из тяжелого силикатного бетона, панели перекрытий и стеновые, колонны, балки и пр. Легкие заполнители позволяют понизить массу стеновых панелей и других элементов. Силикатные изделия выпускают полнотелыми или облегченными со сквозными или полузамкнутыми пустотами. Особое значение имеют силикатные ячеистые бетоны, заполненные равномерно распределенными воздушными ячейками, или пузырьками. Они могут иметь конструктивное и теплоизоляционное назначение, что обусловливает форму и размеры изделий, их качественные показатели.

Силикатные материалы и изделия автоклавного твердения представляют собой искусственные строительные конгломераты на основе известково-кремнеземистого (силикатного) камня, синтезируемого в процессе автоклавной обработки под действием пара при высокой температуре и повышенном давлении. Одним из основных компонентов сырьевой смеси, из которой формуются изделия, служит известь, которая обладает большой химической активностью к кремнезему при термовлажностной обработке.

Именно поэтому вторым основным компонентом сырьевой смеси является кварцевый песок или другие минеральные вещества, содержащие кремнезем, например шлаки, золы ТЭЦ и др. Чтобы химическое взаимодействие проходило достаточно интенсивно, кремнеземистый компонент подвергают тонкому измельчению. Чем более тонким будет измельченный песок, тем выше должно быть относительное содержание извести в смеси. В качестве других компонентов могут быть также введены заполнители в виде немолотого кварцевого песка, шлака, керамзита, вспученного перлита и т. п. Непременным компонентом во всех смесях выступает вода.

Возможность образования в автоклаве камневидного изделия была установлена в конце XIX в., но массовое производство силикатных изделий, деталей и конструкций, особенно типа бетонов, было впервые организовано в нашей стране. Технология их изготовления механизирована и в значительной мере автоматизирована, что обеспечивает получение более дешевой продукции по сравнению с цементными материалами и изделиями. Эффективные исследования в этом направлении были выполнены П.И. Боженовым, А.В. Волженским, П.П. Будниковым, Ю.М. Буттом и др. Было показано, что при автоклавной обработке образуются наиболее устойчивые низкоосновные гидросиликаты с соотношением CaOiSiCh в пределах 0,8-1,2, хотя на промежуточных стадиях отвердевания возможны и более высокоосновные химические соединения.

П.И. Боженов, отмечая «технический синтез» цементирующей связки в автоклавном конгломерате, состоящей из смеси гидросиликатов, полагает, что химическое сырье должно удовлетворять определенным требованиям. Оно должно быть высокодисперсным с удельной поверхностью порошка в пределах 2000-4000 см2/г, по возможности аморфным, стеклообразным.

Химически активное сырье обеспечивает не только образование цементирующей связки в автоклавном конгломерате, но и ряд технологических свойств сырьевой смеси (формуемость изделий, ровность их поверхности, транспортабельность и др.). Но не только химические и физико-химические процессы влияют на формирование структуры и свойств силикатных материалов при автоклавной обработке. А.В. Волженский первым обратил внимание на изменение тепловлажностных условий при автоклавной обработке и их влияние на качество изделий. В связи с этим было принято выделить три этапа в автоклавной обработке: наполнение автоклава и изделий паром до заданного максимального давления; спуск пара; извлечение изделий из автоклава.

Изделия приобретают свойства, необходимые для строительных материалов, после автоклавной обработки, в процессе которой образуется новый известково-кремнеземистый цемент с характерными для него новообразованиями гидросиликатов кальция и магния, а также безводных силикатов.

Формирование микро- и макроструктуры силикатного изделия в автоклаве происходит на различных стадиях обработки. Механизм отвердевания известково-песчаного сырца до камневидного состояния выражается в том, что вначале образуется известково-кремнеземистое цементирующее вещество как продукт химического взаимодействия основных компонентов в смеси в условиях повышенных давлений и температур.

Согласно одной из теорий (П.П. Будникова, Ю.М. Бутта и др.), образование цементирующего вещества происходит через предварительное растворение извести в воде. Так как растворимость извести с повышением температуры понижается, то постепенно раствор становится насыщенным. Но с повышением температуры возрастает растворимость тонкодисперсного кремнезема. Так, например, с повышением температуры с 80 до 120°С растворимость кремнезема возрастает (по данным Кеннеди) почти в 3 раза. Поэтому при температуре 120-130°С известь и кремнезем, находясь в растворе, взаимодействуют с образованием гелеобразных гидросиликатов кальция. По мере дальнейшего повышения температуры новообразования укрупняются с возникновением зародышей и кристаллической фазы, а затем и кристаллических сростков.

При избытке извести возникают сравнительно крупнокристаллические двуосновные гидросиликаты кальция типа C2SH и C2SH2, а после полного связывания извести и в процессе перекристаллизации возникают более устойчивые микрокристаллические низкоосновные гидросиликаты кальция типа CSH и C5S6H5 (то берморит). Кристаллизация происходит вокруг зерен кварца и в межзерновом пространстве; сопровождается срастанием кристаллических новообразований в каркас с дальнейшим его упрочнением и обрастанием.

Полный цикл автоклавной обработки, по данным П.И. Боженова, слагается из пяти этапов:

  • впуск пара и установление температуры 100°С;
  • дальнейшее повышение температуры среды и давления пара до назначенного максимума; изотермическая выдержка при постоянном давлении (чем выше давление, тем короче режим автоклавизации);
  • медленное и постепенное нарастание скорости снижения давления пара до атмосферного, а температуры - до 100°С;
  • окончательное остывание изделий в автоклаве или после выгрузки их из автоклава.

Оптимальный режим, т. е. наилучшие условия по величине давления пара, температуры и продолжительности всех стадий обработки, обусловливается видом сырья, хотя по экономическим соображениям всегда стремятся к быстрому подъему и медленному спуску давления.

Большую пользу в формировании структуры и свойств силикатных камня и материалов оказывают вводимые в смеси добавочные вещества (добавки), выполняющие функции ускорителей процессов образования гидросиликатов кальция или магния, кристаллизации новообразований, модификаторов свойств и структуры. В целом в составе силикатного камня преобладают низкоосновные гидросиликаты кальция, имеющие тонкоигольчатое или чешуйчатое микрокристаллическое строение CSH и тоберморит C5S6H В высокоизвестковых смесях в результате синтеза образуется гиллебрандит 2СаО Si02 Н20 (т. е. C2SH).

Согласно другой теории, образование микроструктуры вяжущего происходит не через растворение извести и кремнезема, а в твердой фазе под влиянием процесса самодиффузии молекул в условиях 1 водной среды и повышенной температуры. Имеется и третья теория (А.В. Саталкин, П.Г. Комохов и др.), допускающая образование микроструктуры вяжущего в результате реакций в жидкой и твердой фазах.

Выполненные исследования силикатного камня и силикатного конгломерата на примерах бетонов мелко- и крупнозернистых показали, что при оптимальных структурах их свойства полностью подчиняются общим закономерностям ИСК.

Оптимальная структура силикатного материала формируется при определенном количестве известковр-кремнеземи-стого цемента и минимальном соотношении его фазовых составляющих. В свежеизготовленном конгломерате дисперсионной средой (с) служит известковое тесто (Ит), а в качестве твердой дисперсной фазы (ф) выступает молотый кремнеземистый (песчаный) компонент (Пм). Активность (прочность) известково-кремне-земистого вяжущего вещества оптимальной структуры после автоклавной обработки, как и другие свойства силикатного материала, зависит от величины соотношения Ит: Пм (по массе).

Кроме кремнеземистого сырьевого материала, можно использовать в производстве автоклавных изделий распространенные малокварцевые виды сырья - полевошпатовые, глинистые, карбонатные пески, а также шлаки и другие побочные продукты промышленности. Минералы малокварцевого сырья, растворившись в условиях авто-клавирования, становятся активными компонентами, не уступающими по растворимости кварцу. Их активность зависит от размеров радиусов анионов и катионов, входящих в их состав. В автоклаве формируется новое вяжущее (безобжиговое солешлаковое вяжущее), по свойствам превосходящее известково-кремнеземистое автоклавное твердение. Оно состоит из низкоосновных слабозакристаллизован-ных гидросиликатов кальция, а в присутствии ионов алюминия - из высокоосновных гидросиликатов кальция.

Классификация и виды силикатных материалов

Силикатные материалы относятся к группе искусственных каменных материалов на основе вяжущих веществ.

Общие сведения искусственных каменных материалов на основе вяжущих веществ

Признаки классификации, по которым различают вяжущие материалы:

1.В зависимости от вида вяжущего различают изделия на основе: цемента, извести, гипса и др.
2. В зависимости от способа производства определяют условия твердения таких материалов: естественное твердение, пропаривание, автоклавная обработка.

В качестве заполнителей для получения искусственных каменных изделий используют разнообразные материалы: песок, керамзит, и другие пористые заполнители, опилки и стружки и специфический армирующий заполнитель-асбест.

К основным искусственным каменным материалам и изделиям относятся:
1. Силикатный кирпич
2. Силикатобетонные изделия:
2.1. Тяжелые силикатобетонные изделия аналогичные обычному бетону
2.2. Легкие силикатобетонные изделия на основе пористых заполнителей или Ячеистые (пенно- и газосиликаты)
3. Гипсовые и гипсобетонные изделия
4. Стеновые камни из легкого и ячеистого бетона
5. Арболит
6. Цементно-стружечные плиты и асбестоцементные изделия

В отличие от керамики, материалы на минеральных вяжущих получаются за счет естественного твердения или термообработки при температурах до 200 °С. Таким образом, энергозатраты на производство изделий на минеральных вяжущих, даже с учетом энергозатрат на получение самого вяжущего, меньше, чем для получения керамики. Однако керамические материалы более долговечны и стойки к действию воды, агрессивных растворов и высоких температур.

Виды пустотелых изделий из силикатных материалов по ГОСТ 379-95 Кирпич и камни силикатные

Рисунок А1 - Камень (кирпич) 14-пустотный (диаметр отверстий 30 - 32 мм, пустотность 28 – 31 %)


Рисунок А2 - Камень (кирпич) 11-пустотный (диаметр отверстий 27 - 32 мм, пустотность 22 – 25 %)


Рисунок А3 - Кирпич 3-пустотный (диаметр отверстий 52 мм, пустотностъ 15 %)

ПЕРЕЧЕНЬ МАТЕРИАЛОВ, ПРИМЕНЯЕМЫХ ПРИ ПРОИЗВОДСТВЕ
СИЛИКАТНЫХ ИЗДЕЛИЙ

Наименование материала

Нормативный документ

1 Песок для производства силикатных изделий

2 Известь строительная

ГОСТ 9197-77

3 Белитовый (нефелиновый) шлам

По действующим нормативным документам

4 Золы уноса тепловых электростанций

9 Краска сухая поливинилбутирольная П-ВЛ, П-ВЛ-212, редоксайд, фталоциониновый зеленый, паропроницаемые эмали, эмали кремнийорганические КО-174 разных цветов, органосиликатные композиции и др.

То же

Силикатными материалами называются материалы из смесей или сплавов силикатов, полисиликатов и алюмосиликатов. Силикаты – это соединения различных элементов с кремнеземом(оксидом кремния), в которых он играет роль кислоты. Структурным элементом силикатов является тетраэдрическая ортогруппа -4 c атомом кремния Si +4 и атомами кислорода О -2 в вершинах тетраэдра, с ребрами длиной 0,26нм. Тетраэдры в силикатах соединены через общие кислородные вершины в кремнекислородные комплексы в виде замкнутых колец, цепочек, сеток и слоев. В алюмосиликатах, помимо силикатных тетраэдров, содержатся тетраэдры [ AlO 4 ] -5 c ат.Al +3 .

В состав сложных силикатов входят еще катионы:Na+,K+.Ca++,Mg++,Mn++,B +3 ,Cr +3 ,Fe +3 ,Al +3 ,Ti +4 и анионы: O 2 –2, OH-,F-,Cl-,SO 4 – 2 , а так же вода.

Большинство силикатов отличаются тугоплавкостью и огнеупорностью, температура плавления их колеблется от 770 до 2130 0 С. Хим. Состав силикатовов принято выражать в виде формул,сост. Из символов их молекул, составленных в порядке возрастания их валентности, или из формул их оксидов:полевой шпат K 2 Al 2 Si 6 O 16 .

Все силикаты подразделяются на природные(минералы) и синтетические(силикатные материалы) Синтетические делятся на: вяжущие вещества, керамику, бессиликатные материалы, стекла, ситаллы. Природные силикаты исп. В разл. Областях народного хозяйства: В технологических процессах, основанных на обжиге и плавке(глина, кварцит, полевой шпат и др.); в процессах гидротермальной обработки(асбест, слюда и т. д.); в строительсрве; в металлургических процессах.

Сырьем для производства силикатных материалов служат природные минералы(кварцевый песок, глины, полевой шпат, известняк), промышленные продукты(карбонат натрия, бура, оксиды и соли разл. Металлов) и отходы(шлаки, Шламы, зола).

В производстве силикатных материалов используются типовые технологические процессы, что обусловлено близостью физико-математических основ их получения. Схема стадий:

Сырье- подготовка шихты- формирование изделия из шихты-сушка изд. – высоко темпер. Обработка – материал.



Подготовка шихты нужна нужна для обеспечения высокой эффективности последующих процессов высокотемпературной подготовки и состоит из обычных механических операций подготовки твердого сырья: измельчения, классификации, сушки, смешения компонентов.

Операция формования должна обеспечить изготовление изделия данной формы и размеров, с учетом изменения их в последующих операциях сушки и высокотемпературной обработки. Формование включает увлажнение шихты, придание материалу определенной формы.

Сушка проводится для сохранения изделием приданной ему формы перед и во время время операции высокотемпературной обработки., которая является заключительной стадией производства силикатных материалов. Высокотемпературная обработка заключается в обжиге или варке шихты(изделия). Процессы высокомолекулярной обработки: 1) удаление воды, сперва физической, затем кристаллизационной;2)кальцинирование, т. е выделение из компанентов шихты воды иCO 2 .;3) компаненты шихты- карбонаты металлов, гидроксиды металлов и алюмосиликаты превращаются в кислотные оксиды:SiO2,B2O3mAl2O3,Fe2O3 и основные оксиды:Na 2 O,K 2 O,CaO,MgO, вступающие в реакцию друг сдругом; 4)спекание компанентов шихты. Оно может протекать в тв. Фазе, при температуре ниже температуры плавления, или в жидкой фазе, при температуре выше температуры плавления. Во втором случае, вследствие процесса диффузии скорость процесса выше; 5)охлаждение массы с образованием кристаллической и аморфной фаз.

Производство керамики.Керамические материалы – поликристаллические материалы и изделия из них, полученые спеканием глин и их смесей с минеральными добавками, а также оксидов металлов и других тугоплавких соединений. Классификация: По составу- кислородосодержащие(силикатные), бескислородные(карбидные, нитридные, боридные, силицидные); По применению: строительные, огнеупоры, тонкая керамика, спец. Керамика; по степени спекания- пористые(кирпич, огнеупоры,санфаянс), спекшиеся(фарфор, специальная керамика); по состоянию поверхности- глазурованные и неглазурованные. Сырье для производства должно обладать свойством спекаемости- свойство порошкообразного материала образовывать при нагревании поликристаллическое тело- черепок. Сырье- глины.кварцевый песок, карбонаты кальция и магния.

Технологический процессп производства кирпича- 2 варианта: пластический метод и полусухой. Шихта, содержащая 40-50% глины, 50% песка и до 5% оксида железа, поступает на прессование в ленточный пресс(пластич. метод) или в механический пресс, работ. под давлением 10-25 мПа(полусухой метод.). Сформированный кирпич направляют на сушку в туннельную сушилку и затем на обжиг при температуре 900-1000 0 С.

Формование пластическим способом проводят на ленточном прессе.Он состоит из 1.загрузочной воронки; 2. вальцев; 3.шнек;. При продвижении массы к мундштуку 4. пресса происходит ее дополнительное перемешивание и уплотнение. Из увлажнителя 5. для смачивания мундштука подают воду, играющую роль смазки. Глинистую массу в виде ленты 6. режут на кирпичи с помощью резательной машины. 7. опорные ролики.

Схема производства кирпича полусухим способом:

Огнеупорами называют неметаллические материалы, характеризующиеся повышенной огнеупорностью, тоесть способностью противопостоять воздействию высоких температур.Огнеупоры делят:1.алюмосиликатные; 2. Динасовые огнеупоры- сост. Не менее, чем на 95% из оксида кремния; 3. полукислые- до 70-80% оксида кремния и 15-25% оксида алюминия. 3.Шамотные огнеупоры- до 50-70%оксида кремния и до 46% оксида алюминия. Огнеупорны до 1750 0 С.

Схема и уровнение.

4.Высокоглиноземистые огнеупоры – более 45% оксида алюминия.

5. магнезитовые- в качестве основы оксид магния. Огнеупорны до 2500 0 С.

CaCO 3 +MgCO 3 = MgO+CaO+ 2CO 2

6.корундовые огнеупоры;7.Карборундовые- сост. Из карбида кремния;7. циркониевые и ториевые;8.углеродистые.

СИЛИКАТНЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ. Асбестоцементные ИЗДЕЛИЯ

Минеральные вяжущие еще не готовые строительные материалы. Основное свойство вяжущих, способность твердить после перемешивания с определенным количеством воды.

Реакция происходящие при твердении вяжущих главным образом реакции гидратации, присоединения части воды.

Наряду с цементами для изготовления растворов используют известь : воздушную и гидравлическую в виде гидратной пушонки, известкового теста или молока, а также в виде негашеной молотой извести. Известковое тесто должно иметь плотность не менее 1200 кг/м 3 и содержать извести не менее 30 % по массе. Известь для штукатурных и облицовочных растворов не должна содержать непогасившиеся частицы, которые могут вызвать отколы (дутики) в затвердевшем слое. Поэтому свежегашеную известь пропускают через сито с ячейками 0,315 – 0,25 мм.

Строительная воздушная известь CaO – продукт умеренного обжига при 900-1300°С природных карбонатных пород CaCO 3 , содержащих до 8% глинистых примесей (известняк, доломит, мел). Обжиг осуществляют в шахтах и вращающихся печах. Наиболее широкое распространение получили шахтные печи. При обжиге известняка в шахтной печи движущийся в шахте сверху вниз материал проходит последовательно три зоны: зону подогрева (сушка сырья и выделение летучих веществ), зону обжига (разложение веществ) и зону охлаждения. В зоне подогрева известняк нагревается до 900°С за счёт тепла поступающего из зоны обжига от газообразных продуктов горения. В зоне обжига происходит горение топлива и разложение известняка CaCO 3 на известь CaO и двуокись углерода CO 2 при 1000-1200°С. В зоне охлаждения обожжённый известняк охлаждается до 80-100°С двигающимся снизу вверх холодным воздухом.

В результате обжига полностью теряется двуокись углерода и получается комовая, негашёная известь в виде кусков белого или серого цвета. Комовая негашёная известь является продуктом, из которого получают разные виды строительной воздушной извести: молотую порошкообразную негашёную известь, известковое тесто.

Строительную воздушную известь различного вида используют при приготовлении кладочных и штукатурных растворов, бетонов низких марок (работающих в воздушно-сухих условиях), изготовлении плотных силикатных изделий (кирпича, крупных блоков, панелей), получении смешанных цементов Добавление в цементный раствор извести увеличивает пластичность, прочность и время охватывания.

Процесс твердения воздушной извести происходит в большей мере в результате карбонизации под воздействие углекислого газа воздуха. При твердении воздушной извести, образуются соединения, которые растворимы в воде.



Гидравлическую известь получают умеренным обжигом природных мергелей и мергелистых известняков при 900-1100°С. Мергель и мергелистый известняк идущие для производства гидравлической извести содержат от 6 до 25% глинистых и песчаных примесей. Её гидравлические свойства характеризуются гидравлическим (или основным) модулем (m ), представляющим отношение в процентах содержания окислов кальция к содержанию суммы окислов кремния, алюминия и железа. Гидравлическая известь – медленно схватывающееся и медленнотвердеющее вещество. Её применяют для приготовления строительных растворов, низкомарочных бетонов, легких бетонов, при получении смешанных бетонов.

Гидравлическая известь обеспечивает твердение и сохранение прочности, как на воздухе, так и в воде. В чистом виде гидравлическая известь не применяется, а используется в смеси. Сырье для получения гидравлической извести по цвету темнее воздушной, так как имеет в качестве примеси глину.

Силикатный кирпич. Известково-песчаные растворы на основе воздушной извести являются малопрочными мед­ленно твердеющими и неводостойкими материалами.

Первым, кто получил достаточно водостойкий и прочный мате­риал на основе извести и песка, был немецкий ученый В. Михаэлис, который в 1880 г. предложил обрабатывать известково-песчаную смесь в атмосфере насыщенного пара при температуре 150...200°С.

Открытие Михаэлиса было использовано для производства, так называемого силикатного (известково-песчаного) кирпича. Современное производство силикатного кирпича заключается в следующем. Сырьевую смесь, в состав которой входит 90...92 % чистого кварцевогопес­ка, 8... 10 % молотой негашеной воздушной извести и некоторое количество воды, тщательно перемешивают и выдерживают до полного гашения извести. Затем из этой смеси под большим давлением (15...20 МПа) прессуют кирпич, который укладывают на вагонетки и направляют для твердения в автоклавы - толстостенные стальные ци­линдры диаметром до 2 м и длиной до 20 м с герметически закрываю­щимися крышками. В автоклаве в атмосфере насыщенного пара при давлении 0,8 МПа и температуре 180 °С кирпич твердеет 8... 14 ч. Из автоклава выгружают почти готовый кирпич, который выдерживают 10...15 дней в результате чего повышаются водостойкость и прочность кирпича.

Широко применяется воздушная известь, в изготовление автоклавных плотных ячеистых материалов при давлении 0,8-1,6 МПа и Т=200° изделий в виде панелей, блоков, элементов перекрытий, лестных маршей.

Температура обработки и общие энергозатраты при произ­водстве силикатного кирпича существенно ниже, чем при про­изводстве керамического, поэтому силикатный кирпич эконо­мически эффективнее, чем керамический.

Плотность обыкновенного силикатного кирпича несколько вы­ше, чем полнотелого керамического. Снижение плотности кирпича и камней достигается формованием в них пустот или введением в сырь­евую массу пористых заполнителей.

Силикатный кирпич, так же как и керамический, в зависимости от размеров может быть:

одинарный (полнотелый или с пористыми заполнителями) 250х120 х 65 мм;

утолщенный (пустотелый или с пористыми заполнителями) 250х120х88 мм (масса утолщенного кирпича не должна быть более 4,3 кг);

силикатный камень (пустотелый) 250х120х138 мм. Технология производства силикатного кирпича обеспечивает большую точность размеров.

Цвет кирпича - от молочно-белого до светло-серого. Выпускают лицевой кирпич с повышенными физико-механическими свойствами.Он может быть цветным с окрашенными в массе или по лицевым граням щелочестойкими пигментами в голубой, зеленова­тый, желтый и другие светлые тона.

В зависимости от предела прочности при сжатии и изгибе сили­катный кирпич и камни подразделяют на восемь марок: 300; 250; 200; 175; 150; 125; 100 и 75, имеющих средние значения прочности при сжатии соответственно не менее 30...7,5 МПа. Водопоглощение си­ликатного кирпича не менее 6 %. Марки по морозостойкости у кир­пича и камней - F50; 35; 25 и 15; для лицевых изделий морозостой­кость должна быть не ниже 25.

Существенным недостатком силикатного кирпича по сравнению с керамическим, является пониженная водостойкость и жаростой­кость.

Силикатный кирпич применяют для кладки наружных и внутренних стен надземных частей зданий и сооружений. Ис­пользовать его в конструкциях, подвергающихся воздействию воды (фундаменты, цоколь, канализационные колодцы и т. п.) и высоких температур (печи, дымовые трубы и т. п.), запрещается.

В настоящее вре­мя производятся крупноразмерные силикатобетонные автоклавные изделия почти всех элементов зданий и сооружений для сборного строительства (панели, плиты пере­крытий, элементы лестниц и др.) Из армированного силикатного бетона изготавливают конструкции не уступающие железобетонным.

Силикатобетонные изделия бывают тяжелые (аналогичные обыч­ному бетону) и легкие (на основе пористых заполнителей) или ячеи­стые (пено- и газосиликаты). Это безобжиговый кирпич изготавливают методом сухово прессования смеси - воздушная известь(5-10%) и кварцевого песка(90-95%) при влажности 6-7%. Для повышения прочности применяют известково- кремнеземистые смеси. Марки кирпича М- 75, 100, 125,150,200,250.

Размеры 65х120х250 - одинарный и полуторный или модульный 88х120х250 пустотелый весом не более 4,3 кг. Средняя плотность 1700-2000кг/м3. морозостойкости Мрз-15, 25 и 50. силикатный кирпич не водостоек, и нестойкий к воздействию агрессивных вод, не огнестоек. Нельзя применять для кладки печей и труб. Изготавливают в автоклавах при температуре 170°С и давлении 4-6 атм.

На основе извести готовят известково-песчанные, известково - глинянные и известковое - зольные материалы. Такие изделия называют: безцементные или на основе силикатного бетона. Известь применяют в чистом виде или в смеси с мелом для побелок.

На долю силикатного кирпича приходится значительная часть всего объема стеновых материалов. Приведенные затраты на возведение стен из силикатного кирпича составляют примерно 84% по сравнению с необходимыми затратами при использовании керамического кирпича. Расход условного топлива и электроэнергии на производство силикатного кирпича в 2 раза ниже, чем керамического. На получение 1 тыс. шт. силикатного кирпича расходуется в среднем 4,9 ГДж тепла, половина которого составляет тепло на обжиг извести, а другая - на автоклавную обработку и другие технологические операции.

В производстве этого материала золы и шлаки ТЭС используются как компонент вяжущего или заполнителя. В первом случае расход золы достигает 500 кг на 1 тыс. шт. кирпича, во втором -1,5-3,5 т. Оптимальное соотношение извести и золы в составе вяжущего зависит от активности золы, содержания в извести активного оксида кальция, крупности и гранулометрического состава песка и других технологических факторов. При введении угольной золы расход извести снижается на 10-50%, а сланцевые золы с содержанием (CaO + MgO) до 40-50% могут полностью заменить известь в силикатной массе. Зола в известково-зольном вяжущем является не только активной кремнеземистой добавкой, но также способствует пластификации смеси и повышению в 1,3-1,5 раза прочности сырца, что особенно важно для обеспечения нормальной работы автоматов-укладчиков.

Кроме известково-песчаного силикатного кирпича выпускают известково-шлаковый иизвестково-зольный, в которых вместо песка частично или полностью используют промышленные отходы: шла­ки и золы теплоэлектростанций. Свойства этих видов кирпича аналогичны свойствам известко­во-песчаного.

Известково-кремнеземистое вяжущее в производстве силикатного кирпича получают совместным помолом комовой негашеной извести с золой и кварцевым песком. Суммарное содержание активных СаО и MgO в вяжущем – 30-40%, удельная поверхность- 4000-5000 см2/г, остаток на сите № 02 - не более 2%. Оптимальное содержание золы и шлака в силикатной смеси зависит от зернового состава и способа формования, возрастая с модулем крупности и циклом прессования.

Силикатный кирпич с добавками зол и топливных шлаков твердеет в автоклавах при давлении насыщенного пара 0,8-1,6 МПа. Рекомендуемая выдержка -4-8 ч. Получаемый материал по водо- и морозостойкости превосходит обычный силикатный кирпич, имеет меньшие значения водопоглощения и водопроницаемости, лучший товарный вид. Преимуществом кирпича из золосиликатной смеси оптимального состава является более низкая, чем у обычного, средняя плотность A=700-1800 кг/м3 против 1900-2000 кг/м3).

Используя золы ТЭС, получен пористый силикатный кирпич с такими свойствами: плотностью 1250-1400 кг/м3; прочностью 10-17,5 МПа, пористостью 27-28%, морозостойкостью 15-35 циклов.

Применение его позволяет уменьшить толщину наружных стен на 20, а массу -на 40% и существенно сократить расход тепла на отопление зданий.

Поэтому, строительные материалы на основе гипса, воздушной извести, требуются защищать от действия влаги, эксплуатировать в сухой среде или добавлять компоненты для повышения водостойкости.

Водопотребление минеральных вяжущих влияет на свойства получаемых материалов. Водопотребность определяется количеством воды необходимой для получения удобоукладываемой смеси. Если воды будет не достаточно, то смесь будет рыхлой, избыток приведет к растеканию массы. Значительное увеличении воды сказывается на свойствах искусственного камня – может вызвать образования крупных пор, сильную усадку, снижает прочность.

Производство силикатных строительных материалов базируется на гидротермальном синтезе гидросиликатов кальция, который осуществляется в среде насыщенного водяного пара давлением 0,8-1,3 МПа и температурой 175-200°С. Используют для этих целей автоклавы.

Силикатные изделия – это бесцементные материалы приготовленные с сырьевой смеси содержащие известь, кварцевый песок и воду, который в процессе автоклавной обработки образует силикат. Ca(OH)2+nSiO2*(m-1)H2O = CaO*nSiO2*mH20. В условиях автоклавной обработки можно получить различные разноосновные силикаты в зависимости от состава сырьевой смеси.

Автоклав представляет собой горизонтально расположенный полый цилиндр с герметически закрывающимися с торцов крышками(L=21-30cm, d=2,6-3,6cm).Они оборудованы предохранительным клапаном позволяющим регулировать давление. В нижней части уложены рельсы и передвигаются вагонетки с изделиями. Для снижения теплопотерь корпус покрывают теплоизоляцией. После загрузки изделий крышки закрываются и под давлением поддаётся пар. Высокая температура и наличие в изделиях воды создаёт благоприятные условия для протикания химических реакций между Ca(OH)2 и кремнезёмистой составляющей SiO2. Прочность автоклавных мат. формируется в процессах структурообразования при формировании гидросиликатов кальция и деструкция связанная с высокими напряжениями в результате автоклавной обработки. Для того чтобы снизить деструктивные процессы автоклавную обработку производят при след. режимах: -постепенный подъём температуры 1,5-2ч. –изотермическая выдержка 4-8ч. –снижение температуры и давления 2-4ч.

Силикатный кирпич. Состав, св-ва, применение.

Силикатный кирпич изготавливают из жёсткой смеси кварцевого песка 92-94%, извести 6-8%(в пересчёте на активный СаО) и воды до 9%. Путём прессования под давлением 15-20Мпа и последующего твердения в автоклаве. Цвет: светло-серый, варьируется. Выпускают кирпич одинарный 250х120х65, модульный модульный 250х120х88 изготавливают с пустотами. Марки 100, 150, 200, 250. Теплопроводность 0,7-0,75 Вт/(м°С). Водопоглощение лицевой стороны не должно быть больше 14%. Применяется для строительства несущих и ненесущих стен, реконструкции зданий и т.д. Не рекомендуется применять для цокольных зданий и при больших температурах.

Силикатный бетон. Виды, св-ва, области применения.

Виды: -тяжёлые (в качестве заполнителя: песок, щебень и песчано-гравийная смесь), -лёгкие(заполнитель керамзит), -ячеистые

В качестве вяжущего применяют известково-кремнезёмистый компонент в состав которого входит воздушная известь и тонко помолотый песок. Прочность зависит от активности извести в соотношении CaO/SiO2 , тонкости измельчения песка и параметром автоклавной обработки. Оптималиными считаются такие параметры и характеристики бетонной смеси при которых весь СаО связывается с низкоосновным силикат кальцием. Тяжёлый силикатный бетон плотность 1700 кг/м3, прочность 15-80Мпа применяют для изготовления сборных бетонных и железобетонных конструкций, в том числе предварительно напряжённых.

Асбестоцемент. Сырьё и св-ва. Виды асбестоцементных изделий.

Асбестоцемент – искусственный композиционный строительный материал получаемый в результате затвердевания смеси: цемента, асбеста(10-20% от массы цемента), воды. Такой мат. обладает высокой прочностью, огнестойкостью, долговечностью и др. Сырьевые мат.: п.ц. в качестве вяжущего, марок 400/500, песчанистый п.ц. в случае автоклавного твердения, белый и цветной в случае изготовления декоративных изделий. По минералогическому составу п.ц. должен быть олитовый C3S>52%, C3A<8% , тонкость помола 2900-3200см2/г.

Асбест – природный тонковолокнистый материал состоящий из водных или безводных силикатов. 95%-хризотил асбест 3MgO*2SiO2*2H2O применяются для производства. Диаметр волокна порядка 1 микрона, но при распушке волокна расщепляются до d=0,02мм. Хризотил асбест имеет высокую прочность при растяжении до 3000МПа, при распушке часть волокон разрушается и прочность 600-800МПа. Введение гибких волокон асбеста в качестве армирующего компонента позволяют в 3-5раз увеличить прочность при растяжении такой системы. Кроме того он обладает адсорбционной способностью, он связывает Са(ОН)2 и другие продукты гидротации. Товарный асбест выпускают 8 сортов ло 0 до 7 и 42 марок. Чем меньше длина волокна, тем выше сорт асбеста.

Кровельные . К ним относятся волнистые листы различного профиля, крупноразмерные плоские, экструзионные листы, плоские черепичные листы. Волнистые листы 90% от производства кровельных изделий. Листовые изделия в общем балансе листовых изделий 30-40%. Волнистые листы выпускают: -обыкновенные, -унифициарованные, -средние, -высокого профиля. Разменры и св-ва листов в зависимости от типов 1200-2300мм, шаг волны 115-350мм, предел прочности при изгибе 16-24МПа, масса от 9-98кг. В настоящее время в основном производят волнистые листы длиной 1750мм, высота волны 45мм, длина волны 150мм, толщина листа 6 мм. Крупноразмерные плоские листы выпускаются размерами 2000-3000мм, толщина 4-12мм. Панели экструзионные применяются для устройства бесчердачных перекрытий под рулонную кровлю, для подвесных потолков. Плитки кровельные асбестоцементные плоские предназначены для малоэтажных сельских зданий. Наиболее распространённые 400х400 со срезанными углами. Срезанные углы позволяют получить плотное покрытие при минимальном расходе плиток. При изгибе 24МПа, морозостойкость 50 циклов.

Стеновые изделия . Волнистые листы так называемого среднеевропейского профиля длиной 2,5м и соотношением 51/177, используются в качестве заполнения между ограждающими конструкциями в неотапливаемых зданиях. Плоские листы длина 2-3м, толщина 4-12мм, ширина 1,5м. В качестве трёхслойных стеновых панелей и изготовлении конструкций перегородок.

Декоративные изделия. Могут быть офактуренными, либо окрашенными в процессе формирования и в затвердевшем виде. К 1 группе относятся листовые изделия с рельефной поверхностью, окрашенной по всей толщине, либо окрашенным поверхностным слоем. 2 группа – листы окрашенные составом минеральных вяжущих. 3 группа – с плёночным покрытием. 4 группа – химическая краска.

Погонажные. Швеллеры, подоконные плиты, сливы, элементы парапетов. Их изготавливают методом экструзии.

Трубы . Бывают 1.Напорнве для водопроводов с рабочим давлением 0,6-0,8МПа, L=3-6м, d условного прохода 100-500мм. 2.Безнапорные, для нефти-газопроводов, дренажа, мусоропроводов, прокладки кабелей, для устройства дымовых шахт.

Специальные . Вентиляционные короба, для устройства вентиляции и кондиционирования воздуха в зданиях. Полуцилиндры для покрытия теплоизоляционных слоёв на трубопроводах, крупногабаритные листы двоякой кривизны для летних домиков.

Гипсовые и гипсобетонные изделия.

Изделия, получаемые на основе гипсового вяжущего вещества, разделяют на гипсовые и гипсобетонные. Гипсовые изделия изготовляют из гипсового теста, иногда с минеральными или органическими добавками для улучшения технических свойств готовой продукции, гипсобетонные - из смеси с применением мелкозернистых и крупных пористых заполнителей: минеральных - шлака, ракушечника, туфового и пемзового заполнителя и других и органических - древесных опилок, древесной шерсти, камыша и т. п.

Гипсовые и гипсобетонные изделия могут быть сплошные и пустотелые (объем пустот более 15%), армированные и неармированные. По назначению их делят на панели и плиты перегородочные; листы обшивочные (гипсовая сухая штукатурка); камни стеновые; изделия перекрытий; теплоизоляционные материалы; архитектурно-декоративные детали.

Основными положительными свойствами гипсовых изделий являются:

Быстрое твердение, что сокращает технологический процесс и снижает стоимость;

Достаточно высокая прочность;

Низкая теплопроводность и высокая звукоизоляция;

Изделия легко поддаются механической обработке (распиливанию, сверлению) и легко окрашиваются в различные цвета и оттенки;

Стоимость их низка.

Недостаток: незначительную водостойкость, поэтому их можно при менять только в сухих помещениях.