Силикатные материалы история свойства сырье номенклатура применение. Силикатные материалы и изделия. Минеральные вяжущие вещества

Технология пр-ва силикатных изделий автоклавного твердения

При смешивании возд извести с кварцевым песком и водой получают стр-ный р-р, который твердеет при обычных условиях очень медленно. Так как песок в обычных условиях химически инертен.

Силикатные бетоны , как и цементные, могут быть тяжелыми (заполнители плотные - песок и щебень или песчано-гравийная смесь), легкими (заполнители пористые - керамзит, вспученный перлит, аглопорит и др.) и ячеистыми (заполнителем служат пузырьки воздуха, равномерно распределенные в объеме изде­лия).

Вяжущим в силикатном бетоне является тонкомолотая известково-кремнеземистая смесь - известково-кремнеземистое вя­жущее, способное при затворении водой в процессе тепловлаж-ностной обработки в автоклаве образовывать высокопрочный искусственный камень.

В качестве кремнеземистого компонента применяют молотый кварцевый песок, металлургические (главным образом домен­ные) шлаки, золы ТЭЦ. Кремнеземистый компонент (тонкомо­лотый песок) оказывает большое влияние на формирование свойств силикатных бетонов. Так, с возрастанием дисперсности частиц молотого песка повышаются прочность, морозостойкость и другие свойства силикатных материалов.

С увеличением тонкости помола песка повышается относи­тельное содержание СаО в смеси вяжущего до тех пор, пока содержание активной СаО обеспечивает возможность связыва­ния ее во время автоклавной обработки имеющимся песком в ннзкооснбвные гидросиликаты кальция.

Автоклавная обработка - последняя и самая важная стад Ия производства силикатных изделий. В автоклаве происходи сложные процессы превращения исходной, уложенной и уплот­ненной силикатобетонной смеси в прочные изделия разной плот­ности,- формы и назначения. В настоящее время выпускаются автоклавы диаметром 2,6 и 3,6 м, длиной 20...30 и 40 м. Как изложено выше, автоклав представляет собой цилиндрический горизонтальный сварной сосуд (котел) с герметически закры­вающимися с торцов сферическими крышками. Котел имеет манометр, показывающий давление пара, и предохранительный клапан, автоматически открывающийся при повышении в котле давления выше предельного. В нижней части автоклава уложены рельсы, по которым передвигаются загружаемые в автоклав вагонетки с изделиями. Автоклавы оборудованы траверсными путями с передаточными тележками - электромостами для за­грузки и выгрузки вагонеток и устройствами для автоматиче­ского контроля и управления режимом автоклавной обработки. Для уменьшения теплопотерь в окружающее пространство по­верхность автоклава и всех паропроводов покрывают слоем теплоизоляции. Применяют тупиковые или проходные автоклавы. Автоклавы оборудованы магистралями для выпуска насыщенно­го пара, перепуска отработавшего пара в другой автоклав, в атмосферу, утилизатор и для конденсатоотвода.

После загрузки автоклава крышку закрывают и в него медлен­но и равномерно впускают насыщенный пар. Автоклавная обра­ботка является наиболее эффективным средством ускорения твердения бетона. Высокие температуры при наличии в обраба­тываемом бетоне воды в капельно-жидком состоянии создают благоприятные условия для химического взаимодействия между гидратом оксида кальция и кремнеземом с образованием основ­ного цементирующего вещества - гидросиликатов кальция.

Весь цикл автоклавной обработки (по данным проф. П. И. Бо-женова) условно делится на пять этапов: 1 -от начала впуска пара до установления в автоклаве температуры 100 °С; 2 - по­вышение температуры среды и давления пара до назначенного минимума; 3 - изотермическая выдержка при максимальном давлении и температуре; 4 - снижение давления до атмосфер­ного, температуры до 100 °С; 5 - период постепенного остыва­ния изделий от 100 до 18...20 °С либо в автоклаве, либо после выгрузки их из автоклава.

Прочность силикатного бетона при сжатии, изгибе и растяже­нии, деформативные свойства, сцепление с арматурой обеспечи­вают одинаковую несущую способность конструкций из силикат­ного и цементного бетона при одинаковых их размерах и степени армирования. Поэтому силикатный бетон можно использовать для армированных и предварительно напряженных конструкций, что ставит его в один ряд с цементным бетоном.

Из плотных силикатных бетонов изготовляют несущие конст­рукции для жилищного, промышленного и сельского строитель­ства: панели внутренних стен и перекрытий, лестничные марши и площадки, балки, прогоны и колонны, карнизные плиты и т. д. В последнее время тяжелые силикатные бетоны применяют для изготовления таких высокопрочных изделий, как прессованный безасбестовый шифер, напряженно-армированные силикатобе-тонные железнодорожные шпалы, армированные силикатобетон-ные тюбинги для отделки туннелей метро и для шахтного строи­тельства (бетон прочностью 60 МПа и более).

Коррозия арматуры в силикатном бетоне зависит от плот­ности бетона и условий службы конструкций; при нормальном режиме эксплуатации сооружений арматура в плотном силикат­ном бетоне не корродирует. При влажном и переменном режимах эксплуатации в конструкциях из плотного силикатного бетона арматуру необходимо защищать антикоррозионными обмазками.

Силикатный бетон на пористых заполнителях - новый вид легкого бетона. Твердение его происходит в автоклавах. Вяжу-Щие для этих бетонов применяют те же, что и для плотных силикатных бетонов, а заполнителями служат пористые заполни­тели: керамзит, вспученный перлит, аглопорит, шлаковая пемза

Силикатный кирпич

Силикатный кирпич по своей форме, размерам и основному назначению не отличается от керамического кирпича (см. гл. 3). Материалами для изготовления силикатного кирпича являются воздушная известь и кварцевый песок. Известь применяют в ви­де молотой негашеной, частично загашенной или гашеной гид-ратной. Известь должна характеризоваться быстрым гашением и не должна содержать более 5% MgO. Пережог замедляет скорость гашения извести и даже вызывает появление в изделиях трещин, вспучиваний и других дефектов, поэтому для производ­ства автоклавных силикатных изделий известь не должна содер­жать пережога

Кварцевый песок в производстве силикатных из­делий применяют немолотый или в виде смеси немолотого и тон­комолотого, а также грубомолотого с содержанием кремнезема не менее 70%. Наличие примесей в песке отрицательно влияет на качество изделий: слюда понижает прочность, и ее содержа­ние в песке не должно превышать 0,5%; органические примеси вызывают вспучивание и также понижают прочность; содержа­ние в песке сернистых примесей ограничивается до 1 % в пере­счете на SO 3 . Равномерно распределенные глинистые примеси допускаются в количестве не более 10%; они даже несколько повышают удобоукладываемость смеси. Крупные включения гли­ны в песке не допускаются, так как снижают качество изделий. Состав известково-песчаной-смеси для изготовления силикатного Кирпича следующий: 92...95% чистого кварцевого песка, 5...8% воздушной извести и примерно 7% воды.

Производство силикатного кирпича ведут двумя способами: барабанным и силосным, - отличающимися приготовлением из­вестково-песчаной смеси.

При барабанном способе (рис. 8. 6) песок и тонкомолотая Негашеная известь, получаемая измельчением в шаровой мельни­це комовой извести, поступают в отдельные бункера над гасиль­ным барабаном. Из бункеров песок, дозируемый по объему, а известь - по массе, периодически загружаются в гасильный ба­рабан. Последний герметически закрывают и в течение 3...5 мин производят перемешивание сухих материалов. При подаче остро­го пара под давлением 0,15...0,2 МПа происходит гашение извести при непрерывно вращающемся барабане. Процесс гашения извести длится до 40 мин.

При силосном способе предварительно перемешанную и ув­лажненную массу направляют для гашения в силосы. Гашение в силосах происходит 7...12 ч, т.е. в 10...15 раз больше, чем в барабанах, что является существенным недостатком силосного способа. Хорошо загашенную в барабане или силосе известково-песчаную массу подают в лопастный смеситель или на бегуны для дополнительного увлажнения и перемешивания и далее на прессование. Прессование кирпича производят на механических прессах под давлением до 15...20 МПа, обеспечивающим получе­ние плотного и прочного кирпича. Отформованный сырец укла­дывают на вагонетку, которую направляют в автоклав для твер­дения.

Автоклав представляет собой стальной цилиндр диаметром 2 м и более, длиной до 20 м, с торцов герметически закрываю­щийся крышками (рис. 8. 7). С повышением температуры уско­ряется реакция между известью и песком, и при температуре 174 °С она протекает в течение 8... 10 ч. Быстрое твердение про­исходит не только при высокой температуре, до и высокой влаж­ности, для этого в автоклав пускают пар давлением до 0,8 МПа и это давление выдерживают 6...8 ч. Давление пара поднимают и снижают в течение 1,5 ч. Цикл запаривания продолжает* 10... 14 ч. Я

Под действием высокой температуры и влажности происходи химическая реакция между известью и кремнеземом. Образующиеся в результате реакции гидросиликаты срастаются с зернами песка в прочный камень. Однако твердение силикатного кип. пича на этом не прекращается, а продолжается после запарива­ния. Часть извести, вступившей в химическое взаимодействие с кремнеземом песка, реагирует с углекислотой воздуха, образуя прочный углекислый кальций по уравнению

Са (ОН) 2 + СО 2 = СаСОз + Н 2 О

Силикатный кирпич выпускают размером 250 X 120Х 65 мм, марок 75, 100, 125, 150, 200, 250 и 300, водопоглощением 8... 16%," теплопроводностью 0,70...0,75 Вт/(м-°С), плотностью свыше 1650 кг/м 3 - несколько выше, чем плотность керамического кир­пича; морозостойкостью F15. Теплоизоляционные качества стен из силикатного кирпича и керамического практически равны.

Применяют силикатный кирпич так же, где и керамический, но с некоторыми ограничениями. Нельзя применять силикатный кирпич для кладки фундаментов и цоколей, так как ои менее водостоек, а также для кладки печей и дымовый труб, так как при длительном воздействии высокой температуры происходит дегидратация гидросиликата кальция и гидрата оксида, кальция, которые связывают зерна песка, и кирпич разрушается.

По технико-экономическим показателям силикатный кирпич превосходит керамический. На его производство требуется в 2 раза меньше топлива, в 3 раза меньше электроэнергии, в 2,5 раза меньше трудоемкости производства; в конечном итоге себестоимость силикатного кирпича оказывается на 25...35% ниже, чем керамического.

Силикатными материалами называются материалы из смесей или сплавов силикатов, полисиликатов и алюмосиликатов. Силикаты – это соединения различных элементов с кремнеземом(оксидом кремния), в которых он играет роль кислоты. Структурным элементом силикатов является тетраэдрическая ортогруппа -4 c атомом кремния Si +4 и атомами кислорода О -2 в вершинах тетраэдра, с ребрами длиной 0,26нм. Тетраэдры в силикатах соединены через общие кислородные вершины в кремнекислородные комплексы в виде замкнутых колец, цепочек, сеток и слоев. В алюмосиликатах, помимо силикатных тетраэдров, содержатся тетраэдры [ AlO 4 ] -5 c ат.Al +3 .

В состав сложных силикатов входят еще катионы:Na+,K+.Ca++,Mg++,Mn++,B +3 ,Cr +3 ,Fe +3 ,Al +3 ,Ti +4 и анионы: O 2 –2, OH-,F-,Cl-,SO 4 – 2 , а так же вода.

Большинство силикатов отличаются тугоплавкостью и огнеупорностью, температура плавления их колеблется от 770 до 2130 0 С. Хим. Состав силикатовов принято выражать в виде формул,сост. Из символов их молекул, составленных в порядке возрастания их валентности, или из формул их оксидов:полевой шпат K 2 Al 2 Si 6 O 16 .

Все силикаты подразделяются на природные(минералы) и синтетические(силикатные материалы) Синтетические делятся на: вяжущие вещества, керамику, бессиликатные материалы, стекла, ситаллы. Природные силикаты исп. В разл. Областях народного хозяйства: В технологических процессах, основанных на обжиге и плавке(глина, кварцит, полевой шпат и др.); в процессах гидротермальной обработки(асбест, слюда и т. д.); в строительсрве; в металлургических процессах.

Сырьем для производства силикатных материалов служат природные минералы(кварцевый песок, глины, полевой шпат, известняк), промышленные продукты(карбонат натрия, бура, оксиды и соли разл. Металлов) и отходы(шлаки, Шламы, зола).

В производстве силикатных материалов используются типовые технологические процессы, что обусловлено близостью физико-математических основ их получения. Схема стадий:

Сырье- подготовка шихты- формирование изделия из шихты-сушка изд. – высоко темпер. Обработка – материал.



Подготовка шихты нужна нужна для обеспечения высокой эффективности последующих процессов высокотемпературной подготовки и состоит из обычных механических операций подготовки твердого сырья: измельчения, классификации, сушки, смешения компонентов.

Операция формования должна обеспечить изготовление изделия данной формы и размеров, с учетом изменения их в последующих операциях сушки и высокотемпературной обработки. Формование включает увлажнение шихты, придание материалу определенной формы.

Сушка проводится для сохранения изделием приданной ему формы перед и во время время операции высокотемпературной обработки., которая является заключительной стадией производства силикатных материалов. Высокотемпературная обработка заключается в обжиге или варке шихты(изделия). Процессы высокомолекулярной обработки: 1) удаление воды, сперва физической, затем кристаллизационной;2)кальцинирование, т. е выделение из компанентов шихты воды иCO 2 .;3) компаненты шихты- карбонаты металлов, гидроксиды металлов и алюмосиликаты превращаются в кислотные оксиды:SiO2,B2O3mAl2O3,Fe2O3 и основные оксиды:Na 2 O,K 2 O,CaO,MgO, вступающие в реакцию друг сдругом; 4)спекание компанентов шихты. Оно может протекать в тв. Фазе, при температуре ниже температуры плавления, или в жидкой фазе, при температуре выше температуры плавления. Во втором случае, вследствие процесса диффузии скорость процесса выше; 5)охлаждение массы с образованием кристаллической и аморфной фаз.

Производство керамики.Керамические материалы – поликристаллические материалы и изделия из них, полученые спеканием глин и их смесей с минеральными добавками, а также оксидов металлов и других тугоплавких соединений. Классификация: По составу- кислородосодержащие(силикатные), бескислородные(карбидные, нитридные, боридные, силицидные); По применению: строительные, огнеупоры, тонкая керамика, спец. Керамика; по степени спекания- пористые(кирпич, огнеупоры,санфаянс), спекшиеся(фарфор, специальная керамика); по состоянию поверхности- глазурованные и неглазурованные. Сырье для производства должно обладать свойством спекаемости- свойство порошкообразного материала образовывать при нагревании поликристаллическое тело- черепок. Сырье- глины.кварцевый песок, карбонаты кальция и магния.

Технологический процессп производства кирпича- 2 варианта: пластический метод и полусухой. Шихта, содержащая 40-50% глины, 50% песка и до 5% оксида железа, поступает на прессование в ленточный пресс(пластич. метод) или в механический пресс, работ. под давлением 10-25 мПа(полусухой метод.). Сформированный кирпич направляют на сушку в туннельную сушилку и затем на обжиг при температуре 900-1000 0 С.

Формование пластическим способом проводят на ленточном прессе.Он состоит из 1.загрузочной воронки; 2. вальцев; 3.шнек;. При продвижении массы к мундштуку 4. пресса происходит ее дополнительное перемешивание и уплотнение. Из увлажнителя 5. для смачивания мундштука подают воду, играющую роль смазки. Глинистую массу в виде ленты 6. режут на кирпичи с помощью резательной машины. 7. опорные ролики.

Схема производства кирпича полусухим способом:

Огнеупорами называют неметаллические материалы, характеризующиеся повышенной огнеупорностью, тоесть способностью противопостоять воздействию высоких температур.Огнеупоры делят:1.алюмосиликатные; 2. Динасовые огнеупоры- сост. Не менее, чем на 95% из оксида кремния; 3. полукислые- до 70-80% оксида кремния и 15-25% оксида алюминия. 3.Шамотные огнеупоры- до 50-70%оксида кремния и до 46% оксида алюминия. Огнеупорны до 1750 0 С.

Схема и уровнение.

4.Высокоглиноземистые огнеупоры – более 45% оксида алюминия.

5. магнезитовые- в качестве основы оксид магния. Огнеупорны до 2500 0 С.

CaCO 3 +MgCO 3 = MgO+CaO+ 2CO 2

6.корундовые огнеупоры;7.Карборундовые- сост. Из карбида кремния;7. циркониевые и ториевые;8.углеродистые.


По газодинамическим параметрам различаютламинарное и турбулентное пламя.

Ламинарным (от лат. lamina - слой, пластина)называется спокойное, безвихревое пламя устойчивой геометрической формы.

Турбулентным (от лат. turbulenze - вихрь)называется беспокойное, закрученное вихрями пламя постоянно меняющейся формы.

Оба эти режима все вы неоднократно наблюдали. Вспомните обычную зажигалку: когда установлен маленький расход газа, пламя спокойное, как пламя свечи, это – ламинарное пламя, при увеличении расхода, пламя меняет свою форму и становится беспокойным, закрученным вихрями, постоянно меняющейся формы, это – турбулентное пламя.

Такое поведение пламени при турбулентном режиме объясняется тем, что в зону горения начинает поступает гораздо большее количество горючего газа, то есть в момент времени должно окисляться все больше и больше горючего, что приводит к увеличению размеров пламени и дальнейшей его турбулизации.

Газодинамический режим горения зависит от линейной скорости горючего вещества или смеси и характеризуетсякритерием Рейнольдса (мера отношения сил инерции и внутреннего трения в потоке):

× (для запоминания:"ведро молока")

где v - линейная скорость газового потока, м/с;

d - характерный размер потока, м;

r - плотность газа, кг/м 3 ;

m - динамический коэффициент вязкости, Н×с/м 2

Ламинарный режим наблюдается при Re < 2300, при 2300 < Re < 10000 режим переходный, а при Re > 10000 - турбулентный. Во всех случаях толщина d зоны горения (фронта) пламени d лам < d п epex < d т yp .

Из-за ограничений, налагаемых скоростью диффузии, горючие газы и пары зачастую не успевают прореагировать с кислородом воздуха полностью и продукты горения помимо летучих газов и паров содержат мелкие раскаленные конденсированные частички несгоревшего углерода органических веществ в виде сажи, которые излучают свет и тепло.

Излучение пламени определяется излучением продуктов горения в различном агрегатном состоянии.

Структура пламени

Пламя имеет свою структуру, знание которой крайне необходимо для понимания процесса горения в целом.

Непосредственно химическая окислительно-восстановительная реакция протекает в тонком поверхностном слое, ограничивающем пламя, называемом фронтом пламени .

Фронт пламени – тонкий поверхностный слой, ограничивающий пламя, непосредственно в котором протекают окислительно-восстановительные реакции.

Толщина фронта пламени невелика, она зависит от газодинамических параметров и механизма распространения пламени (дефлаграционный или детонационный) и может составлять от десятых долей миллиметра до нескольких сантиметров. Внутри пламени практически весь объем занимают горючие газы (ГГ) и пары. Во фронте пламени находятся продукты горения (ПГ). В окружающей среде находится окислитель.

Схема диффузионного пламени газовой горелки и изменение концентраций горючих веществ, окислителя и продуктов горения по сечению пламени приведены на рис. 1.2.

Толщина фронта пламени разнообразных газовых смесей в ламинарном режиме составляет 0,5 – 10 -3 см. Среднее время полного превращения топлива в продукты горения в этой узкой зоне составляет 10 -3 –10 -6 с.

Зона максимальных температур расположена на 5-10 мм выше светящегося конуса пламени и для пропан-воздушной смеси составляет порядка 1600 К.

Диффузионное пламя возникает при горении, когда процессы горения и смешения протекают одновременно.

Как отмечалось ранее, главное отличие диффузионного горения от горения заранее перемешанных горючих смесей состоит в том, что скорость химического превращения при диффузионном горении лимитируется процессом смешения окислителя и горючего, даже если скорость химической реакции очень велика, интенсивность горения ограничена условиями смешения.

Важным следствием этого представления является тот факт, что во фронте пламени горючее и окислитель находятся в стехиометрическом соотношении. В каких соотношениях не находились бы подаваемые раздельно потоки окислителя и горючего, фронт пламени всегда устанавливается в таком положении, чтобы поступление реагентов происходило в стехиометрических соотношениях. Это подтверждено многими экспериментами.

Движущей силой диффузии кислорода в зону горения является разность его концентраций внутри пламени (С О = 0) и в окружающем воздухе (начальная С О = 21%). С уменьшением этой разности скорость диффузии кислорода уменьшается и при определенных концентрациях кислорода в окружающем воздухе – ниже 14-16 %, горение прекращается. Такое явление самопроизвольного затухания (самозатухания) наблюдается при горении в замкнутых объемах.

Каждое пламя занимает в пространстве определенный объем, внешние границы которого могут быть четко или нечетко ограничены. При горении газов форма и размеры образующегося пламени зависят от характера исходной смеси, формы горелки и стабилизирующих устройств. Влияние состава горючего на форму пламени определяется его влиянием на скорость горения.

Высота пламени является одной из основных характеристик размера пламени. Это особенно важно при рассмотрении горения и тушения газовых фонтанов, горения нефтепродуктов в открытых резервуарах.

Высота пламени тем больше, чем больше диаметр трубы и больше скорость истечения, и тем меньше, чем больше нормальная скорость распространения пламени.

Для заданной смеси горючего и окислителя высота пламени пропорциональна скорости потока и квадрату диаметра струи:

где - скорость потока;

Диаметр струи;

Коэффициент диффузии.

Но при этом форма пламени остается неизвестной и зависит от естественной конвекции и распределения температур во фронте пламени.

Эта зависимость сохраняется до определенного значения скорости потока. При возрастании скорости потока пламя турбулизируется, после чего прекращается дальнейшее увеличение его высоты. Этот переход совершается, как уже отмечалось, при определенных значениях критерия Рейнольдса.

Для пламен, когда происходит значительное выделение несгоревших частиц в виде дыма, понятие высота пламени теряет свою определенность, т.к. трудно определить границу сгорания газообразных продуктов в вершине пламени.

Кроме того, в пламенах, содержащих твердые частицы, по сравнению с пламенами, содержащими только газообразные продукты сгорания, значительно возрастает излучение.

Химические и физические процессы в пламени

В пламени одновременно протекают химические и физические процессы, между которыми существуют определенные причинно-следственные связи.

К химическим процессам в пламени относятся:

на подходе к зоне горения:

Термическое разложение исходных веществ с образованием более легких продуктов (водорода, оксидов углерода, простейших углеводородов, воды и т.д.);

во фронте пламени:

Термоокислительные превращения с выделением теплоты и образованием продуктов полного (диоксида углерода и воды) и неполного горения (оксида углерода, сажи, копоти, смол и др.);

Диссоциация продуктов горения,

Ионизация продуктов горения.

К физическим процессам в пламени относятся:

Тепломассоперенос во фронте пламени;

Процессы, связанные с испарением и доставкой летучих горючих веществ в зону горения.

Скорость переноса (диффузии) веществ имеет решающее значение, например, в неоднородных системах, где она гораздо меньше скорости химических реакций окисления. Соотношение скорости химических превращений и физических процессов определяет режим процесса горения.

Распространение пламени в пространстве

Возникновение горения или зажигание - только начальная стадия процесса горения, его инициирование. Данная стадия, безусловно, важна с точки зрения профилактики пожаров и взрывов. Но предотвратить их не всегда удается, поэтому для практических работников пожарной охраны большое значение имеет возможность прогнозирования динамики развития горения, а именно, в каком режиме и с какими параметрами будет развиваться пожар или взрыв на реальных объектах. Кроме того, в практической деятельности приходится сталкиваться с необходимостью реставрации картины развития уже происшедших пожаров и взрывов. Для этого необходимо знать основные закономерности процессов распространения, развития горения. Эти сведения необходимы также для правильного выбора наиболее эффективного вида и способа применения огнетушащего средства в конкретных условиях.

Наиболее простая схема горения – горение газов и паров. Смешиваясь с окислителем (в большинстве случаев кислородом воздуха), они образуют горючую смесь. Как было сказано выше, горение может быть диффузионным и кинетическим.

При диффузионном горении газов распространение пламени происходит по мере смешивания горючего с окислителем, это мы разбирали выше.

При кинетическом горении газов, распространение пламени может происходить по механизму дефлаграции (нормальное горение) и детонации.

Нормальное или дефлаграционное горение - это распространение пламени по однородной горючей среде, при котором фронт пламени движется вследствие ее послойного разогрева по механизму теплопроводности.

Дефлаграционное пламя распространяется с небольшой скоростью, порядка нескольких метров или десятков метров в секунду. Передача теплоты в этом случае осуществляется послойно по механизму теплопроводности.

При дефлаграционном горении пламя распространяется со скоростью, называемой нормальной скоростью распространения пламени.

Сущность механизма теплового распространения пламени, как было установлено выше, заключается в передаче теплоты из зоны горения теплопроводностью и разогрев прилегающего слоя свежей горючей смеси до температуры самовоспламенения.

Опасность дефлаграционного горения, помимо упомянутого выше, заключается еще и в том, что при определенных условиях дефлаграция может перейти в детонацию.

Детонация – это режим горения, при котором фронт пламени распространяется за счет самовоспламенения горючей смеси во фронте бегущей впереди ударной волной.

Скорость распространения пламени при детонации целиком и полностью определяется скоростью распространения ударной волны.

Скорость детонации в реальных горючих газовых системах значительно выше, чем дефлаграции. Она может достигать 3 км/с. Это обуславливает большую разрушительную способность и опасность детонационной волны.

Огромный профессиональный интерес для пожарных специалистов представляет явление самопроизвольного возникновения детонационного режима горения. Оно довольно часто наблюдается при горении однородных паро- и газо-воздушных смесей в трубопроводах, различных узостях между оборудованием, в кабельных тоннелях, емкостях и т.п. В этих местах нормальный, дефлаграционный режим горения может перейти в детонационный.

Как и дефлаграция, детонация газовых систем возможна только в определенной области концентраций горючего и окислителя.

Производство силикатных материалов

Силикатными материалами называются материалы из смесей или сплавов силикатов, полисиликатов и алюмосиликатов. Это твердые кристаллические или аморфные материалы, и к силикатам иногда относятся материалы, не содержащие в своем составе оксидов кремния.

Силикаты - это соединения различных элементов с кремнеземом (оксидом кремния), в которых он играет роль кислоты. Структурным элементом силикатов является тетраэдрическая ортогруппа -4 с атомом кремния Si +4 в центре и атомами кислорода O -2 в вершинах тетраэдра. Тетраэдры в силикатах соединены через общие кислородные вершины в кремнекислородные комплексы различной сложности в виде замкнутых колец, цепочек, сеток и слоев. В алюмосиликатах, помимо силикатных тетраэдров, содержатся тетраэдры состава [А1О 4 ] -5 с атомами алюминия А1 +3 , образующие с силикатными тетраэдрами алюминий-кремнийкислородные комплексы.

Цепи, ленты и слои связаны между собой расположенными между ними катионами. В зависимости от типа оксосиликатных анионов силикаты имеют волокнистую (асбест), слоистую (слюда) структуру.

Кроме силикатов в природе широко распространены алюмосиликаты , в образовании которых наряду с тетраэдрами SiO 4 принимают участие тетраэдры АlO 4 .

В состав сложных силикатов помимо иона Si +4 входят:

катионы : Na + , K + , Са ++ , Mg ++ , Mn ++ , В +3 , Сг +3 , Fe +3 , A1+ 3 , Ti +4 и анионы : О 2 -2 , ОН – , F – , Сl - , SO 4 2- , а также вода. Последняя может находиться в составе силикатов в виде конституционной, входящей в кристаллическую решетку в форме ОН - , кристаллизационной Н 2 О и физической, абсорбированной силикатом.

Свойства силикатов зависят от их состава, строения кристаллической решетки, природы сил, действующих между ионами, и, в значительной степени определяются высоким значением энергии связи между атомами кремния и кислорода, которая составляет 450-490 кДж/моль. (Для связи С-O энергия составляет 314 кДж/моль). Большинство силикатов отличаются тугоплавкостью и огнеупорностью, температура плавления их колеблется от 770 до 2130 °С. Твердость силикатов лежит в пределах от 1 до 6-7 ед. по шкале Мооса. Большинство силикатов малогигроскопичны и стойки к кислотам, что широко используется в различных областях техники и строительства.

Химический состав силикатов принято выражать в виде формул, составленных из символов элементов в порядке возрастания их валентности, или из формул их оксидов в том же порядке. Например, полевой шпат K 2 Al 2 Si 6 O 16 может быть представлен как KAlSi 3 O 8 или К 2 О×А1 2 О 3 ×6SiO 2 .

Силикатные материалы насчитывают большое количество различных видов , представляют крупномасштабный продукт химического производства, используются во многих областях техники и промышленности .

На рис. 11.1 приведена классификация силикатов .

Рис. 11.1. Производство силикатных материалов

Все силикаты подразделяются на природные (минералы) и синтетические (силикатные материалы). Силикаты - самые распространенные химические соединения в коре и мантии Земли, составляя 82% их массы , а также в лунных породах и метеоритах. Общее число природных известных силикатов превышает 1500. По происхождению они делятся на кристаллизационные (изверженные) породы и осадочные породы. Природные силикаты используются как сырье в различных областях народного хозяйства:

В технологических процессах, основанных на обжиге и плавке (глины, кварцит, полевой шпат и др.);

В процессах гидротермальной обработки (асбест, слюда и др.);

В строительстве;

В металлургических процессах.

Силикатные материалы насчитывают большое количество различных видов, представляют крупномасштабный продукт химического производства и используются во многих областях народного хозяйства.

Сырьём для их производства служат:

– природные минералы (кварцевый песок, глины, полевой шпат, известняк),

– промышленные продукты (карбонат натрия, бура, сульфат натрия, оксиды и соли различных металлов)

– отходы (шлаки, шламы, зола).

По масштабам производства силикатные материалы занимают одно из первых мест.

11.1 Типовые процессы технологии силикатных материалов

В производстве силикатных материалов используются типовые технологические процессы, что обусловлено близостью физико-химических основ их получения.

В самом общем виде производство любого силикатного материала состоит из следующих последовательных стадий (рис. 11.2 ):

Рис. 11.2. Принципиальная схема производства силикатных материалов

Первая стадия – подготовка шихты.

Эта стадия включает в себя механические операции подготовки твёрдого сырья: измельчения, (иногда - фракционирование), сушки, смешения компонентов.

Вторая стадия – стадия формования.

Операция формования должна обеспечить изготовление изделия заданной формы и размеров, с учётом изменения их на последующих операциях сушки и высокотемпературной обработки.

Формование включает:

а) увлажнение материала (шихты);

б) брикетирование или придания материалу определённой формы в зависимости от назначения изделия.

Третья стадия – сушка изделия.

Сушка изделия проводится для сохранения изделием приданной ему формы перед и во время операции высокотемпературной обработки.

Четвёртая стадия - высокотемпературная обработка изделия или шихты.

1) На этой стадии происходит синтез из компонентов шихты минералов определённой природы и состава.

2) В зависимости от назначения и свойств получаемого материала высокотемпературная обработка заключается в обжиге изделия или варке шихты.

В процессе высокотемпературной обработки в шихте при повышении температуры последовательно протекают следующие процессы:

Удаление воды, сначала физической, затем кристаллизационной;

Кальцинация компонентов шихты, т.е. выделение из них конституционной воды (входящей в кристаллическую решётку в виде ионов OH -) и оксида углерода (IV);

Полимерные превращения в компонентах шихты и перестройка их кристаллической решётки;

Образование новых химических соединений в виде твёрдых растворов.

На этой стадии компоненты шихты - карбонаты металлов, гидроксиды металлов и алюмосиликаты превращаются в кислотные оксиды: SiO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 и основные оксиды: Na 2 O, K 2 O, CaO, MgO, которые вступают в реакцию с друг с другом;

Спекание компонентов шихты.

Спекание может протекать:

в твёрдой фазе при температуре ниже температуры плавления компонентов;

или в жидкой фазе, при температуре выше их плавления.

Охлаждения массы с образованием жидкой и аморфной фаз.

11.2 Керамические изделия

Керамическими материалами или керамикой называют поликристаллические материалы и изделия из них, полученные спеканием природных глин и их смесей с минеральными добавками, а также оксидов металлов и других тугоплавких соединений.

Керамические изделия весьма разнообразны и могут быть классифицированы по нескольким признакам.

По применению:

Строительные (кирпич, черепица);

Огнеупоры;

Тонкая керамика (фарфор, фаянс);

Специальная керамика.

По структуре и степени спекания: - пористые или грубозернистые (кирпич, огнеупоры, фаянс);

Спекшиеся или мелкозернистые (фарфор, специальная керамика).

По состоянию поверхности: глазурованные и неглазурованные.

11.2.1 Сырьё

В качестве сырья для производства силикатных керамических материалов используют вещества, обладающие свойством спекаемости.

Спекаемость – свойство свободно насыпанного или уплотнённого (сформованного в изделие) порошкообразного материала образовывать при нагревании до определенной температуры поликристаллическое тело – черепок.

Таким сырьём являются:

Пластичные материалы (глины);

Непластичные и отощающие добавки (кварцевый песок);

Плавни и минерализаторы (карбонаты кальция и магния).

Наиболее важными и крупнотоннажными керамическими материалами являются: строительный кирпич и огнеупоры.

11.2.2 Производство строительного кирпича

Сырьё. Сырьём для производства строительного кирпича служат легкоплавкие глины состава Al 2 O 3 ∙nSiO 2 ∙mH 2 O, песок и оксиды железа (III).

Добавка кварцевого песка исключает появление трещин, вследствие усадки материала, при сушке и обжиге и позволяет получить более качественную продукцию.

Технологический процесс производства кирпича может осуществляться в двух вариантах:

Пластическим методом, при котором смесь подготовленных компонентов сырья превращается в пластическую массу, содержащую до 25% воды;

Полусухим методом, при котором компоненты сырья увлажняются паром (до 10%), что обеспечивает необходимую пластичность массы.

Фактически, оба метода отличаются по количеству воды и методом подачи воды.

Технологическая схема производства строительного кирпича

1) Подготовленная тем или иным методом шихта, содержащая
40 – 45% глины, до 50% песка и до 5% оксида железа, поступает на прессование в ленточный пресс при пластичном методе, или и механический пресс, работающий под давлением 10-25 МПа при полусухом методе. На рис. 11.3 приведена принципиальная схема производства строительного кирпича полусухим способом.

Рис. 11.3. Ленточный пресс: 1 - загрузочная воронка; 2 – вальцы; 3 – шнек; 4- мундштук пресса; 5 – увлажнитель; 6 – глинистая масса в виде ленты; 7 – опорные ролики.

2) Сформованный кирпич отправляется на сушку в туннельную сушилку непрерывного действия и затем на обжиг при температуре 900 - 1100 ºС. Для ускорения сушки в глину добавляют электролит.

11.2.3. Производство огнеупоров

Огнеупорными материалами (огнеупорами) называют неметаллические материалы, характеризующиеся повышенной огнеупорностью, то есть способностью противостоять, не расплываясь, воздействию высоких температур.

Область применения.

Огнеупоры применяются:

В промышленном строительстве для кладки металлургических печей, футеровки аппаратуры, работающей при высоких температурах;

Изготовления термостойких изделий и деталей (тигли, стержни поглотителей нейтронов в атомных реакторах, обтекатели ракет).

К материалам, используемым в качестве огнеупоров, предъявляются следующие требования:

Термическая стойкость, то есть свойство сохранять механические характеристики и структуру при одно- и многократных термических воздействиях;

Малый коэффициент термического расширения;

Высокая механическая прочность при температурной эксплуатации;

Устойчивость к действию расплавленных сред (металлов, шлака).

Ассортимент огнеупоров весьма широк. В зависимости от состава они делятся на несколько групп.

На рис. 11.4 представлена классификация огнеупорных материалов по их составу:

Рис. 11.4. Классификация огнеупоров по составу

1. Алюмосиликатные огнеупоры – относятся к числу наиболее распространенных огнеупоров.

В их основе лежит система «Al 2 O 3 -SiO 2 » с различным соотношением оксидов алюминия и кремния, от чего в значительной степени зависят их свойства, в частности, стойкость к расплавам различной кислотности.

2. Динасовые огнеупоры содержат 95 % оксида кремния с примесью оксида кальция. Они стойки к кислым шлакам, огнеупорны до 1730 ºС.

Применяются для коксовых и стекловаренных печей. Получаются из кварцита и оксида кальция обжигом при 1500 ºС.

3. Полукислые огнеупоры содержат до 70-80 % оксида кремния и 15-20 % оксида алюминия. Они относительно стойкие к кислым шлакам и силикатным расплавам и используются в металлургических печах и теплоэнергетических установках.

4. Шамотные огнеупоры содержат 50-70 % оксида кремния и до 45 % оксида алюминия. Они стойки к действию как основных так и кислых шлаков, огнеупорны до 1750 ºС и термически устойчивы. Получаются по схеме (рис. 11.5):

Рис. 11.5. Получение шамотных огнеупоров.

При обжиге каолина протекают реакции:

Al 2 O 3 ∙2SiO 2 ∙2H 2 O = Al 2 O 3 ∙2 SiO 2 + 2H 2 O

3(Al 2 O 3 ∙2SiO 2) = 3Al 2 O 3 ∙2SiO 2 + 4SiO 2 ∙

5. Магнезитовые огнеупоры содержат в качестве основы оксид магния. Например, доломитовые огнеупоры состоят из 30% оксида магния, 45% оксида кальция и 15% оксидов кремния.

Все виды магнезитовых огнеупоров устойчивы к действию основных шлаков, огнеупорны до 2500 ºС, однако термическая стойкость их невелика.

Применяются для облицовки сталеплавильных конвертеров, в электрических индукционных и мартеновских печах.

Получаются обжигом природных минералов, например, доломита:

CaCO 3 ∙MgCO 3 = MgO + CaO + CO 2 ; (MgO + CaO – огнеупор).

6. Корундовые огнеупоры состоят в основном из оксида алюминия. Они огнеупорны до 2050 ºС и применяются в устройствах для нагрева и плавления тугоплавких материалов в радиотехнике и квантовой электронике.

7. Карборундовые огнеупоры состоят из карбида кремния (карборунда) SiC. Они устойчивы к действию кислых шлаков, обладают высокой механической прочностью и термостойкостью.

Применяются для футеровки металлургических печей, изготовления литейных форм, чехлов термопар.

8. Углеродистые огнеупоры содержат от 30 до 92 % углерода и изготавливаются:

Обжигом смеси графита, глины и шамота (графитовые огнеупорные материалы);

Обжигом смеси кокса, каменноугольного пёка, антраценовой фракции каменноугольной смолы и битума (коксовые огнеупоры).

Углеродистые огнеупоры применяются для облицовки горнов доменных печей, печей цветной металлургии, электролизёров, аппаратуры в производстве коррозионно-активных веществ.

11.3. Производство вяжущих материалов

Вяжущими материалами называются одно- и многокомпонентные порошкообразные минеральные вещества, образующие при смешении с водой пластичную формующуюся массу, затвердевающую при выдержке в прочное камневидное тело.

В зависимости от состава и свойств вяжущие вещества подразделяются на три группы (рис. 11.6):

Рис. 11.6. Классификация вяжущих материалов

1. Воздушными вяжущими материалами называют материалы, которые после смешивания с водой (затворения) твердеют и длительное время сохраняют прочность только на воздухе.

2. Гидравлическими вяжущими материалами называют материалы, которые после затворения водой и предварительного затвердевания на воздухе продолжают твердеть в воде. Другими словами, сохраняют прочность как на воздухе, так и в воде.

3. К кислотостойким вяжущим материалам относятся такие, которые после затвердевания на воздухе сохраняют прочность при воздействии на них минеральных кислот.

Это достигается тем, что для их затворения используют водные растворы силиката натрия, а в массу материала вводят кислостойкие наполнители (диабаз, андезит и др.).

Сырьём для производства силикатных материалов, используемых в качестве вяжущих, служат:

Природные материалы – гипсовыё камень, известняк, мел, глины, кварцевый песок;

Промышленные отходы – металлургические шлаки, огарок колчедана, шламы переработки нефелина.

Применение. Вяжущие материалы в строительстве применяются в форме:

Цементного теста (вяжущий материал + вода);

Строительного раствора (вяжущий материал + песок + вода).

Действие вяжущего материала может быть разбито на три последовательные стадии:

Затворение (добавление воды) или образование пластической массы в виде теста или раствора смешением вяжущего вещества с соответствующим количеством воды или силикатного раствора;

Схватывание или первоначальное загустевание и уплотнение теста с потерей текучести и переходом в плотное, но непрочное соединение;

Твердение или постепенное увеличение механической прочности в процессе образования камневидного тела.

Важнейшими видами вяжущих материалов являются: портландцемент (гидравлический цемент) и воздушная (строительная) известь.

11.3.1 Производство портланд-цемента

Портландцементом называется гидравлический вяжущий материал, состоящий из силикатов и алюмосиликатов кальция разного состава .

Основными компонентами портландцемента являются следующие соединения:

- алит (трикальцийсиликат ) 3CaO∙SiO 2 ,

- белит (дикальцийсиликат ) 2CaO∙SiO 2 ,

- трикальцийалюминат 3CaO∙Al 2 O 3 .

Характеристикой портландцемента является «марка».

Маркой цемента называется предел прочности на сжатие образца цемента после затвердевания его в течение 28 суток, выражаемый в кг/см 2 . Чем больше марка цемента, тем выше его качество .

Существуют марки 400, 500 и 600 .

Производство портландцемента складывается из двух стадий: получения клинкера и его измельчения.

11.3.1.1 Получение клинкера

Получение клинкера может осуществляться двумя способами – мокрым и сухим , которые различаются методом приготовления сырьевой смеси для обжига .

Мокрый метод. По мокрому методу сырьё измельчают в присутствии большого количества воды. При этом образуется пульпа , содержащая до 45% воды.

В этом методе обеспечивается :

высокая однородность смеси;

снижается запыленность;

но увеличиваются затраты энергии на испарение воды.

Сухой метод. По сухому методу компоненты сырья сушат, измельчают и смешивают в сухом виде.

Такая технология является энергосберегающей , поэтому удельный вес производства цемента по сухому методу непрерывно возрастает .

На рис. 11.7 представлена схема производства портландцемента мокрым способом :

Рис. 11.7. Принципиальная схема производства портланд-цемента.

Производство клинкера включает операции :

- дробления, размола, корректировки состава сырья ;

- последующую высокотемпературную обработку полученной шихты – обжиг.

Сырьё. Сырьём в производстве портландцемента служат:

Различные известковые породы – известняк, мел, доломит;

Мергели – представляющие собой однородные тонкодисперсные смеси известняка и глины .

При обжиге шихты последовательно протекают следующие процессы:

- испарение воды (100 ºС);

- дегидратация кристаллогидратов и выгорание органических веществ:

MeO∙nH 2 O = nMeO + nH 2 O (500 ºС);

термическая диссоциация карбонатов:

CaCO 3 = CaO + CO 2 (900- 1200 ºС);

Взаимодействие основных и кислотных оксидов с образованием силикатов, алюминатов и алюмоферритов кальция :

CaO + SiO 2 = 2CaO∙SiO 2 (белит)

2CaO∙SiO 2 + CaO = 3CaO∙SiO 2 (алит)

3CaO + Al 2 O 3 = CaO∙Al 2 O 3 (трикальцийалюминат)

Процесс заканчивается при температуре 1450ºС, после чего клинкер поступает на охлаждение.

Состав образовавшегося после обжига продукта следующий: алит
40-60 %; белит 15-30 %; трикальцийалюминат 5-14 % .

Для обжига шихты используются барабанные вращающиеся печи диаметром 3,5-5,0 м и длиной до 185 м (рис. 11.8):

Рис. 11.8. Вращающаяся печь для получения цементного клинкера:
1 – вращающая печь; 2 – бандажи; 3 – опорные ролики; 4 – электромоторы;
5 – шестерни; 6 – шнековый питатель; 7 - холодильник; 8 - дымоход

Компоненты сырья, поступающие в печь, последовательно проходят в ней зоны сушки, подогрева, кальцинации, экзотермических реакций образования силикатов, спекания и охлаждения.

Выходящий из печи клинкер охлаждается в барабанных холодильниках, а нагретый воздух используют для нагрева воздуха и газообразного топлива, поступающего в печь.

11.3.1.2 Измельчение клинкера

Для измельчения охлаждённый клинкер :

- выдерживается на складе в течение 10-15 суток для гидратации свободного оксида кальция влагой воздуха;

- смешивается с добавками и измельчается в дробилках и многокамерных мельницах до частиц 0,1 мм и меньше.

Затвердевание портландцемента основано на реакциях гидратации , входящих в его состав силикатов и алюмосиликатов , образованием кристаллогидратов различного состава :

3CaO∙SiO 2 + (n+1) H 2 O = 2CaO∙SiO 2 ∙nH 2 O + Ca(OH) 2

2CaO∙SiO 2 + nH 2 O = 2CaO∙SiO 2 ∙nH 2 O,

3CaO∙Al 2 O 3 + 6H 2 O = 3CaO∙Al 2 O 3 6H 2 O

При смешении порошка цемента с водой (затворении ) масса затвердевает.

Для придания цементу определённых свойств в него вводят добавки:

- гидравлические , повышающие водостойкость за счёт связывания содержащегося в цементе гидроксида кальция:

Ca(OH) 2 + SiO 2 = CaSiO 3 + H 2 O;

- пластифицирующие , повышающие эластичность массы;

- кислотостойкие , придающие цементу коррозийную стойкость к кислым средам (гранит );

- инертные , для удешевления продукции (песок );

- регулирующие время схватывания массы (гипс ).

Основная масса портландцемента используется для изготовления бетона и изделий из него.

Бетоном называется искусственный камень, получаемый при затвердевании затворённой водой смеси цемента , песка и заполнителя .

В качестве заполнителей используют:

В обыкновенных бетонах – песок, гравий, щебень;

В легких бетонах – различные пористые материалы – пемза, шлак;

В ячеистых бетонах – замкнутые поры, образующиеся в бетоне при разложении вводимых в бетонную смесь газо- и пенообразователей ;

В огнеупорных бетонах шамотовый порошок;

В железобетоне – металлическая арматура .

11.3.2 Производство воздушной извести

Воздушной или строительной известью называется бессиликатный вяжущий материал, на основе оксида и гидроксида кальция.

Различают три вида воздушной извести:

- кипелка (негашёная известь) – оксид кальция CaO ;

- пушонка (гашёная известь) – гидроксид кальция Ca(OH) 2 ;

Силикатные, гипсовые и асбоцементные материалы относятся к безобжиговым изделиям и составляют значительную группу строительных материалов из искусственного камня.

Силикатный кирпич. Материалами для изготовления силикатного кирпича являются чистый кварцевый песок (92 - 95%), воздушная известь (5 - 8%) и вода (около 7%) . Кварцевый песок в производстве силикатного кирпича применяют немолотый или в виде сме­си немолотого и молотого. Допускаются равномерно распределённые глинистые примеси в количестве не более 10%. При таком содержании они несколько повышают удобоукладываемость смеси. Крупные включения глины в песке не допускаются.

Силикатный кирпич изготавливают путем прессования смеси под давлением 15-20МПа с последующим пропариванием в автоклаве под давлением 0,8МПа и температуре 174 о С в течении 6-8 часов. Давление плавно поднимают и снижают. Длительность процесса 10-14 часов.

Этот строительный материал по своей форме, размерам и основному назначению не отличаются от глиняного кирпича. Теплоизоляционные качества стен из силикатного и керамического кирпича практически равны, водо-, морозо- и огнестойкость меньше. Морозостойкость М рз -15циклов. Его нельзя использовать для кладки фундаментов, цоколей, наружных стен, помещений с высокой влажностью воздуха, а также для кладки печей. Себестоимость силикатного кирпича на 25…35% ниже, чем керамического.

Кроме силикатного кирпича таким же способом изготовляют золосиликатный (зольный) кирпич, в нём частично или целиком песок заменён золой топлива. Этот кирпич легче силикатного и имеет более низкую теплопроводность. По прочности и стойкости зольный кирпич ус­тупает силикатному. Применяют зольный кирпич для возведения кладки стен зданий малой этажности (до трёх этажей), а также для стен верхних этажей многоэтажных зданий.

Крупноразмерные изделия из силикатного бетона. Силикатным бето­ном называют затвердевшую в автоклаве уплотнённую смесь, состоя­щую из кварцевого песка (70 - 80%), молотого песка (8-15%) и молотой негашеной извести (6 - 10%). Из силикатного бетона маркой не ниже М-150, с при­менением тепловлажностной обработки в автоклаве, изготовляют круп­ные стеновые блоки внутренних несущих стен, панели перекрытий и несу­щих перегородок, ступени, плиты, балки. Элементы, работающие на из­гиб, армируют стержнями и сетками.

Минеральные вяжущие вещества

Минеральные вяжущие вещества получают путем обжига в печах природных каменных материалов (известняка гипса, ангидрита, доломита, магнезита). Куски полученные после обжига, путем помола превращаются в тонкий порошок. Чем меньше размер зерен после помола, тем выше активность вяжущего. Вяжущие вещества при смешивании с водой способны переходить из жидкого (тестообразного) в камневидное состояние.

Вяжущие вещества делятся на две группы:

    Воздушные вяжущие вещества, способные твердеть и длительно сохранять свою проч­ность только на воздухе, во влажных условиях они снижают или теряют прочность.

    Гидравлические вяжущие вещества, твердеют и длительно сохраняют свою проч­ность не только на воздухе, но и в воде. В отличии от воздушных они имеют более высокую прочность, поэтому шире применяются в строительстве.

К воздушным вяжущим веществам относятся: воздушная известь, гип­совые вяжущие, магнезиальные вяжущие и жидкое (растворимое) стекло. К гидравлическим вяжущим относятся: гидравлическая известь, романцемент, портландцемент и его разновидности.

Вяжущие вещества широко применяются в строительстве для изготов­ления строительных растворов, бетонов, бетонных и железобетонных из­делий.

Кирпичная и каменная кладки, бетон были известны человечеству ещё в доисторические времена, до изобретения им вяжущих веществ. Взамен вяжущих применялось пластическое глиняное тесто, которое, высыхая, превращалось в камнеподобный материал. Так как между глиной и водой никаких химических реакций не протекает, то высохшая и окаменевшая глина под действием воды может снова размокнуть и потерять прочность и связанность. В сухом климате или в условиях, исключающих увлажне­ние, глиняное тесто и в настоящее время используется как заменитель вя­жущих. В наше время глиняные растворы применяются при кладке печей и возведения стен зданий в сухом климате.

Воздушная известь. Строительную воздушную известь получают путем обжига при температуре 1000-1200 о С известняков или других горных пород, содержащих углекислый кальций. На строительство известь поступает в виде кусков белого или серого цвета(комовая известь или кипелка). Негашеная известь химически соединяется с водой и образует гашеную (гидратную) известь. При гашении ограниченным количеством воды известь распадается, образуя тонкий порошок, называемый пушонкой. При большом количестве воды образуется известковое тесто. Известь применяют для приготовления строительных раство­ров, в производстве известково-пуццолановых вяжущих, для изготовления силикатного кирпича, силикатных и пеносиликатных изделий, шлакобе­тонных блоков, а также в качестве покрасочных составов. Существенный недостаток воздушной извести – невысокая прочность и малая стойкость во влажных условиях.

Строительный гипс (алебастр) получают путем обжига природного гипсового камня с последующим размолом в тонкий порошок. В зависимости от тонкости помола и прочности строительный гипс делится на три сорта марок 35, 45, 55. Стро­ительныйгипс применяют для изготовления стеновых панелей, плит и кам­ней для внутренних перегородок зданий, сухой штукатурки, архитектурно-отделочных деталей. Гипсовые вяжущие вещества применяются в виде гипсового теста в кладочных и штукатурных растворах, бетонах, производ­стве теплоизоляционных материалов, искусственного мрамора и других декоративных изделий. По пределу прочности на сжатие гипсовые вяжу­щие вещества делятся на четыре марки: 50,100, 150,200 . При воздействии влаги прочность затвердевшего гипса значительно снижается, поэтому его применяют в помещениях с влажностью до 60%.

Ma гнезиальные вяжущие. Различают два вида магнезиальных вяжу­щих - каустический магнезит и каустический доломит. Применяют магне­зиальные вяжущие для изготовления бесшовных ксилолитовых полов, пе­регородочных плит, плит для облицовки стен, а также ступеней и теплоизо­ляционныхизделий и т. п.

Растворимое (жидкое) стекло. Растворимое стекло представляет собой калиевый или натриевый силикат. Натриевое жидкое стекло используется для приготовления кислотоупорного цемента, огнезащитных красок и об­мазок, для закрепления (силикатизации) фунтов, защиты природных ка­менных материалов.

Портландцемент. Является важнейшим гидравлическим вяжущим ве­ществом. Его выпуск составляет около 80% от выпуска всех вяжущих. Высокая прочность, способность быстро твердеть на воздухе и в воде, относительно низкая стоимость сделали портландцемент самым рас­пространённым вяжущим. Его применяют для изготовления бетонных и железобетон­ных конструкций, для строительных растворов высокой прочности. Сырьем для портландцемента служат природные ископаемые – мергеля или смесь из 73% известняка, 25% глины, 2% гипса. Размолотое сырье обжигают и производят помол спекшейся смеси – клинкера в тонкий порошок. Порошок, затворенный водой, образует тесто, которое быстро твердеет в течение первых трех суток и твердение в основном заканчивается на 28 сутки, достигая марочной прочности. При благоприятных условиях прочность бетона на портландцементе продолжает возрастать и может в 2-3 раза превысить марочную (28-суточную). Нормальные условия твердения – это 15 о С и влажная атмосфера. При 0 о С и ниже тесто замерзает, и прочность не увеличивается. Прочность характеризуется маркой. Марку устанавливают по пределу прочности при изгибе и сжатии образцов в виде брусков из цементного раствора состава 1:3 с водой через 28 суток после изготовления. Выпускают портландцемент марок 300, 400, 500 и 600. Хранить цемент в сухом месте не более 6 месяцев. Портландцемент не рекомендуется применять для конструкций,которые будут подвергаться действию напора морской, минеральной или пресной воды.

Силикатными материалами и изделиями называются необожженные материалы и изделия на основе минеральных вяжущих - асбестоцементные, гипсовые и гипсобетонные, силикатные (на основе извести) и магнезиальные с заполнителями (кварцевым песком, шлаком, золой, пемзой, опилками и т. д.). Области применения их чрезвычайно обширны - от несущих и ограждающих конструкций до отделки зданий и сооружений.

Силикатные изделия получают в результате формования и последующей автоклавной обработки смеси извести или других вяжущих веществ на ее основе, тонкодисперсных кремнеземистых добавок, песка и воды.

Силикатный кирпич - искусственный каменный материал, изготовляемый из смеси кварцевого песка и извести путем прессования под большим давлением и последующего твердения в автоклаве. Исходными материалами являются воздушная известь - 6-8% в расчете на СаО, кварцевый песок - 92-94% и вода - 7-8% по массе сухой смеси.

Существуют две схемы производства силикатного кирпича: силосная и барабанная. По силосной схеме известь, совместно с песком, гасят в силосах в течение 4-8 ч. По барабанной схеме известь, совместно с песком, гасят во вращающихся барабанах с подводом пара под избыточным давлением до 0,5 МПа благодаря чему процесс гашения длится 30-40 мин.

Погашенная смесь извести и песка увлажняется, перемешивается и прессуется под давлением 15-20 МПа, в результате получается сырец, который укладывают на вагонетки и направляют в автоклавы на 10-14 ч для запаривания под давлением насыщенного пара 0,8 МПа (изб.) при температуре около 175 о С. Прочность силикатного кирпича растет в течение некоторого времени и после выгрузки из автоклава (на воздухе).

Силикатный кирпич выпускают двух видов: одинарный (размером 250х120х65 мм) и модульный (размером 250х120х88 мм). Модульный кирпич изготавливают с технологическими пустотами, замкнутыми с одной стороны. Цвет кирпича светло-серый, но он может быть и цветным за счет введения в состав смеси щелочестойких минеральных пигментов.

Благодаря прессованию под большим давлением и отсутствию усадочных явлений размеры силикатного кирпича выдержаны более точно, чем у глиняного. Плотность его несколько выше, чем у керамического кирпича - 1800-1900 кг/м 3 , теплопроводность - 0,82 - 0,87 Вт/(м о С). В зависимости от предела прочности при сжатии и изгибе силикатный кирпич изготавливают шести марок: 75, 100, 125, 150, 200 и 250. Морозостойкость силикатного кирпича не ниже М рз 15, водопоглощение 8-16% по массе.

Области применения силикатного кирпича такие же, как и керамического кирпича. Однако он не рекомендуется для кладки фундаментов и стен в условиях высокой влажности, так как воздействие грунтовых и сточных вод вызывает его разрушение. Нельзя использовать силикатный кирпич в конструкциях, подверженных действию высоких температур (в печах, дымовых трубах и т. п.).

Силикатными бетонами называют большую группу бетонов автоклавного твердения, получаемых на основе известково-песчаного, известково-зольного или других известково-кремнеземистых вяжущих. Кроме того, в качестве вяжущего могут использовать молотые доменные шлаки.

Плотный мелкозернистый силикатный бетон, в отличие от тяжелого бетона, в своем составе не содержит крупного заполнителя (гравия или щебня). Структура силикатного бетона более однородна, а стоимость значительно ниже.

Прочность его при сжатии колеблется в довольно широких пределах (15-60 МПа) и зависит от состава смеси, режима автоклавной обработки и других факторов. Водостойкость силикатного бетона удовлетворительная. При полном водонасыщении снижение их прочности не превышает 25%. Морозостойкость - 25-50 циклов, а при добавке портландцемента она повышается до 100 циклов.

Из плотного силикатного бетона выполняют крупные стеновые блоки наружных стен с щелевыми пустотами и внутренних несущих стен, панели и плиты перекрытий, колонны, балки и прогоны, лестничные площадки и марши, цокольные блоки и другие армированные изделия.

В легких силикатных бетонах в качестве заполнителей используют керамзит, гранулированный шлак, шлаковую пемзу и другие пористые материалы в виде гравия и щебня. Из легких силикатных бетонов на пористых заполнителях изготовляют блоки и панели наружных стен жилых зданий.

Ячеистые силикатные бетоны, в зависимости от способа образования пористой структуры, разделяют на пено- и газосиликаты. Их получают при автоклавной обработке известково-песчаной пластичной смеси, в состав которой вводят устойчивую пену (пеносиликат) или алюминиевую пудру и другие газообразователи (газосиликат).

По назначению легкие и ячеистые силикатные бетоны делят на: теплоизоляционные, конструкционно-теплоизоляционные и конструкционные.