Прибор для забора воздуха на микробиологический анализ. Микробиологический анализ воздуха. Как обезопасить свой дом

Смолина Света

ВВЕДЕНИЕ

Воздух является средой, содержащей значительное количество микроорганизмов. С воздухом они могут переноситься на значительные расстояния. В отличие от воды и почвы, где микробы могут жить и размножаться, в воздухе они только сохраняются некоторое время, а затем гибнут под влиянием ряда неблагоприятных факторов: высыхания, действия солнечной радиации, смены температуры, отсутствия питательных веществ и др. Наиболее устойчивые микроорганизмы могут долго сохраняться в воздухе и обнаруживаться там с большим постоянством. К такой постоянной микрофлоре воздуха относятся споры грибов и бактерий.

Количество микроорганизмов в воздухе колеблется в значительных пределах и зависит от условий, расстояния от поверхности земли, от близости населенных пунктов и т. д. Наибольшее количество микробов содержит воздух промышленных городов, наименьшее – воздух лесов, гор . Много бактерий находится в воздухе помещений, где неизбежно массовое хождение людей (кинотеатры, театры, школы, вокзалы и т. д.), сопровождающееся поднятием в воздух пыли .

Всем известно, что здоровье человека зависит от качества окружающей среды: воды, воздуха и других факторов. Школа – это такое место, где постоянно находится много людей. На своей одежде, обуви, внутри своего организма они приносят в школу много разных микробов, бактерий и других микроорганизмов.

Цель: на основе исследований определить степень загрязнения воздуха закрытых школьных помещений.

  1. определить количество микроорганизмов, содержащихся в воздухе различных помещений;
  2. изучить динамику содержания микроорганизмов в воздухе в течение учебного дня.

МЕТОДЫ ИССЛЕДОВАНИЯ

Наиболее старым методом микробиологического анализа воздуха является седиментационный метод (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательной средой при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5-10 минут. По окончании экспозиции чашки закрывают и помещают в термостат при 37 0 С на 24 ч, а затем при комнатной температуре выдерживают еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Данный метод пригоден для сравнительных оценок чистоты воздуха .

Учет посева бактерий из воздуха производят путем подсчета выросших колоний бактерий отдельно. Зная площадь чашки Петри, можно определить количество микроорганизмов в 1м 3 воздуха. Для этого: 1) определяется площадь питательной среды в чашке Петри по формуле рr 2 ; 2) вычисляют количество колоний на площади 1 дм 2 ; 3 воздуха .

Примерный расчет. В чашке Петри диаметром в10 см выросло 25 колоний.

  1. определяют площадь питательной среды в чашке Петри по формуле 3,14*5 2 или 3,14*25 = 78,5 см 2

2) вычисляют количество колоний на площади 1 дм , равного 100 см 2

25колоний – 78,5 см 2

х колоний – 100 мм 2

х=25*100/78,5=32 колоний

т. е. на площади 1 дм 2 имеется 32 колонии.

3) пересчитывают количество бактерий на 1м 3 воздуха, который равен 1000л. Содержащиеся 32 колоний бактерий на площади 1 дм 2 соответствуют объему 10л воздуха. Чтобы узнать количество в1м 3 воздуха, составляют пропорцию:

х=32*1000/10=3200

Следовательно, в1м 3 воздуха содержится 3200 бактериальных телец.

Таблица 1. Критерии для оценки загрязненности помещений по числу микроорганизмов в 1м 3 воздуха

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В ходе исследований для каждой микробиологической оценки использовалось по три чашки Петри. На основании подсчета колоний, выросших в чашках Петри, была проведена оценка содержания микроорганизмов, которые содержатся в воздухе различных помещений в разные периоды учебного дня.

На первом этапе исследования было проведено сравнение данных, полученных в разных помещениях в один период времени. Наименьшее количество микроорганизмов (1571) было выявлено в классном помещении, а наибольшее (16220) – в спортзале. По-видимому это объясняется тем, что занятие физкультурой, подвижные игры приводят к поднятию пыли, следовательно и микроорганизмов, находящихся в ней.

Таблица 3. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьных помещений

На втором этапе исследований был проведен сравнительный анализ загрязнения воздуха в одном и том же помещении, но в разные периоды учебного дня. Объектом для данного исследования был выбран коридор.

Таблица 4. Количество микроорганизмов, содержащееся в 1м 3 воздуха школьного коридора в разные периоды времени

1-ая чашка

2-ая чашка

До 1 урока

1 перемена

5 перемена

На третьем этапе был также проведен анализ изменения содержания микроорганизмов в воздухе в одном помещении (класс химии), но при наличии двух дополнительных факторов: 1) проветриваемость помещения, 2) количество людей и интенсивность их передвижения.

В классе в течение всего дня были открыты форточки, что способствовало проветриванию помещения. Однако наблюдается резкое увеличение количества микроорганизмов во время 1 перемены, когда происходила смена различных классов. Таким образом, резкий скачок количества микроорганизмов, по-видимому, объясняется увеличением количества людей в помещении. При этом, проветриваемость помещения не оказывает существенного влияния на содержание микроорганизмов в воздухе в это время.

Однако на 5 перемене люди в классной комнате отсутствовали и это привело к снижению численности микроорганизмов в воздухе. Все это говорит о первостепенном влиянии именно такого фактора, как количество людей и интенсивность передвижения на степень загрязненеия воздуха микроорганизмами. Проветриваемость же помещений возможно оказывает свое влияние на общее количество микроорганизмов, но не на динамику их содержания.

Таблица 5. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения в разные периоды времени

На четвертом этапе был проведен сравнительный анализ классного кабинета и коридора в течение всего учебного дня.

Таблица 6. Количество микроорганизмов, содержащееся в 1м 3 воздуха классного помещения

1-ая чашка

2-ая чашка

1 перемена

2 перемена

3 перемена

4 перемена

5 перемена

После уроков

Таблица 7. Количество микроорганизмов, содержащееся в 1м 3 воздуха коридора

ЗАКЛЮЧЕНИЕ

  1. Наибольшее количество микроорганизмов выявлено в воздухе спортзала, а наименьшее – классной комнаты.
  2. Наблюдается тенденция увеличения количества микроорганизмов в воздухе коридора в течение учебного дня.
  3. В воздухе классного помещения содержание микроорганизмов увеличивается во время перемен и уменьшается во время уроков.
  4. Количество микроорганизмов в воздухе в первую очередь зависит от численности людей в помещении и интенсивности их передвижения.

СПИСОК ЛИТЕРАТУРЫ

1 Федоров М.В. Микробиология. – М.: Гос. Изд-во сельхозлитературы,1960.– 350 с.

2 Бакулина Н.А., Краева Э.Л. Микробиология.– М.: Медицина, 1980.– 338 с.

3 Павлович С.А., Пяткин К.Д. Медицинская микробиология. – Минск: Высшая школа, 1993. – 200 с.

4 Лабинская А.С. Микробиология с техникой микробиологических методов исследования.– М.: Медицина, 1968.– 392 с.

5 Черемисинов Н.А., Боева Л.И., Семихатова О.А. Практикум по микробиологии.– М.: Высшая школа, 1967.– 168 с.

6 Шлегель Г.Х. Общая микробиология.– М.: Мир, 1987.– 566 с.


Санитарно-микробиологическое исследование воздуха можно разделить на 4 этапа:

1) отбор проб;
2) обработка, транспортировка, хранение проб, получение концентрата микроорганизмов (если необходимо);
3) бактериологический посев, культивирование микроорганизмов;
4) идентификация выделенной культуры.

Отбор проб, как и при исследовании любого объекта, является наиболее ответственным. Правильное взятие проб гарантирует точность исследования. В закрытых помещениях точки отбора проб устанавливаются из расчета на каждые 20 м 2 площади - одна проба воздуха, по типу конверта: 4 точки по углам комнаты (на расстоянии 0,5 м от стен) и 5-я точка - в центре. Пробы воздуха забираются на высоте 1,6-1,8 м от пола - на уровне дыхания в жилых помещениях. Пробы необходимо отбирать днем (в период активной деятельности человека), после влажной уборки и проветривания помещения. Атмосферный воздух исследуют в жилой зоне на уровне 0,5-2 м от земли вблизи источников загрязнения, а также в зеленых зонах (парки, сады и т.д.) для оценки их влияния на микрофлору воздуха.

Следует обратить внимание на то, что при отборе проб воздуха во многих случаях происходит посев его на питательную среду.

Все методы отбора проб воздуха можно разделить на седиментационные и аспирационные.

Седиментационный - наиболее старый метод, широко распространен благодаря простоте и доступности, однако является неточным. Метод предложен Р. Кохом и заключается в способности микроорганизмов под действием силы тяжести и под влиянием движения воздуха (вместе с частицами пыли и капельками аэрозоля) оседать на поверхность питательной среды в открытые чашки Петри. Чашки устанавливаются в точках отбора на горизонтальной поверхности. При определении общей микробной обсемененности чашки с мясопептонным агаром оставляют открытыми на 5-10 мин или дольше в зависимости от степени предполагаемого бактериального загрязнения. Для выявления санитарно-показательных микробов применяют среду Гарро или Туржецкого (для обнаружения стрептококков), молочно-солевой или желточно-солевой агар (для определения стафилококков), суслоагар или среду Сабуро (для выявления дрожжей и грибов). При определении санитарно- показательных микроорганизмов чашки оставляют открытыми в течение 40-60 мин.

По окончании экспозиции все чашки закрывают, помещают в термостат на сутки для культивирования при температуре, оптимальной для развития выделяемого микроорганизма, затем (если этого требуют исследования) на 48 ч оставляют при комнатной температуре для образования пигмента пигментообразующими микроорганизмами.

Седиментационный метод имеет ряд недостатков: на поверхность среды оседают только грубодисперсные фракции аэрозоля; нередко колонии образуются не из единичной клетки, а из скопления микробов; на применяемых питательных средах вырастает только часть воздушной микрофлоры. К тому же этот метод совершенно непригоден при исследовании бактериальной загрязненности атмосферного воздуха.

Более совершенными методами являются аспирационные, основанные на принудительном осаждении микроорганизмов из воздуха на поверхность плотной питательной среды или в улавливающую жидкость (мясо-пептонный бульон, буферный раствор, изотонический раствор хлорида натрия и др.). В практике санитарной службы при аспирационном взятии проб используются аппарат Кротова, бактериоуловитель Речменского, прибор для отбора проб воздуха (ПОВ-1), пробоотборник аэрозольный бактериологический (ПАБ-1), бактериально-вирусный электропреципитатор (БВЭП-1), прибор Киктенко, приборы Андерсена, Дьяконова, МБ и др. Для исследования атмосферы могут быть использованы и мембранные фильтры № 4, через которые воздух просасывается с помощью аппарата Зейтца. Большое разнообразие приборов свидетельствует об отсутствии универсального аппарата и о большей или меньшей степени их несовершенства.

Прибор Кротова. В настоящее время этот прибор широко применяется при исследовании воздуха закрытых помещений и имеется в лабораториях СЭС.

Принцип работы аппарата Кротова основан на том, что воздух, просасываемый через клиновидную щель в крышке аппарата, ударяется о поверхность питательной среды, при этом частицы пыли и аэрозоля прилипают к среде, а вместе с ними и микроорганизмы, находящиеся в воздухе. Чашку Петри с тонким слоем среды укрепляют на вращающемся столике аппарата, что обеспечивает равномерное распределение бактерий на ее поверхности. Работает аппарат от электросети. После отбора пробы с определенной экспозицией чашку вынимают, закрывают крышкой и помещают на 48 ч в термостат. Обычно отбор проб проводят со скоростью 20-25 л/мин в течение 5 мин.

Таким образом, определяется флора в 100-125 л воздуха. При обнаружении санитарно-показательных микроорганизмов объем исследуемого воздуха увеличивают до 250 л.

Приемник перед забором пробы воздуха заполняется 3-5 мл улавливающей жидкости (водой, мясопептонным бульоном, изотоническим раствором хлорида натрия).

Прибор Речменского работает по принципу пульверизатора: при прохождении воздуха через узкое отверстие воронки жидкость из приемника через капилляр в виде капелек поднимается в цилиндр. Капли жидкости еще больше дробятся, ударяясь о стеклянную лопаточку и стенки сосуда, создавая облачко из мелких капелек, на которых и адсорбируются находящиеся в воздухе микроорганизмы. Насыщенные бактериями капли жидкости стекают в приемник, а затем опять диспергируются, что обеспечивает максимальное улавливание бактерий из воздуха. При работе прибор помещают под углом 15-25°, что обеспечивает стекание улавливающей жидкости в приемник. Скорость отбора проб воздуха через аппарат Речменского - 10-20 л/мин. По окончании работы жидкость из приемника забирают стерильной пипеткой и засевают (по 0,2 мл) на поверхность плотных питательных сред. Преимуществом бактериоуловителя Речменского является высокая эффективность улавливания бактериальных аэрозолей. Недостатки прибора заключаются в трудности его изготовления, нестандартности получаемых аппаратов, их большой хрупкости и сравнительно низкой производительности.

Большим преимуществом являются серийный выпуск этого прибора (что дало возможность оснастить им лаборатории СЭС), его портативность, более высокая производительность (20-25 л/мин). Колба прибора, в которую помещается улавливающая жидкость, изготовляется из термостойкого плексигласа, капилляр из нержавеющей стали. В колбу вмонтирован пульверизатор, вызывающий диспергирование улавливающей жидкости при просасывании воздуха. Такое устройство дает возможность легко очищать и стерилизовать колбу с диспергирующим устройством простым кипячением в течение 30 мин (автоклавирование недопустимо, так как оно вызывает деформацию цилиндра).

Перед забором проб воздуха в колбу вносят 5-10 мл улавливающей жидкости (чаще всего мясопептонный бульон) и устанавливают ее под углом 10°, что обеспечивает естественное стекание жидкости после диспергирования. Воздух, проходя через колбу и пульверизатор, вызывает образование мелких капелек улавливающей жидкости, на которых оседают микроорганизмы. Прибор ПОВ-1 применяется для исследования воздуха закрытых помещений на общую микробную обсемененность, для обнаружения патогенных бактерий (например, микобактерий туберкулеза) и респираторных вирусов в воздухе больничных палат.

Пробоотборник аэрозольный бактериологический (ПАБ-1). Механизм действия ПАБ-1 основан на принципе электростатического осаждения частиц аэрозоля (а следовательно, и микроорганизмов) из воздуха при прохождении его через прибор, в котором эти частицы получают электрический заряд и осаждаются на электродах с противоположным знаком. На электродах для улавливания аэрозолей помещают в горизонтальном положении металлические поддоны с твердыми средами в чашках Петри или жидкой питательной средой (15-20 мл). Прибор переносной с большой производительностью 150-250 л/мин, т.е. за 1 ч можно отобрать 5-6 м 3 воздуха. Его рекомендуют применять для исследования больших объемов воздуха при обнаружении условно-патогенных и патогенных микроорганизмов, например, при выявлении в воздухе палат больниц возбудителей внутрибольничных инфекций (Pseudomonas aeruginosa. Staph, aureus и др.), определении сальмонелл и эшерихий в атмосферном воздухе в местах дождевания при орошении земледельческих полей сточными водами.

Бактериально-вирусный электропреципитатор (БВЭП-1)

Прибор основан на аспирационно-ионизационном принципе действия. БВЭП-1 состоит из осадительной камеры, в которую вмонтированы электроды: отрицательный в виде приводящей трубки, через которую поступает воздух (и частички аэрозоля соответственно заряжаются отрицательно), и положительный, на котором оседают бактерии.

Прибор МБ. Этот прибор служит не только для определения общей микробной обсемененности, но и для отбора проб воздуха с аэрозольными частицами различных размеров. Прибор МБ построен по принципу «сита» и представляет собой цилиндр, разделенный на 6 горизонтальных полос, на каждую из которых помещают чашки Петри с МПА. Воздух просасывается, начиная с верхней ступени, в пластине которой отверстия самые крупные, и чем ниже ступень, тем меньше размером отверстия (через последние проходят только тонкодисперсные фракции воздушного аэрозоля). Прибор рассчитан на улавливание частиц аэрозоля размером более 1 мкм при скорости отбора воздуха 30 л/мин. Уменьшение числа отверстий обеспечивает более равномерное распределение по питательной среде аэрозоля из воздуха. Для улавливания еще более мелких частиц аэрозоля можно добавлять дополнительно фильтр из фильтрующего материала АФА.

При использовании любого из перечисленных приборов получаемые результаты являются приблизительными, однако они дают более правильную оценку обсемененности воздуха в сравнении с седиментационным методом. Поскольку и отбор и санитарно-микробиологические исследования воздуха не регламентированы ГОСТ, то можно использовать любой прибор для оценки бактериальной загрязненности воздуха. Во многих случаях отбор проб совмещен с этапом посева.

Для снижения численности микроорганизмов в воздухе закрытых помещений применяют следующие средства:
а) химические - обработка озоном, двуокисью азота, распыление молочной кислоты,
б) механические - пропускание воздуха через специальные фильтры,
в) физические - ультрафиолетовое облучение.

Определение общей численности сапрофитных бактерий

Общая бактериальная обсемененность воздуха или микробное число - это суммарное количество микроорганизмов, содержащихся в 1 м 3 воздуха. Для определения общего количества бактерий в воздухе закрытых помещений забирают две пробы (объемом по 100 л каждая) на чашки Петри с МПА при помощи любого прибора (чаще всего аппарата Кротова), либо седиментационным методом, расставляя чашки с питательной средой по принципу конверта. Чашки с посевом помещают в термостат на сутки, а затем на 48 ч оставляют при комнатной температуре. Экспозиция чашек с посевами на свету дает возможность подсчитать раздельно количество пигментных колоний (желтых, белых, розовых, черных, оранжевых и др.), количество спорообразующих бацилл, грибов и актиномицетов.

Подсчитывают количество колоний на обеих чашках, вычисляют среднее арифметическое и делают перерасчет на количество микроорганизмов в 1 м 3 воздуха. Бациллы образуют колонии, как правило, крупные, круглые, с неровными краями, сухие, морщинистые. Колонии грибов с пушистым налетом (Мисог и Aspergillus) и плотные - зеленоватые или сероватые (Penicillium). Актиномицеты образуют беловатые колонии, вросшие в агар. Количество каждой группы колоний (пигментных, беспигментных, плесеней, бацилл, актиномицетов) выражают в процентах по отношению к общему числу.

При определении микробного числа методом седиментации по Коху подсчитываются колонии, выросшие на МПА в чашках Петри, и расчет ведется по B.Л. Омелянскому. Если придерживаться этой методики, на чашку площадью 100 см 2 за 5 мин оседает такое количество микробов, которое содержится в 10 л воздуха.

Определение стафилококков

Стафилококки являются одним из наиболее распространенных микроорганизмов в воздухе закрытых помещений, что обусловливается значительной устойчивостью их к различным факторам окружающей среды. Обнаружение патогенных стафилококков в воздухе закрытых помещений имеет санитарно-показательное значение и свидетельствует об эпидемическом неблагополучии. Отбор проб воздуха проводится с помощью аппарата Кротова в количестве 250 л на 2-3 чашки с молочно-желточно-солевым агаром (или молочно- солевым, желточно-солевым) и на чашку с кровяным агаром. Чашки инкубируют при температуре 37°С в течение 48 ч. Изучают культуральные признаки всех видов колоний, из подозрительных готовят мазки и окрашивают по Граму.

Помимо качественной характеристики отдельных колоний, подсчитывают количество выросших колоний стафилококков в 1 м 3 воздуха.

Определение стрептококков

Стрептококки также являются санитарно-показательными микроорганизмами воздуха, в который они попадают от больных скарлатиной, тонзиллитами, ангиной и носителей стрептококков. Отбор проб воздуха при исследовании на наличие а- и р-гемолитических стрептококков производят с помощью аппарата Кротова на чашки с кровяным агаром, средами Гарро и Туржецкого. Забирают 200-250 л воздуха, чашки с посевами выдерживают в термостате 18-24 ч и затем еще 48 ч при комнатной температуре (после предварительного просмотра и учета). Идентификацию проводят по общепринятой методике.

Определение патогенных микроорганизмов в воздухе

Ввиду малой концентрации патогенных микроорганизмов в воздухе закрытых помещений, их выделение является достаточно трудной задачей.

При расшифровке внутрибольничных инфекций определяют в воздухе присутствие стафилококков, стрептококков, синегнойной палочки, сальмонелл, протеев и др. Отбор проб воздуха производят с помощью ПАБ-1 в объеме не менее 1000 л. Посев производят на соответствующие элективные среды. Если используется жидкая среда как улавливающая жидкость, то пробирку с жидкостью помещают в термостат на сутки для подращивания (получение накопительной культуры), а затем высевают на элективную среду.

При исследовании воздуха на наличие микобактерий туберкулеза отбор проб производят с помощью прибора ПОВ-1 в объеме 250-500 л воздуха. В качестве улавливающей жидкости берут среду Школьниковой, которую затем обрабатывают 3% раствором серной кислоты (для подавления сопутствующей микрофлоры) и центрифугируют. Осадок засевают в пробирки на одну из яичных сред, чаще среду Левенштейна - Иенсена. Инкубируют при 37°С до 3 мес. Отсутствие роста в течение 3 мес дает возможность выдать отрицательный ответ. Пробирки первый раз просматривают через 3 нед, затем каждые 10 дней. Выделенную культуру идентифицируют, определяют ее вирулентность (заражением морских свинок - биопроба) и при необходимости определяют устойчивость к лекарственным препаратам.

При определении в воздухе коринебактерий дифтерии для посева воздуха используют чашки со средой Клауберга.

В последние годы определяют в атмосферном воздухе в районах дождевания земледельческих полей, при орошении их сточными водами, сальмонеллы в случае появления заболевания среди персонала станций орошения или населения. Отбор проб производят с помощью аппарата Кротова на чашки с висмут-сульфитным агаром. Исследуют не менее 200 л воздуха. Выделенная культура идентифицируется по обычной схеме определения сальмонелл.

В связи с развитием микробиологической промышленности возникла необходимость исследования воздуха с целью обнаружения грибов-продуцентов при производстве антибиотиков, ферментных препаратов, при изготовлении кормовых дрожжей и др. Для исследования воздуха на плесневые грибы рода Candida отбор проб производят с помощью аппарата Кротова в объеме от 100 до 1000 л на чашки со средой Чапека, суслоагаром (для обнаружения плесневых грибов) и с метабисульфит-натрий- агаром (МБС-агар) с добавлением антибиотиков (для обнаружения дрожжеподобных грибов рода Candida). Чашки инкубируют в термостате при температуре 26-27°С в течение 3-4 сут (для плесневых грибов) и при 35-37°С в течение 2-3 сут (для грибов - продуцентов и дрожжеподобных рода Candida). Идентификация проводится с учетом особенностей плодоносящих гиф и характера мицелия. Считают, что концентрация дрожжеподобных грибов в количестве 500-600 клеток в 1 м 3 воздуха рабочего помещения является предельной, превышение ее ведет к развитию аллергических реакций у рабочих.



1.1 Общие положения.
Организация должна планировать и разрабатывать процессы, необходимые для создания безопасных продуктов.
Организация должна внедрять, осуществлять и обеспечить результативность запланированных видов деятельности и любых их изменений. Это включает БПР, а также операционные БПР и/или HACCP план.
1.2 Базовые программы (БПР).
1.2.1 Организация должна установить, внедрить и выполнять базовые программы (БПР), обеспечивающие управление:
а) вероятностью внесения факторов, вызывающих опасность продукта питания, в продукт через рабочую среду,
b) биологической, химической и физической контаминацией продукта(ов), включая перекрестную контаминацию между продуктами, и
с) уровнями опасных факторов в продукте и в среде его обработки.
1.2.2 БПР должны:
а) соответствовать потребностям организации по отношению к безопасности продуктов питания,
b) соответствовать масштабу и типу производства и характеру производимых и/или обрабатываемых продуктов,
с) внедряться в сети внутренней системы производства, как программы, применяемые повсеместно, или как программы, применяемые к конкретному продукту или производственной линии, и
d) быть одобрены группой по безопасности продуктов питания.
Организация должна идентифицировать установленные и законодательные требования, относящиеся к указанному выше.
1.2.3 При выборе и/или установлении БПР организация должна принять во внимание и использовать соответствующую информацию [например, установленные и законодательные требования, требования потребителей, признанные руководства, принципы Комиссии Codex Alimentarius (Кодекс), своды правил, национальные, международные или отраслевые стандарты].
ПРИМЕЧАНИЕ. В приложении С приведен список соответствующих публикаций Кодекса.
При установлении этих программ организация должна принять во внимание следующее:
а) конструкцию и планировку зданий и связанных с ними служб;
d) планировку помещений, включая рабочие места и вспомогательные помещения для работников;
с) подводы воздуха, воды, электричества и другие коммунальные услуги;
d) вспомогательные службы, включая устранение отходов и сточных вод;
е) пригодность оборудования и его доступность для чистки, обслуживания и профилактики;
f) управление закупленными материалами (например: сырьем, ингредиентами, химикатами и упаковкой), подачей (например: воды, воздуха, пара и льда), утилизацией (например: отходов и сточных вод) и обращением с продуктами (например: хранение и транспортировка);
g) меры для предотвращения перекрестной контаминации;
h) уборку и санацию;
i) борьбу с вредителями;
j) гигиену персонала;
k) другие соответствующие аспекты.
Верификация БПР должна планироваться (см. 1.8) и БПР должны модифицироваться при необходимости (см. 1.1). Должны вестись записи по верификациям и модификациям.
Документы должны описывать, как управляют видами деятельности, включенными в БПР.
1.3 Предварительные шаги для анализа опасных факторов.
1.3.1 Общие положения.
Вся информация, необходимая для проведения анализа опасных факторов, должна собираться поддерживаться, обновляться и документально оформляться. Должны вестись записи.
1.3.2 Группа по безопасности продуктов питания.
Должна быть назначена группа по безопасности продуктов питания.
Группа по безопасности продуктов питания должна иметь многопрофильные знания и опыт по разработке и внедрению системы безопасности продуктов питания. Они включают знания (но не ограничиваются ими) продукта организации, процессов, оборудования и факторов, вызывающих опасность продуктов питания в рамках области распространения системы безопасности продуктов питания.
Должны вестись записи, подтверждающие, что группа обладает требуемыми знаниями и опытом (см. п. 6.2.2).
1.3.3 Характеристики продуктов.
1.3.3.1 Сырье, ингредиенты и материалы, контактирующие с продуктами.
Все сырье, ингредиенты и материалы, контактирующие с продуктами, должны быть описаны в документах в объеме, необходимом для проведения анализа опасных факторов (см. 1.4), включая следующее, если применимо:
а) биологические, химические и физические характеристики,
b) состав рецептурных ингредиентов, включая добавки и технологические средства,
с) происхождение,
d) метод производства,
е) методы упаковки и доставки,
f) условия хранения и срок годности,
g) подготовку и/или обращение перед использованием или обработкой,
h) критерии приемлемости, связанные с безопасностью продуктов питания, или спецификации закупленных материалов и ингредиентов согласно использованию их по назначению.
Организация должна идентифицировать установленные и законодательные требования к безопасности продуктов питания, относящиеся к указанному выше.

1.3.3.2 Характеристики конечного продукта.
Характеристики конечных продуктов должны быть описаны в документах в объеме, необходимом для проведения анализа опасных факторов (см. 1.4), включая следующую информацию, если применимо:
а) название продукта или иная идентификация,
b) состав,
с) биологические, химические и физические характеристики, имеющие отношение к безопасности продуктов питания,
d) установленные срок годности и условия хранения,
е) упаковка,
f) маркировка в отношении к безопасности продукта питания, и/или инструкции по обращению, подготовке и использованию,
g) способ(ы) дистрибуции.
Организация должна идентифицировать установленные и законодательные требования по безопасности продуктов питания, относящиеся к указанному выше.
Описания должны обновляться, включая, если требуется, положения пункта 1.1.
1.3.4 Использование по назначению.
Использование по назначению, обоснованное ожидаемое обращение с конечным продуктом и любое непреднамеренное, но обосновано ожидаемое неправильное обращение и использование конечного продукта не по назначению, должно быть рассмотрено и описано в документах в объеме, позволяющем проводить анализ опасных факторов (см. п. 1.4.).
Группы пользователей, и там где уместно, группы потребителей, должны быть определены для каждого продукта, и особо уязвимые группы потребителей в отношении особых опасных факторов должны быть учтены.
Описания должны обновляться, включая, если требуется, положения пункта 1.1.
1.3.5 Диаграммы последовательности операций, этапы процесса и меры управления.
1.3.5.1 Диаграммы последовательности операций.
Диаграммы последовательности операций должны готовиться для категорий продуктов или процессов, охваченных системой менеджмента безопасности продуктов питания. Диаграммы последовательности операций должны составлять основу для оценки возможного появления, увеличения или внесения факторов, вызывающих опасность продуктов питания.
Диаграммы последовательности операций должны быть четкими, точными и достаточно подробными.
Диаграммы последовательности операций должны включать следующее, если применимо:
а) последовательность и взаимодействие всех этапов в производстве,
b) любые процессы, выполняемые сторонними исполнителями, и работы субподряду,
с) где поступают в производство сырье, ингредиенты и промежуточные продукты,
d) где происходят переделка и повторное использование,
е) где выходят или удаляются конечные или промежуточные продукты, а также побочные продукты и отходы,
В соответствии с п. 1.8, группа по безопасности продуктов питания должна на месте проверить точность текущей диаграммы. Проверенные диаграммы последовательности операций должны вестись как записи.
1.3.5.2 Описание этапов процесса и мер управления.
Существующие меры управления, параметры процесса и/или точность, с которой они выполняются, или процедуры, влияющие на безопасность продуктов питания, должны быть описаны в объеме, необходимом для анализа опасных факторов (см. п. 1.4).
Должны быть описаны также внешние требования (например, законодательных органов или заказчиков), которые могут повлиять на выбор и на точность мер управления.
Описания должны обновляться, включая, если требуется, положения пункта 1.1.
1.4 Анализ опасных факторов.
1.4.1 Общие положения.
Группа по безопасности продуктов питания должна проводить анализ опасных факторов для определения тех опасных факторов, которыми нужно управлять, степени управления для обеспечения безопасности продуктов питания и того, какой комплекс мер управления необходим.
1.4.2 Идентификация опасных факторов и установление приемлемых уровней.
1.4.2.1 Все опасные факторы, которые обоснованно могут возникнуть в зависимости от типа продукта, типа процесса и реальных производственных помещений, должны быть идентифицированы и зарегистрированы. Идентификация должна основываться на:
а) предварительной информации и данных, собранных согласно п. 1.3.,
b) опыте,
с) внешней информации, включающей как можно больше эпидемиологических и других исторических данных, и
d) информации о безопасности продуктов питания, полученной по всей цепи производства продуктов питания, которая может иметь отношение к безопасности конечных или промежуточных продуктов, и пищи при потреблении.
Каждый этап (от сырья, производства и до дистрибуции), на котором может быть внесен любой из факторов, вызывающих опасность продуктов питания, должен быть указан.
1.4.2.2 При идентификации опасных факторов требуется принять во внимание следующее:
а) этапы, предшествующие и следующие за рассматриваемой операцией,
b) технологическое оборудование, службы/услуги и среду, и
с) предшествующие и последующие звенья в цепи производства продуктов питания.
1.4.2.3 Для каждого идентифицированного фактора, вызывающего опасность продуктов питания, должен быть установлен приемлемый уровень опасного фактора в конечном продукте, когда это возможно.
При установлении данного уровня должны учитываться установленные и законодательные требования, требования заказчика к безопасности продуктов питания, использование по назначению заказчиком и другие соответствующие данные.
Обоснованность и результаты установления должны быть зарегистрированы.
1.4.3 Оценка опасных факторов.
Оценка опасных факторов должна быть проведена для того, чтобы определить для каждого фактора, вызывающего опасность продуктов питания (см. п. 1.4.2), является ли существенным для производства безопасных продуктов питания его ликвидация или сокращение до приемлемых уровней, и, если управление им необходимо, обеспечить достижение идентифицированных приемлемых уровней.
Каждый фактор, вызывающий опасность продуктов питания, должен быть оценен согласно возможной серьезности вредного воздействия на здоровье и вероятности его возникновения.
Используемая методология должна быть описана, и результаты оценки опасного фактора должны быть зарегистрированы.
1.4.4 Выбор и оценка мер управления.
На основании оценки опасных факторов по п. 1.4.3, должен быть выбран соответствующий комплекс мер управления, который будет способен предупреждать, ликвидировать или снижать факторы, вызывающие опасность продуктов питания, до определенных приемлемых уровней.
При этом выборе каждая мера управления по п. 1.3.5.2 должна быть проанализирована с учетом результативности относительно идентифицированных опасных факторов.
Выбранные меры управления должны быть ранжированы (оценены) относительно необходимости управления ими с помощью или операционных БПР, или HACCP плана.
Выбор и ранжирование мер должны быть выполнены с использованием логического подхода, включающего в себя оценку с учетом следующего:
а) ее влияния на идентифицированные опасные факторы в отношении установленной точности,
b) выполнимости ее мониторинга (например, возможности регулярного мониторинга для обеспечения немедленной коррекции);
с) ее места в пределах системы относительно других мер управления;
d) вероятности отказа в функционировании меры управления или существенной изменчивости технологического процесса;
е) серьезности последствий в случае отказа в ее функционировании;
f) установлена ли мера управления и применяется ли она специально для ликвидации или значительного уменьшения уровня опасного фактора(ов);
g) синергические эффекты (то есть взаимодействие, которое возникаем между двумя или более мерами управления, в результате которого итоговый результат превышает сумму их индивидуальных результатов).
Меры управления, ранжированные как относящиеся к HACCP плану, должны быть внедрены согласно п. 1.6. Другие меры управления должны быть внедрены как операционные БПР согласно п. 1.5.
Методология и параметры, используемые для данного ранжирования, должны быть описаны в документах, и результаты оценок должны регистрироваться.
1.5 Установление операционных базовых программ (БПР).
Операционные БПР должны быть документально оформлены и должны включать для каждой программы следующую информацию:
а) фактор(ы), вызывающие опасность продуктов питания, управляемые программой (см. п. 1.4.4.),
b) меры управления (см. п. 1.4.4.),
с) процедуры по мониторингу, демонстрирующие внедрение операционной БПР;
d) коррекции и корректирующие действия, предпринимаемые в случае выявления потери управления в процессе мониторинга операционной БПР (см. п. 1.10.1 и п. 1.10.2. соответственно),
е) ответственности и полномочия,
f) записи по мониторингу.
1.6 Установление HACCP плана .
1.6.1 HACCP план.
HACCP план должен быть документально оформлен и должен включать следующую информацию для каждой критической точки управления (КТУ):
а) факторы, вызывающие опасность продуктов питания, должны управляться в КТУ (см. п. 1.4.4.),
b) меры управления (см. п. 1.4.4.),
с) критические пределы (см. п. 1.6.3.)
d) процедур(ы) мониторинга (см. п. 1.6.4),
е) коррекции и корректирующие действия, которые должны быть предприняты, если превышаются критические пределы (см. п. 1.6.5);
f) ответственности и полномочия;
g) записи по мониторингу.
1.6.2 Идентификация критических точек управления (КТУ).
Для каждого опасного фактора, которым управляют согласно HACCP плану, должны быть идентифицированы КТУ для идентифицированных мер управления (см. п. 1.4.4.).
1.6.3 Определение критических пределов для критических точек управления.
Критические пределы должны быть определены для мониторинга, установленного для каждой КТУ.
Критические пределы должны быть установлены для обеспечения того, что идентифицированный приемлемый уровень опасного фактора в конечном продукте (см. п. 1.4.2.) не будет превышен.
Критические пределы должны быть измеримыми.
Обоснование выбранных критических пределов должно быть документально оформлено.
Критические пределы, основанные на субъективных данных (таких как визуальное инспектирование продукта, процесса, обработки и т.д.), должны быть подтверждены инструкциями или спецификациями и/или образованием и обучением.
1.6.4 Система мониторинга критических точек управления.
Система мониторинга должна быть установлена для каждой КТУ для демонстрации того, что КТУ находится под управлением. Данная система должна включать все запланированные измерения или наблюдения, связанные с критическими пределами.
Система мониторинга должна состоять из соответственных процедур, инструкций и записей, охватывающих нижеследующее:
а) измерения или наблюдения, предоставляющие результаты в пределах адекватной временной рамки,
b) используемые устройств для мониторинга,
с) применяемые методы калибровки (см. п. 8.3);
d) периодичность мониторинга;
е) ответственность и полномочия, относящиеся к мониторингу и оценке результатов мониторинга;
f) требования к записям и методы ведения записей
Методы и периодичность мониторинга должны быть в состоянии определить вовремя превышение критических уровней, для того, чтобы изолировать продукт, прежде чем он будет использован или употреблен.
1.6.5 Действия, осуществляемые, при превышении критических пределов по результатам мониторинга.
Запланированные коррекции и корректирующие действия, предпринимаемые в случае превышения критических пределов, должны быть описаны в HACCP плане. Данные действия должны гарантировать, что причина несоответствий выявлена, что параметры, которыми управляют в КТУ, возвращены под управление, и что повторение несоответствия предупреждено (см. п. 1.10.2).
Документально оформленные процедуры должны быть установлены и выполняться для обеспечения соответствующего обращения с потенциально опасными продуктами и гарантировать, что их выпуск не произойдет без их предварительной оценки (см. п.1.10.3).
1.7 Обновление предварительной информации и документов, описывающих БПР и HACCP план.
После утверждения операционных БПР (см. п. 1.5) и/или HACCP плана (см. п. 1.6), организация должна обновить следующую информацию, если необходимо:
а) характеристики продуктов (см. п. 1.3.3);
b) использование по назначению (см. п. 1.3.4);
с) диаграммы последовательности операций (см. п. 1.5.5.1);
d) этапы процессов (см. п. 1.3.5.2);
е) меры управления (см. п.1.3.5.2).
При необходимости должны быть внесены изменения в HACCP план (см. п.1.6.1), и в процедуры и инструкции, описывающие БПР (см. п. 1.2).
1.8 Планирование верификации.
При планировании верификации должны быть определены цели, методы, периодичность и ответственности для проведения верификации. Деятельность по верификации должна подтверждать, что:
а) БПР выполняются (см. п. 1.2),
b) входные данные для анализа опасных факторов (см. п. 1.3) непрерывно обновляются,
с) операционные БПР (см.п. 1.5) и элементы в рамках HACCP плана (см. п. 1.6.1) внедрены и результативны,
d) уровни опасных факторов находятся в пределах приемлемых уровней (см. п. 1.4.2), и
е) другие процедуры, необходимые организации, внедрены и результативны.
Выходные данные данного планирования должны быть в форме, адекватной методам функционирования организации.
Результаты верификации должны быть зарегистрированы и должны быть сообщены группе по безопасности продуктов питания.
Результаты верификации должны быть предоставлены для обеспечения анализа результатов деятельности по верификации (см. п. 8.4.3).
Если система верификации базируется на тестировании образцов конечного продукта и если такое тестирование образцов выявило несоответствие приемлемому уровню опасного фактора (см. п. 1.4.2), с соответствующими партиями продукта требуется обращаться как с потенциально опасными в соответствии с п. 1.10.3.
1.9 Система прослеживаемости.
Организация должна установить и применить систему прослеживемости, которая обеспечивает идентификацию партий продукта по отношению к партиям сырья, записям по производству и поставкам.
Система прослеживаемости должна быть способной идентифицировать поступающий материал от непосредственного поставщика и начальный путь дистрибуции конечного продукта.
Записи прослеживаемости должны вестись в течение определенного периода для оценки системы с целью обеспечения обращения с потенциально опасными продуктами и в случае изъятия продукта. Записи должны вестись в соответствии с установленными и законодательными требованиями и требованиями заказчика, и могут, например, основываться на идентификации партии конечного продукта.
1.10 Управление несоответствиями.
1.10.1 Коррекции.
Организация должна обеспечить в случае превышения критического предела для КТУ (см. п. 1.6.5), или потери управления операционными БПР, идентификацию и управление продуктами, на которые это повлияло, с учетом их использования и выпуска.
Оформленная документально процедура должна быть установлена и выполняться. Она должна определять:
а) идентификацию и оценку конечных продуктов, на которые это повлияло, с целью определения надлежащего обращения с ними (см. п. 1.10.3), и
b) анализ выполненных коррекций.
Продукты, произведенные в условиях превышения критических уровней, являются потенциально опасными, и с ними требуется обращаться в соответствии п. 1.10.3. Продукты, произведенные при несоблюдении условий операционных БПР, требуется оценить относительно причин несоответствий и их последствий в рамках безопасности продуктов питания, и где это необходимо, с ними требуется обращаться в соответствии п. 1.10.3. Оценка должна быть зарегистрирована.
Все коррекции должны быть одобрены ответственным лицом (лицами) и должны быть зарегистрированы вместе с информацией касательно природы несоответствий, их причин и последствий, включая информацию, необходимую в целях прослеживаемости в отношении несоответствующих партий.
1.10.2 Корректирующие действия.
Данные, полученные в результате мониторинга операционных БПР и КТУ, должны быть оценены назначенным лицом (лицами) с достаточными знаниями (см. п. 6.2) и полномочиями (см. п. 5.4) для инициации корректирующих действий.
Корректирующие действия должны проводиться при превышении критических пределов (см. п. 1.6.5) или при недостатке соответствия с операционной БПР.
Организация должна установить и выполнять документально оформленные процедуры, которые определяют соответствующие действия для идентификации и устранения причин обнаруженных несоответствий, для предупреждения их повторения и возвращения процесса или системы под управление после обнаружения несоответствия.
Данные действия включают:
а) анализ несоответствий (включая жалобы заказчиков);
b) анализ тенденций по результатам мониторинга, которые могут указывать на развитие в сторону потери управления;
с) определение причин несоответствий,
d) оценку действий, необходимых для предотвращения повторения несоответствий;
е) определение и внедрение необходимых действий;
f) регистрацию результатов предпринятых корректирующих действий, и
g) анализ предпринятых корректирующих действий для подтверждения их результативности.
Корректирующие действия должны быть зарегистрированы.
1.10.3 Обращение с потенциально опасными продуктами.
1.10.3.1 Общие положения.
Организация должна обращаться с несоответствующими продуктами, принимая меры для предотвращения попадания несоответствующей продукции в цепь производства продуктов питания, пока не будет уверенности в том, что:
а) факторы, вызывающие опасность продуктов питания были снижены до идентифицированных приемлемых уровней,
b) рассматриваемые факторы, вызывающие опасность продуктов питания, будут снижены до идентифицированных приемлемых уровней (см. п. 1.4.2) до поступления в цепь производства продуктов питания, или
с) продукты соответствуют приемлемому уровню рассматриваемого фактора, вызывающего опасность продуктов питания, несмотря на несоответствие.
Все партии продукта, на которые повлияла несоответствующая ситуация, должны находиться под управлением организации до тех пор, пока не будут оценены.
Если продукты, которые потеряли управление со стороны организации, были определены как опасные, организация должна уведомить соответствующие заинтересованные стороны и начать изъятие (см. п. 1.10.4).
ПРИМЕЧАНИЕ. Термин «изъятие» включает отзыв продуктов питания.
Меры управления и соответствующее реагирование и санкционирование обращения с потенциально опасными продуктами должны быть документально оформлены.
1.10.3.2 Оценка для выпуска продуктов.
Каждая партия продуктов, на которую повлияло несоответствие, должна быть выпущена как безопасная только тогда, когда соблюдено одно из следующих условий:
а) доказательства, отличные от системы мониторинга, показывают, что меры управления были результативны,
b) подтверждено, что комбинированный результат мер управления для данного продукта соответствует намеченному критерию (то есть идентифицированным приемлемым уровням в соответствии с п. 1.4.2);
с) результаты испытаний образцов, анализ и/или другие действия по верификации демонстрируют, что партия продуктов, на которую повлияло несоответствие, соответствует идентифицированным приемлемым уровням рассматриваемых опасных факторов.
1.10.3.3 Обращение с несоответствующей продукцией.
Если партия продукта не приемлема к выпуску, то одно из следующих действий должно быть произведено с ней:
а) переработка или дальнейшая обработка в пределах или вне организации, которая обеспечивает устранение или снижение опасного фактора до приемлемых уровней;
b) уничтожение и/или устранение как отхода.
1.10.4 Изъятие.
Для того чтобы обеспечить и облегчить полное и своевременное изъятие партий конечного продукта, которые были идентифицированы как опасные:
а) высшее руководство должно назначить персонал, имеющий полномочия для инициации изъятия и назначить ответственный персонал для выполнения данного изъятия, и
b) организация должна установить и выполнять документированную процедуру для:
1) уведомления соответствующих заинтересованных сторон (например: законодательных и регулятивных органов, заказчиков и/или потребителей),
2) обращения с изъятыми продуктами, а также с опасными партиями продуктов, которые еще на складе, и
3) установления последовательности необходимых действий.
Изъятие продуктов должно быть обеспечено защитой или проведено под наблюдением до их уничтожения, использования в целях, отличных от первоначального назначения, определения как безопасных согласно исходному назначению (или иному), или такой переработки, которая гарантирует, что они стали безопасными.
Информация о причине, степени и результате изъятия должна быть зарегистрирована и доложена высшему руководству в качестве входных данных к анализу со стороны руководства (см.п. 5.8.2).
Организация должна проверить и зарегистрировать результативность программы изъятия посредством использования соответствующих методов (например, имитирование изъятия или практическое изъятие).

Большая группа приборов и устройств предназначается для концентрирования микроорганизмов в пробах из объектов внешней среды (вода, воздух), а также в пробах патологического материала от больных.

Как известно, объекты внешней среды могут быть источником массовых заражений человека и животных, в случае загрязнения их патогенными микроорганизмами. Для суждения о наличии в объектах внешней среды патогенных микроорганизмов, наиболее надежным критерием является их прямое обнаружение. Однако используемые в микробиологической практике методы не всегда позволяют делать это. Патогенные микроорганизмы трудно выявить в объектах внешней среды, так как их гораздо меньше, чем сапрофитов. Поэтому в силу антагонистических действий на питательных средах рост патогенной флоры зачастую подавляется ростом сапрофитов. Первоочередной задачей при исследовании такого объекта внешней среды, как воздух, является концентрация взвешенных в нем микроорганизмов в небольшом количестве жидкости (питательной среды).

Одним из ведущих показателей бактериальной обсемененности объектов внешней среды является показатель микробного числа. Эти данные санитарной микробиологии регистрируются подсчетом колоний, выросших на чашках Петри, с последующим пересчетом.

Значительное количество работ посвящено методам забора проб воздуха. Предложено большое количество всевозможных приборов, улавливающих бактериальные аэрозоли.

Одним из первых приборов для исследования аэромикрофлоры, который был внедрен в серийное производство в нашей стране, был прибор Кротова . Несмотря на сравнительно большое количество времени с начала его серийного выпуска (пятидесятые годы), прибор не потерял своей значимости при исследовании санитарно-бактериологического состояния воздуха закрытых помещений и до сегодняшнего дня широко используется в практике санитарно-бактериологических лабораторий.

Прибор для бактериологического анализа воздуха (прибор Кротова) (рис. 58) представляет собой цилиндр, закрывающийся крышкой, под которой имеется столик для установки чашки Петри с плотной питательной средой. Внутри цилиндра находится электрический мотор, вращающий столик с чашкой и турбинку, засасывающую воздух внутрь прибора через щель, находящуюся в крышке. Количество воздуха, просасываемого в минуту, определяется по поплавковому расходомеру и регулируется при помощи вентиля. Прибор питается от сети переменного тока напряжением 220 В. Габариты прибора в футляре -229X200X280 мм. Масса - 8 кг.

Рис. 58. Прибор для бактериологического анализа воздуха.
1 - вентиль ротаметра, 2 - ротаметр; 3 - накидные замки; 4 - диск вращающийся; 5 - крышка; 6 - диск; 7 - клиновидная щель; 8 - корпус; 9 - основание.

Подготовка прибора к работе сводится к отбору стандартных чашек Петри диаметром 100 мм и высотой 20 мм и заблаговременному заполнению их питательной средой в количестве 15 мл. Розлив и охлаждение питательных сред производится на строго горизонтальной поверхности, подсушивание в обычных условиях.

Другим прибором аналогичного назначения является пробоотборник воздуха ПОВ-1 (рис.59).

Рис. 59. Пробоотборник воздуха ПОВ-1

Забор проб воздуха производится в жидкую питательную среду, что позволяет применять специфические элективные среды и проводить специальные (направленные) бактериологические исследования.

Техническая характеристика прибора ПОВ-1
Производительность............ 20 л/мин
Питание от сети переменного тока..... 127/220 В
Потребляемая мощность..........не более 18 В А
Габариты прибора..........................170x255x285 мм
» укладки..........................170X270X350 »
Масса (с укладкой)..........................не более 15 кг

Аспиратор для отбора проб воздуха, модель 822 , выпускаемый объединением «Красногвардеец» предназначен для анализа содержащихся в воздухе примесей. На передней панели прибора (рис. 60) расположены: колодка для подключения прибора к сети 1, тумблер для включения и выключения аппарата 2, гнездо предохранителя 3, разгрузочный клапан, предохраняющий от перегрузки электродвигатель при отборе проб воздуха с малыми скоростями 4, ротаметры (конусные стеклянные трубки с поплавками) для определения скорости прохождения воздуха 5, ручки вентилей ротаметров для регулировки скорости отбора проб 6, винты крепления панели к кожуху прибора 7, штуцеры для присоединения резиновых трубок с фильтрами 8 и клемма для заземления прибора 9.


Рис. 60. Аспиратор для отбора проб воздуха. Пояснения в тексте.

На рис. 61 показан общий вид аспиратора с держателем фильтров.

Отбор проб производится при просасывании воздуха через специальные фильтры с определенной скоростью. Воздух, проходя через фильтры, оставляет на них содержащиеся в нем примеси. Зная скорость прохождения воздуха и время прохождения, можно определить объем воздуха, прошедшего через фильтр. Определив количество примесей на фильтре, можно рассчитать количество примесей в единице объема воздуха.

Аспиратор для забора проб воздуха выпускает французская фирма «Baudard» . Аспиратор представляет собой герметичный аппарат с приспособлением для укрепления мелкопористых фильтров, которые легко могут быть извлечены после просасывания через аспиратор заданного объема воздуха и, в зависимости от цели исследования, изучаться либо бактериологически (инкубирование фильтра с имеющимися на нем микроорганизмами на питательных средах), либо микроскопически (определение природы частиц, задержанных фильтром, их подсчет и т. п.).

Используемые мелкопористые фильтры могут быть либо бумажными, либо изготовленными из стекловолокна. Диаметр фильтров составляет 110 мм.

Вентилятор центрифужного принципа действия имеет две скорости и рассчитан на питание от электросети напряжением 220 В; мощность мотора - 50 Вт; производительность аспиратора - от 360 до 1000 л/мин в зависимости от сопротивления используемого мелкопористого фильтра.

При исследовании воды и других объектов внешней среды (почва), а также биологических жидкостей человека и животных (мокрота, эксудаты и транссудаты) на наличие патогенной флоры, как и при исследовании воздуха, необходима предварительная концентрация микроорганизмов в небольшом объеме питательной среды, которая в дальнейшем подвергается бактериологическому исследованию (микроскопия, посев, постановка биохимических и серологических реакций и т. д.).

Рис. 61. Аспиратор с держателем фильтров.

Однако прогресс в области методов концентрирования микроорганизмов из объектов внешней среды невелик, и большей частью приходится ограничиваться старыми методиками, представляющими различные способы накопления:
- осаждением механическими способами - фильтрация, центрифугирование, выпаривание воды;
- осаждением микробов физико-химическими методами при помощи различных коагулянтов;
- концентрированием микробов методом флотации;
- осаждением микробов специфическими агглютинирующими сыворотками;
- применением комбинированных методов концентрирования микроорганизмов, заключающихся в сочетании методов осаждения с последующим высевом на питательные среды или заражением восприимчивого лабораторного животного.

Новые методы концентрирования микроорганизмов основаны на применении некоторых физических принципов . Одним из таких физических принципов является электрофорез. Применение этого метода обеспечивает движение микробной клетки к одному из электродов, расположенных в жидкой среде, под воздействием приложенной к электродам внешней электродвижущей силы (ЭДС). Этот принцип положен в основу прибора ЭФМ-1 (рис. 62). Прибор позволяет концентрировать микробные клетки, имеющие положительный или отрицательный поверхностный заряд в малом объеме изолированной жидкости (0,01-0,02 мл).

Рис. 62. Прибор для электрофореза микобактерий ЭФМ-1.

Кроме исследований воды, прибор может быть использован для бактериологических исследований водных суспензий пищевых продуктов, различных смывов и т. п. Прибор также может быть использован и для обнаружения микроорганизмов в различных материалах, полученных от больных, в частности для обнаружения микобактерий туберкулеза в таких материалах, как спинномозговая жидкость, промывные воды бронхов и желудка, всевозможные пунктаты, моча. В мазках, приготовленных из взвеси микобактерий туберкулеза в физиологическом растворе и подвергнутых электрофоретической концентрации, количество микробных клеток увеличивается в 10-15 раз по сравнению с мазками из нативного материала.

Прибор снабжен комплектом принадлежностей, куда входят 20 небьющихся кювет емкостью по 12 мл, электроды, пипетки. Прибор питается от сети переменного тока напряжением 220 В± 10%, 50 Гц. Потребляемая мощность - не более 20 Вт. Габариты- 405X165X205 мм. Масса прибора с комплектом принадлежностей - 6 кг.

Принцип работы прибора . В специальные кюветы, из комплекта к прибору, наливают по 10 мл исследуемого материала. Над каждой кюветой с помощью зажима-держателя укрепляют пипетку, в которую помещен графитовый электрод. Часть исследуемой жидкости поднимается на 4-5 мм по капилляру пипетки и касается электрода. В зависимости от цели исследования устанавливают полярность приложенной ЭДС. Электрофорез рекомендуется проводить в течение 1-3 ч.

После выключения тока жидкость из капилляра с помощью резинового баллончика выдавливают в каплю сыворотки (нормальная лошадиная или кроличья сыворотка в разведении 1:10), предварительно нанесенную на поверхность предметного стекла, и тщательно перемешивают запаянной пастеровской пипеткой, препарат высушивают, фиксируют над пламенем горелки и окрашивают по Граму, Циль - Нильсену или другим способом.

Чтобы исключить возможность диагностических ошибок, все манипуляции проводят с тщательно обработанными кюветами, пипетками и предметными стеклами. Графитовые электроды после каждого исследования необходимо менять.

Растворы красок и кислоты должны быть тщательно проверены бактериологически.

Для увеличения точности подсчета выросших микробных колоний Киевским заводом медицинского оборудования выпускается прибор для счета колоний бактерий . Для подсчета колоний электропером на дно чашки наносятся точки в месте "нахождения каждой колонии, при этом контакты электропера замыкаются и поступающий к счетчику электрический импульс производит отсчет. Внешний вид прибора приведен на рис. 63.

Рис. 63. Прибор для счета колоний.

Для подсчета числа колоний на закрытой чашке используется карандаш или ручка, которыми ставят отметки на оборотной стороне чашки, что исключает возможность повторного учета одной и той же колонии.

Универсальный счетчик для подсчета колоний на питательной среде «Бактроник» укомплектован электронным наконечником для подсчета числа колоний на открытых чашках. При контакте с любой агаризированной средой наконечник включает электромагнитный счетный механизм и оставляет след на поверхности среды.

Такое устройство устраняет электроразряды, которые имеют место при использовании других систем.

При подсчете числа колоний на чашках с редким ростом можно использовать кнопку на панели прибора, а если необходимо- дистанционный кнопочный выключатель, что облегчает работу.

Фирма «Millipore» выпускает специальную чемодан-укладку для микробиологических исследований . Чемодан, являющийся по существу портативной лабораторией (рис. 64), обеспечивает всеми необходимыми материалами и оборудованием для исследований бактериального загрязнения воды, обнаружения микроорганизмов в воздухе и в почве, контроль температуры и роста бактерий, выявление дрожжевых грибов в окружающей среде, образование газа дрожжами, определение эффективности дезинфектантов и т. д.

Рис. 64. Чемодан-укладка для микробиологических исследований.

Для определения качества пищевых продуктов выпускается люминоскоп ЛПК-1 . С его помощью можно определять видовую принадлежность мяса, раннюю порчу свинины и свиного жира, соотношение составных частей фарша, экспертизу пищевых масел, жиров, меда и других продуктов (рис. 65).

В приборе использован принцип визуального люминесцентного анализа. Под действием ультрафиолетовых лучей пищевые продукты в зависимости от их свойства и качества начинают светиться различным цветом, а светофильтры выделяют соответствующие участки спектра. При работе с прибором не требуется затемнения помещения, исследователь огражден от воздействия ультрафиолетовых лучей.

Режим работы прибора повторнократковременный. Время работы-1 ч, пауза - 25 мин. На исследование продукта затрачивается не более 1 мин. Питание прибора от сети переменного тока - 220 В±10%. Потребляемая мощность - не более 350 Вт. Габаритные размеры - 366X185X240 мм. Масса - 6 кг.

Рис. 65. Прибор для определения качества продуктов ЛПК-1.

Воздух - особый объект окружающей среды, визуально не определяемый, поэтому отбор проб его имеет некоторые особенности. Для гигиенической оценки бактериального загрязнения воздуха необходимо знать, какое количество воздуха контактировало с питательной средой, т.к. нормативы регламентируют определенное количество колоний микроорганизмов, вырастающих при посеве 1 м 3 (1000 л) воздуха.

В зависимости от принципа улавливания микроорганизмов выделяют следующие методы отбора проб воздуха для бактериологического исследования:

Седиментационный;

Фильтрационный;

Основанный на принципе ударного действия воздушной струи. Наиболее простым является седиментационный метод (метод осаждения), который позволяет уловить самопроизвольно оседающую фракцию микробного аэрозоля. Посев производят на чашки Петри с плотной питательной средой, которые расставляют в нескольких местах помещения и оставляют открытыми на 5-10 минут, затем инкубируют 48 часов при 37 °С и подсчитывают количество выросших колоний.

Этот метод не требует использования аппаратуры при посеве, но его недостатком является низкая информативность, т. к. невозможно получить точные данные о количестве микроорганизмов вследствие того, что их оседание происходит самопроизвольно, а его интенсивность зависит от направления и скорости потоков воздуха. Кроме того, неизвестен объем воздуха, контактирующего с питательной средой. При этом методе плохо улавливаются мелкодисперсные фракции бактериального аэрозоля, поэтому седиментационный метод рекомендуется использовать только для получения сравнительных данных о чистоте воздуха помещений в различное время суток, а также для оценки эффективности проведения санитарно-гигиенических мероприятий (вентиляции, влажной уборки, облучения ультрафиолетовыми лампами и др.).

Фильтрационный метод посева воздуха заключается в пропускании определенного объема воздуха через жидкую питательную среду. Самым простым является способ Дьяконова, при котором воздух (10-12 л) пропускают с помощью электроаспиратора через склянку Дрекселя, заполненную стерильным физиологическим раствором. Затем из склянки отбирают 0,1-1 мл физиологического раствора и делают посев на чашку Петри с плотной питательной средой. После инкубации подсчитывают выросшие колонии и делают пересчет на 1 м 3 воздуха.

Принцип ударного действия воздушной струи нашел реализацию в приборе Кротова. В основании цилиндрического корпуса прибора установлен электромотор с центробежным вентилятором, а в верхней части размещен вращающийся диск, на который устанавливается чашка Петри с плотной стерильной питательной средой. Корпус прибора герметически закрывается крышкой с радиально расположенной клиновидной щелью, через которую аспирируемый вентилятором воздух поступает внутрь, струя воздуха ударяется об агар, в результате чего к нему прилипают частицы микробного аэрозоля. Вращение диска с чашкой Петри при включении прибора в сеть и клиновидная форма щели обеспечивают равномерный посев по поверхности агара.

Для учета количества воздуха, прошедшего через прибор, на его передней наружной поверхности установлен реометр, позволяющий регулировать скорость аспирации воздуха от 20 до 40 литров в минуту. Зная время (продолжительность) отбора пробы и скорость пропускания воздуха, определяя количество аспирированного воздуха. На конечном этапе пересчитывают величину бактериального загрязнения воздуха на 1 м 3 .

Выработка у студентов навыков организации и проведения профилактических (гигиенических) мероприятий, ведения и пропаганды здорового образа жизни, умений использовать факторы окружающей среды, в данном случае физические свойства воздуха (химический состав воздуха), в оздоровительных целях, основана на осознанном понимании связи здоровья человека с окружающей средой, факторами и условиями жизни, трудовой деятельностью, поэтому студенты должны владеть информацией по освоению методологии профилактической медицины, приобрести гигиенические знания и умения по оценке влияния факторов среды обитания на здоровье человека и населения. Тема: « Санитарно-гигиеническая оценка микроклимата помещений (химический состав воздуха)» раскрывает вопросы, связанные с основными понятиями микроклимата, факторами их определяющими и регулирующими. Гигиенические требования к химическому составу воздуха закрытых помещений. Показатели, нормативы.