Как насекомые создают силы для полета. Полет насекомых Аэродинамика насекомых

Показать все


Сочленение крыла с телом

Крепление крыльев к телу и их движение

Способность к полетам выработалась у насекомых на протяжении эволюции: как известно, наиболее примитивные отряды могут передвигаться лишь при помощи , так как не имеют . Перемещение по воздуху более выгодно в плане скорости, и на него, к тому же, тратится куда меньше энергии, чем на ходьбу.

Крыло насекомых можно сравнить с двуплечим рычагом. Короткое плечо представлено его внутренней частью (основанием), которая скрыта под мембраной, а длинное располагается снаружи: собственно, эту видимую часть и принято считать крылом. На внутренней поверхности экзоскелета, сразу под местом сочленения крыла с телом, находится плотный выступ, который называют плейральным столбиком; данная структура играет роль точки опоры при взмахе . (фото)

Когда насекомое собирается расправить , оно сокращает специальные мышцы (), прикрепленные к спинке. Спинка перемешается немного вниз, надавливая на внутреннюю часть крыловой пластинки. Она, в свою очередь, упирается в плейральный столбик. При этом основание крыла опускается, а его наружная часть одновременно идет вверх. Если же необходимо опустить крыло, спинка снова поднимается, и все приходит в исходное положение.

Взаимодействие крыльев в полете

Взаимодействие крыльев во время полета

Насекомые перемещаются либо с помощью четырех (жуки, бабочки), либо с помощью двух . Обычно пара крыловых пластинок, расположенная на одной стороне тела, при расправлении образует единую летную поверхность. Исключение составляют лишь некоторые представители класса. Например, среди стрекоз есть как равнокрылые, у которых движутся одинаково, так и разнокрылые - у них каждое крыло перемещается по-своему. (видео)

Типы полета

Разделение полета на разновидности может проводиться с разных точек зрения. Например, в зависимости от его цели специалисты выделяют два основных типа:

  • тривиальный (обыденный) - полет с целью добычи питания, поиска партнера для и др.
  • миграционный - полет, осуществляемый для поиска новых мест обитания.

Эта градация не относится к самым удачным, так как она не отражает особенностей работы крылового аппарата насекомого в том или ином случае. Так, и саранча, и бабочки могут мигрировать на большие расстояния, однако конкретные способы, которыми они это делают, отличаются, и это надо учитывать. По этой причине самой удобной представляется функциональная классификация полета на пассивные и активные способы.

Пассивный полет

- осуществляемый без активной работы мышц, под воздействием силы тяжести, воздушных потоков или накопленной в активном полете кинетической энергии (силы инерции).

Он бывает:

Активный полет

: он возможен благодаря активным движениям . Насекомое осуществляет крыловые удары, которые и обеспечивают его перемещение вперед и вверх. Активное перемещение разделяют на две основных разновидности:
  • машущий полет - осуществляемый при помощи высокоамплитудных взмахов , во время него насекомое движется относительно земли.
  • стоячий (трепещущий) полет - насекомое производит мелкие движения, при этом оно висит в воздухе, но не летит вперед.

Способность к машущему полету имеют все крылатые отряды, а стоячий могут продемонстрировать лишь мухи, бабочки и некоторые другие, довольно немногочисленные насекомые. При этом во время стояния на месте кончик крыла описывает фигуру восьмерки. Если же насекомое смещается вперед, эта фигура «растягивается», и крыло «рисует» синусоиду. (видео)

Скорость и дальность полета

Казалось бы, чем легче насекомое, тем быстрее оно должно летать, но в живой природе все нередко происходит наоборот. Чем меньше размеры у летуна, тем труднее ему противиться току воздуха, и тем больше усилий надо прикладывать для перемещения. Поэтому быстрее всего летают средние и крупные мухи, бабочки и стрекозы. Жуки им в этом уступают: с увеличением размера тела Жесткокрылые становятся более тяжелыми и неповоротливыми. Так, например, бабочка бражника в полном безветрии способна перемещаться на 15 м за одну секунду (54 км/ч) 1046 раз в секунду.

Внешние условия, такие, как ветер и дождь, очень сильно влияют на возможность полета. Обычно насекомые стараются не взлетать при неблагоприятных условиях среды. Однако у некоторых существуют весьма необычные взаимоотношения с природными явлениями. Например, при скорости ветра до 0,7 м/с синие мясные мухи летают очень активно - такая интенсивность течения воздушных потоков действует на них стимулирующее. Однако, как только показатель достигнет больших величин, полет у этих Двукрылых сразу же становится крайне непопулярным занятием.

Во время расселения или миграций насекомые порой могут совершать достаточно длительные перелеты, но на это способны не все. Например, большинство мух в спокойных условиях преодолевают несколько метров, а затем присаживаются отдохнуть. Если лишить их такой возможности, они пролетят чуть больше километра, а затем устанут и упадут. Другие же достаточно сильны для того, чтобы перелетать на куда большие расстояния. Например, стрекоз видели посреди Карибского моря более, чем за 500 км от ближайшего участка суши. Если учесть, что такое насекомое обладает достаточным запасом сил, чтобы вернуться назад, оно показывает фантастические результаты выносливости.

), что даёт ключ к аэродинамике насекомых в целом. О прорыве сообщили Джон Янг (John Young) из университета Нового Южного Уэльса (UNSW), и команда зоологов из Оксфорда (University of Oxford).

Учёные использовали высокоскоростные цифровые видеокамеры, чтобы заснять движение саранчи в аэродинамической трубе. Исследователи анализировали происходящую в полёте деформацию, создав на основе подробной кинематики крыла трёхмерную модель гидродинамического процесса.

Крылья насекомых, как известно, — сложные структуры, имеющие множество выпуклостей, впадин и покрытые сверх того различными прожилками и морщинками микроскопических размеров. Но до сих пор было не вполне ясно, какую роль играют все эти особенности.

Потому на втором этапе исследования учёные имели дело с саранчой уже виртуальной, последовательно удалив с её крыльев вначале мелкие детали рельефа, а затем сгладив и сам необычный изгиб крыльев. Опыт показал, что мелкие детали не вносят в картину обтекания заметных перемен, а вот сама форма крыла как раз делает полёт насекомого столь эффективным. Саранча, изменённая на компьютере, существуй она в реальности, была бы куда более энергоёмкой и медленной.

Биологические системы оптимизировались путём давления эволюции в течение миллионов лет, они предлагают много примеров результативности, которые намного превосходят всё то, чего мы можем достичь искусственно. До недавнего времени у нас не было технической возможности измерить фактическую форму крыльев насекомого в полёте – отчасти из-за скорости движения, отчасти из-за объёмности самой задачи. Но теперь этот вопрос решён».

Саранча – насекомое, чрезвычайно интересное для инженеров из-за его способности к перелёту на огромные расстояния при весьма ограниченном запасе энергии. Другой занимательный персонаж в этой области – шмель. Мохнатые насекомые порой демонстрируют

Тончайшие детали строения крыла насекомых говорят об их поразительной приспособленности к высшему пилотажу. Ученые теперь смогли понять какие крылья бывают у насекомых, толковать их движения и изменения их формы с точки зрения аэродинамики; первыми применили данный подход Уэйс-Фох и Эллингтон.
Применяя различные, взаимодополняющие подходы, изучили полет и функциональную морфологию крыла многих насекомых, выявили некоторые общие закономерности. Техническое совершенство крыла оказалось поразительным.
Типичное крыло представляет собой крепкую упругую и гибкую перепонку, поддерживаемую достаточно жесткими продольными или веерообразными жилками - как правило, трубчатого сечения с гемолимфой (кровью) и воздухоносными трахеями внутри, - соединенными между собой поперечными жилками, механические ее свойства, в особенности прочность и легкость, удивительны даже для так называемой «кутикулы» насекомых - и без того превосходного природного материала. У некоторых разновидностей мембрана крыла имеет толщину всего в микрон или около того и при этом выдерживает воздействие больших подъемных сил, возникающих при полете. Как ни прочна мембрана, крылья насекомых снабжены дополнительными строениями для повышения жесткости и редко бывают совершенно плоскими.
В ряде групп, таких как стрекозы, поденки и прямокрылые (кузнечики, сверчки, саранчовые) крылья сильно гофрированы, и продольные стволы жилок идут то по гребню, то по дну складки. Многочисленные поперечные жилки придают конструкции сходство с решетчатыми фермами инженерных сооружений, где силы, стремящиеся согнуть конструкцию, превращаются в силы растяжения и сжатия отдельных элементов (звеньев). При таких поперечных соединениях достигается гораздо большая прочность и жесткость на единицу массы, чем у конструкций, лишенных поперечных связей. Описанный эффект действительно имеет место в строении крыльев некоторых стрекоз , а сама мембрана, как мы обнаружили, при всей своей гибкости может способствовать поддержанию формы крыла, работая как «распяленная кожа» перепонка не дает каркасу из жилок деформироваться.
Крыло совершает машущие движения, то есть регулярно ускоряется и замедляется, накапливая и теряя кинетическую энергию. Следовательно, здесь истончение крыла к вершине обретает особую важность, ибо центр масс крыла должен размешаться как можно ближе к основанию, чтобы свести к минимуму затраты на изменения кинетической энергии и удержать внутренние напряжения в допустимых пределах. Утончаясь, крыло делается к вершине менее жестким, но поскольку насекомые часто сталкиваются с различными препятствиями и другими особями, крылья, как правило, реагируют на соударения не жестким противостоянием, а податливо отгибаются и затем расправляются, принимая прежний вид - словно тростник под порывами ветра. Вершина гофрированного крыла стрекозы так устроена, что без всякого ущерба уклоняется и отгибается, натыкаясь на стенки садка, и успевает полностью прийти в нормальное положение еще до начала следующего полувзмаха.
Крылья способны сильно деформироваться во время полета. Хотя крылья птиц и летучих мышей также меняют конфигурацию, не надо забывать, что крылья позвоночных, будучи видоизмененными передними конечностями, имеют собственную мускулатуру, позволяющую не сгибаться в локте, запястье, сочленениях кисти. У насекомых же мышцы не идут дальше самого основания крыла, поэтому всякое активное изменение формы крыла практически исключено.
Степень влияния аэродинамических сил на форму мембраны будет определяться эластичностью мембраны, упругими силами в несущих стержнях и регулирующими силами, прикладываемыми насекомым. В случае крыльев надо принять во внимание и силы инерции, возникающие в результате машущих движений. В любом крыле можно обнаружить жесткие участки, явно предназначенные служить крылу опорой и ограничивать его деформации. Такие участки состоят из мощных жилок, или часто пучка продольных стволов, связанных между собой сильными поперечными жилками, а иногда и утолщенной мембраной крыла. Крылья насекомых - устройство куда более сложное, тонкое и интересное. На крыле есть и гасители толчков, противовесы, противоразрывные устройства и множество других простых, но удивительно эффективных приспособлений, повышающих аэродинамическую эффективность крыла.
Строение крыльев насекомых развивалось в соответствии с требованиями особого типа полета.
Крыло способно закручиваться вдоль продольной оси, так что во время взмаха угол атаки может меняться. Большинство насекомых, возможно, активно покачивает крыловую пластинку посредством мышц, отходящих от ее основания. Иногда могут подключаться инерционные и аэродинамические силы.
Может меняться прогиб крыла - выпуклость ею поперечного селения (от ведущего края к свободному). В аэродинамической трубе небольшая выгнутая вверх пластинка создает большую подъемную силу, чем плоская, и насекомые, по всей видимости, пользуются этим эффектом. Насекомые способны изменять площадь крыла, испытывающую воздействие сил. Наиболее виртуозные летуны - такие как равнокрылые стрекозы, пчелы, осы и многое ночные бабочки, а также медленно летающие тли и комары, имеют строение, которое сочетает почти горизонтальные взмахи с заметным закручиванием крыловой пластинки, так что между махом вверх и махом вниз крыло практически полностью переворачивается. Таким образом, и прогиб крыла меняется на обратный. Все механизмы и устройства без труда объясняет классическая аэродинамика. Когда скорость движения крыла уменьшается, оно быстро перегибается вниз по линии поперечного сгиба, а затем закручивается в момент подъема при резком распрямлении. Благодаря этому внешняя часть крыла спешно набирает ускорение, что, вероятно, порождает значительную подъемную силу. Для медленного полета и зависания в воздухе обычно нужно интенсивно закручивать крыловую пластинку, так что лишь немногие формы насекомых с крыльями отличаются виртуозным полетом. Веерообразные задние крылья саранчи гофрированы, а складки поддерживаются многочисленными продольными жилками, идущими по гребню и по дну каждой складки. В покое вся конструкция собирается подобно обычному дамскому вееру. При махе вниз крыло выбрасывается вперед и складки расправляются, раздвигая веер. Крыло продолжает расправляться.
Что действительно впечатляет, так это, какие крылья бывают у насекомых мух и стрекоз , их строение. Оказалось, что крылья этих особей - настоящие миниатюрные шедевры технической изобретательности. Будь крылья этого типа простыми гибкими перепонками, закрепленными только на переднем крае, они просто трепались бы по ветру как флажки, стремясь выправиться параллельно воздушному потоку и не создавая никаких полезных сил. Естественно, в природе ничего подобною не происходит: отсутствие у крыльев жесткой опоры сзади дало возможность развиться целому набору изящных внутренних механизмов, автоматически поддерживающему оптимальный против и угол атаки в непосредственной зависимости от аэродинамической нагрузки.
Чем лучше мы понимаем работу крыльев насекомого, тем большее восхищение вызывает тонкость и изящество их конструкции. В строении крыла насекомых присутствуют одновременно оба эти принципа: здесь используются материалы с самыми разными упругими свойствами, остроумно соединенные с таким расчетом, чтобы в ответ на определенные силы возникали соответствующие деформации и воздух использовался бы с наибольшей отдачей.

аэродинамика полет насекомое крыло

Работа крыла реального насекомого отличается от рассмотренной схемы тем, что только вершина крыла совершает колебания относительно неподвижного основания. Кроме того, само крыло в верхней и нижней точках взмаха испытывает вращательные колебания относительно своей длинной оси. Тем не менее, когда удалось наконец визуализировать след (то есть сделать его видимым) летящего насекомого , то оказалось, что его форма почти идентична форме следа, который образуется за крылом, совершающим колебания в плоскости, перпендикулярной к набегающему потоку (рис. 3, б) впервые трехмерную картину аэродинамического следа за летящим насекомым средних размеров с относительно невысокой частотой крыловых взмахов (30 Гц) - для бабочки - толстоголовки (рис. 4). Какова же она? Прежде всего, след представляет собой систему попеременно наклоненных к оси вихревых колец. Через отверстия колец проходит толстая волнообразно изгибающаяся струя воздуха. Если вертикальной продольной плоскостью рассечь такой след, то получим его плоское изображение (рис. 3,б), так называемую вихревую дорожку - вокруг центральной струи в шахматном порядке располагаются вихри, вращающиеся навстречу друг другу. Изменение параметров взмаха крыльев, таких как амплитуда колебания, частота, наклон плоскости взмаха к продольной оси насекомого и направлению полета, сопровождается закономерным изменением формы аэродинамического следа .

Если судить по сравнительной простоте образования и распространенности среди многих примитивных насекомых, то наиболее примитивной и, возможно, исходной формой следа можно считать ту, которая свойственна крылу, колеблющемуся в плоскости, перпендикулярной к набегающему потоку (рис. 3, б). В этом случае за телом образуется цепочка из сцепленных вихревых колец, равнодействующая импульсов которых определяет создание аэродинамической силы, направленной строго вперед (рис. 5, а). Последнее обстоятельство вынуждает многих примитивных насекомых летать с большим углом возвышения, как бы приподнимая тела над горизонталью и тем самым, направляя вихревую дорожку под углом к горизонту для того, чтобы создать подъемную силу. Образование сил в данном случае, как при махе вниз, так и при махе вверх, следует трактовать с позиции квазистационарного действия крыла .

Следующий шаг в эволюции полета состоял в том, что при махе вниз, осуществляемом с большими значениями угла атаки, чем при махе вверх, крылья стали продуцировать вихревые кольца большей интенсивности и, следовательно, меньшего размера. Кольцо, сошедшее с крыльев в конце маха вниз, имеет меньший диаметр, вследствие чего ось следа отклоняется вниз, а равнодействующая импульсов колец направлена под углом вверх (рис. 5, б). Образующая за крыльями вихревая дорожка получила название косой, а природа сил, создаваемых при взмахе крыльев, в принципе такая же, что и в предыдущем случае.

У некоторых насекомых в полете за крыльями образуется вихревой след, форма которого аналогична той, которая характерна для наиболее примитивных насекомых (рис. 5 , в). Есть, однако, существенное отличие. Исследования показали, что кольцо малого диаметра, образовавшееся при махе вниз, во время подъема крыльев расширяется. Как и в предыдущем случае (рис. 5, б), в данном случае мах вниз активнее, чем вверх, но из-за того, что кольцо малого диаметра при подъеме крыльев расширяется, след принимает вид прямой вихревой дорожки. Расширяющееся кольцо придает ускорение струе воздуха, направленной косо вниз, что, по предположению компенсирует отрицательную подъемную силу, создаваемую при махе вверх. В итоге распределение сил в цикле взмаха выглядит следующим образом: подъемная сила создается при махе вниз, а тяга - в течение всего цикла взмаха. Следовательно, генерацию сил при махе вверх можно объяснить с позиций нестационарного действия крыла. Более того, при развороте крыльев в верхней точке взмаха они отталкивают ближайшее к телу кольцо, а вместе с ним и всю цепочку назад, в результате чего насекомое получает небольшой толчок вперед. Следовательно, образование сил в верхней точке взмаха можно объяснить действием механизма, близкого к реактивному.

Роль последнего возрастает у ширококрылых бабочек, которые в полете отбрасывают дискретные вихревые кольца. У этих насекомых по мере увеличения скорости полет цепочка вихревых колец сначала размыкается в верхней точке взмаха (рис. 5, г), что достигается энергичным хлопком крыльев над спинкой, а затем и в нижней точке. В итоге при наиболее скоростном миграционном полете, а также при взлете крылья бабочки отбрасывают дискретные вихревые кольца: при хлопке крыльев в верхней точке кольцо отбрасывается назад бабочка получает толчок вперед; в нижней точке взмаха бабочка хлопает крыльями и отбрасывает кольцо вниз, получая вследствие этого толчок вверх. И наконец, у насекомых с высокой частотой взмаха крыльев отбрасывание мелких дискретных колец становится основным способом создания полезных аэродинамических сил.

Новосибирский государственный технический университет.

Реферат по курсу спец. главы физики

"Как насекомые создают силы, необходимые для полета."

Факультет: РЭФ

Группа РФ 1-92

Выполнила: Вохмина Н.В.

Новосибирск 2000.

Введение.

Кто из нас не любовался бесшумным полетом бабочек на залитой солнцем лужайке или стремительными бросками мухи – журчалки над цветущей геранью? Кто не замирал от удивления, следя за виртуозными движениями стрекоз, гоняющихся друг за другом вдоль берега? Все мы отдаем должное полетному мастерству этих крохотных существ. Но самое поразительное состоит в том, что насекомые научились летать очень давно – не менее трети миллиарда лет прошло с тех пор, как насекомые порхают и носятся над поверхностью Земли. А наши знания о том, как работает крыловой аппарат, до сих пор поверхностны.

Ключевым вопросом в изучении полета насекомых остается проблема создания аэродинамических сил в машущем полете. Выяснить природу этих сил пытались еще первые исследователи полета насекомых. Немецкий исследователь Е.Хольст в 1943 году первым экспериментально доказал, что господствовавшие ранее представления о полете насекомых как о гребном не соответствуют принципу работы машущего крыла. На смену упрощенным и неточным представлениям об отбрасывании воздуха пришел так называемый квазистационарный подход, при котором аэродинамические процессы сводились к теории стационарных состояний, поддающихся расчету методами классической аэродинамики. Исследование полета саранчи в Лондонском противосаранчовом центре (The Antilocust Research Centre), в 1956 году показало высокое совпадение расчетных данных с реально измеренными средними значениями аэродинамических сил. Несмотря на общепризнанность квазистационарного подхода, никому больше не удавалось добиться соответствия расчетных значений сил реальным, что заставляет предполагать наличие дополнительных аэродинамических сил. Кроме того, многие авторы отмечают нестационарный характер создаваемых в полете сил и необычное поведение воздушных струй за летящим насекомым.

Физические основы полета.

Локомоция в сплошных средах (воздухе и воде) настолько отличается от передвижения на границе раздела сред, что заслуживает особого внимания природа сил, делающих такое движение возможным. Сплошная среда представляет собой континуум, в котором не на что опереться, не от чего оттолкнуться. В вязкой жидкости, каковой является вода и воздух, возможны две основные формы движения: ламинарное, или слоистое, когда линии тока параллельны друг другу, и турбулентное, при котором происходит перемешивание жидкости. В турбулентных течениях скорость и давление в каждой точке пространства непостоянны и характеризуются нерегулярными высокочастотными пульсациями.

Всякое тело, движущееся в сплошной среде, испытывает на своей поверхности нормальные и касательные напряжения. Их результирующая представляет собой силу полного сопротивления среды движению тела, причем вектор силы полного сопротивления далеко не всегда совпадает с направлением движения. Проекция полного сопротивления тела на ось х в скоростной системе координат (ось х направлена вдоль скорости движения, ось z перпендикулярна к ней в горизонтальной плоскости, а ось у - в вертикальной) есть лобовое сопротивление, проекция же на ось у при положительном у есть подъемная сила, при отрицательном – в зависимости от того, где происходит движение, либо топящая (в воде), либо отрицательная подъемная сила (в воздухе). Лобовое сопротивление складывается из сопротивления трения и сопротивления давления или сопротивления формы (разности давлений впереди и позади тела). Количественно лобовое сопротивление и подъемная сила выражаются формулами:

где S – некоторая характерная площадь тела, V - скорость движения, r- плотность среды, с х и с у – безразмерные коэффициенты соответственно лобового сопротивления и подъемной силы. Они зависят от формы движущегося тела, его ориентации в пространстве, но, прежде всего от соотношения сил инерции (они проявляются в давлении на поверхность тела) и трения, которые определяются вязкостью. Соотношение этих сил дает безразмерный комплекс, численное значение которого должно быть одинаковым у подобных течений. Иными словами, речь идет о масштабном критерии, который дает возможность сравнивать движение различных объектов, имеющих разные характеристики. Этот комплекс получил название числа Рейнольдса (Re):

где l – характерный размер, m - вязкость среды, r- плотность среды.

Диапазон Re биологических объектов достаточно велик – от 10 -6 (бактерии) до 10 7 (крупные китообразные). Этот ряд начинают мелкие организмы, движение которых целиком зависит от вязкости, и заканчивают крупные плавающие, на движение которых оказывают влияние в основном силы инерции. Стоит инфузории перестать двигать ресничками, как она тут же останавливается. Рыбе же достаточно один раз ударить хвостовым плавником, чтобы сравнительно долго скользить вперед. Когда такое мелкое насекомое, как трипс, перестает двигать крыльями, оно останавливается, птица же при этом продолжает по инерции двигаться вперед.

По мере увеличения роли инерционных сил с ростом Re в движении животных все большее значение приобретает подъемная сила. При Re = 10 3 подъемная сила в три раза и более превышает лобовое сопротивление. Так, для крыла мухи – каллифоры отношение подъемной силы к лобовому сопротивлению равно 3:1, а у более крупных насекомых оно еще больше. Там, где силы инерции преобладают над силами трения, движение животных основано главным образом на использовании подъемной силы.

Строение крылового аппарата.

Локомоторным центром насекомого является грудь. Два ее сегмента – средне – и заднегрудь, которые снабжены крыльями - объединяют под общим названием "птероторакс". В крыловых мышцах груди осуществляется переход энергии из химической формы в механическую. Таким образом, птероторакс можно сравнить с двигателем летательного аппарата. Усилие сокращения мышц передается на крылья через скелет и систему мелких пластинок в корне крыла. Крылья совершают взмахи и генерируют аэродинамические силы.

Крыло насекомого представляет собой уплощенный вырост стенки грудного отдела, покрытого двумя слоями кутикулы, прочно соединенными друг с другом. Дорсальная поверхность крыла постепенно переходит в спинной отдел скелета, вентральная – в боковую стенку сегмента. В области сочленения находятся уплотненные участки скелета – склериты, их взаимное расположение между краем спинки и крылом характеризуется строгой упорядоченностью, здесь же сосредоточен ряд суставов .

Крылья насекомых в отличие от крыльев летающих позвоночных животных лишены собственной мускулатуры и приводятся в движение сокращениями мышц груди. (рис.1). Морфункциональную связь между мышцами и крыльями осуществляют скелет птероторакса и крыловые сочленения. Усилие от сокращения мышц передается сперва на спинную область сегмента – тергум, а затем на основание крыльев. Крыло насекомого представляет собой рычаг первого рода и для того, чтобы поднять или опустить его, совсем необязательно прикладывать усилие к длинному плечу – пластине крыла. Достаточно на небольшой угол опустить или поднять короткое плечо, надавив на него краем спинки (рис. 1). Последняя уплощается или выгибается под действием мышц, называемых мышцами непрямого действия.От этой схемы резко отличается работа летательного аппарата у стрекоз. У них крыловые мышцы прикрепляются непосредственно к основаниям крыльев (рис. 1). Такие мышцы, называемые крыловыми мышцами прямого действия, при сокращении тянут крылья за основания вниз, опуская их на некоторый угол. У всех прочих насекомых мускулы – опускатели относятся к крыловым мышцам непрямого действия, так как прикрепляются не к основаниям крыльев, а к двум складкам спинки спереди и сзади от крыла. Когда такие мышцы сокращаются, спинка аркообразно выгибается, приподнимая основания крыльев, вследствии чего их лопасти опускаются. Мускулы – подниматели опускают спинку, а с ней и основания крыльев, что приводит к движению крыльев вверх. У стрекоз мускулы – подниматели опускают спинку, а с ней и основания крыльев, что приводит к движению крыльев вверх. У стрекоз мускулы – подниматели прикрепляются близко друг к другу на спинке, а сама спинка маленькая и не играет большой роли в движении крыльев, однако крыловые мышцы прямого действия развиты у них сильнее, чем у других насекомых. Такая система движения крыльев неспособна обеспечить их быстрые взмахи, но обладает тем преимуществом, что каждое из четырех крыльев работает независимо. Это позволяет стрекозам совершать в воздухе различные сложные маневры. Все прочие насекомые (мухи, перепончатокрылые, клопы) мало уступают стрекозам в маневренности, которая достигается взмахами крыльев правой и левой сторон с подчас очень высокой частотой. Кроме того, большинство насекомых обладают способностью изменять наклон плоскости взмаха по отношению к продольной оси тела.

Подходы нестационарной аэродинамики.

Рассмотрим природу сил, создаваемых при взмахе крыла насекомого. Крыло, совершающее колебательные движения, то ускоряется, то тормозится, в крайних точках взмаха оно испытывает вращение вокруг своей продольной оси. Такое движение нестационарно, и для его описания непригодны методы, разработанные в классической аэродинамике для крыла или для пропеллера. Тем не менее существуют подходы, цель которых состоит в приближении существующих классических методов к сложной картине движения крыльев насекомых при взмахах. Два из них наиболее популярны. При описании машущего полета на базе квазистационарного подхода, допускают, что крыло насекомого – тонкая пластинка, обтекаемая потоком с постоянной скоростью (силовые коэффициенты постоянны по размаху и по времени), а аэродинамическое взаимодействие между правым и левым крыльями отсутствует.

В центре современной теории крыла находится постулат Чаплыгина – Жуковского: задняя кромка крыла является линией, по которой стекает поток с верхней и нижней поверхностей крыла. Как только крыло начинает двигаться (рис. 2, а, 1), на его задней кромке образуется вихрь (рис. 2, а, 2). Этот вихрь быстро растет до тех пор, пока не прекратится движение жидкости вокруг задней кромки крыла, то есть пока она не станет линией схода потока с верхней и нижней поверхностей (рис2, а, 3). Как только это произойдет, вихрь отрывается и уносится с потоком. Отрыв разгонного вихря индуцирует циркуляцию определенной величины вокруг крыла, которую можно представить так называемым присоединенным вихрем (рис. 2, а, 2). Направление его вращения противоположно таковому разгонного вихря. Наложение набегающего потока на циркуляцию вокруг крыла создает знакомое из классической аэродинамики распределение давление по аэродинамическому профилю (рис. 2, б), в связи с чем величина подъемной силы, приходящейся на единицу размаха крыла, определяется из теоремы Жуковского

где Г- циркуляция потока вокруг профиля. Зависимость коэффициентов подъемной силы и лобового сопротивления от угла атаки выражается посредством поляры Лилиенталя, которую можно представить как кривую, описываемую вектором полной аэродинамической силы R при изменении угла атаки (рис. 2,в). В свою очередь, полная аэродинамическая сила раскладывается на вертикальный (подъемная сила Y) и горизонтальный компонент (сопротивление крыла Q).

В соответствии с этим подходом обтекание крыла, совершающего взмахи, рассматривается как последовательность отдельных стационарных ситуаций, когда изменениями угла атаки и скорости набегающего потока можно пренебречь. Моментов, удовлетворяющих квазистационарному подходу, в цикле взмаха два: один из моментов приходится на большую часть нисходящей ветви траектории, другой на нижнюю треть восходящей (рис. 2, г). При движении вниз крыло создает подъемную силу и тягу, при махе вверх – тягу и отрицательную подъемную силу. Создает ли крыло какие – либо силы в другие фазы взмаха, неизвестно, так как процессы, происходящие в верхней и нижней точках траектории, не поддаются описанию с позиции квазистационарного подхода.

Можно взглянуть на проблему создания аэродинамических сил машущим крылом и с другой стороны. В результате взаимодействия движущихся крыльев с потоком воздуха последний ускоряется и отбрасывается вниз и назад. Импульс силы, получаемый насекомым, направлен вперед и вверх. Оценка создаваемых сил по импульсу потока воздуха, отбрасываемому машущими крыльями, широко применяется при изучении особого режима машущего полета, когда насекомое как бы висит на одном месте. Подобно тому, как поступательный полет стараются понять, применяя теорию крыла самолета, так для зависающего полета пытаются применить теорию пропеллера. Все теории пропеллера сводятся, в конечном счете, к тому, как образуется и отбрасывается струя воздуха. В соответствии с данным подходом параметры взаимодействия крыльев с потоком не принимаются во внимание и рассматриваются как черный ящик, на выходе которого имеется поток, ускоренный работающими крыльями.

Аэродинамические силы генерируются благодаря тому, что над машущими крыльями создается зона пониженного давления, а под ними – зона повышенного давления. Импульс силы, получаемый насекомым, равен по величине и противоположен по направлению момент сил, переданному машущими крыльями окружающей среде. Как следствие взаимодействия машущих крыльев с воздухом за летящим насекомым остается аэродинамический след, структура которого содержит информацию о природе сил, создаваемых в машущем полете.

Как образуются вихревые кольца.

Рассмотрим работу машущего крыла с позиции принципов, заложенных в обоих подходах. Как только крыло начинает двигаться, у его задней кромки образуется разгонный вихрь. Этот вихрь через концевые вихри смыкается с циркуляционным потоком вокруг крыла, образуя кольцо (рис. 3 ,а). При внезапной остановке движущего крыла слой приторможенного воздуха, наиболее близкий к поверхности профиля (пограничный слой), верхней дужки профиля, движущейся более быстро, нежели на нижней дужке, обтекая заднюю кромку, сворачивается в вихрь, который имеет противоположное по сравнению с разгонным направление вращения и такую же по величине интенсивность; он называется тормозным вихрем. Таким образом, движущее крыло несет вихревое кольцо, которое освобождается при его остановке.

Если теперь представить, что крыло совершает колебания в плоскости, перпендикулярной к набегающему потоку, то поочередно отделяющиеся от крыла разгонные и тормозные вихри образуют цепочку сцепленных друг с другом вихревых колец (рис. 3, б). Кольцо, образовавшееся при махе вниз, будет обладать импульсом, направленным вниз и назад, и в то же время крыло из-за перепада давления на его верхней и нижней поверхностях разовьет подъемную силу и тягу и отрицательную подъемную силу, а кольцо, образовавшееся в это время, будет обладать импульсом, направленным вверх и назад. Следовательно, в возмущениях, которые производят в воздухе машущие крылья, или, иначе в аэродинамическом следе, который они оставляют, как бы в зашифрованной форме содержится информация о характере взаимодействия крыльев с воздушными потоками. Структура следа – своего рода ключ к пониманию природы сил, создаваемых машущими крыльями.

Эволюция аэродинамики полета насекомых.

Работа крыла реального насекомого отличается от рассмотренной схемы тем, что только вершина крыла совершает колебания относительно неподвижного основания. Кроме того, само крыло в верхней и нижней точках взмаха испытывает вращательные колебания относительно своей длинной оси. Тем не менее, когда удалось наконец визуализировать след (то есть сделать его видимым) летящего насекомого , то оказалось, что его форма почти идентична форме следа, который образуется за крылом, совершающим колебания в плоскости, перпендикулярной к набегающему потоку (рис. 3, б) впервые трехмерную картину аэродинамического следа за летящим насекомым средних размеров с относительно невысокой частотой крыловых взмахов (30 Гц) – для бабочки – толстоголовки (рис. 4). Какова же она? Прежде всего, след представляет собой систему попеременно наклоненных к оси вихревых колец. Через отверстия колец проходит толстая волнообразно изгибающаяся струя воздуха. Если вертикальной продольной плоскостью рассечь такой след, то получим его плоское изображение (рис. 3,б), так называемую вихревую дорожку – вокруг центральной струи в шахматном порядке располагаются вихри, вращающиеся навстречу друг другу. Изменение параметров взмаха крыльев, таких как амплитуда колебания, частота, наклон плоскости взмаха к продольной оси насекомого и направлению полета, сопровождается закономерным изменением формы аэродинамического следа .

Если судить по сравнительной простоте образования и распространенности среди многих примитивных насекомых, то наиболее примитивной и, возможно, исходной формой следа можно считать ту, которая свойственна крылу, колеблющемуся в плоскости, перпендикулярной к набегающему потоку (рис. 3, б). В этом случае за телом образуется цепочка из сцепленных вихревых колец, равнодействующая импульсов которых определяет создание аэродинамической силы, направленной строго вперед (рис. 5, а). Последнее обстоятельство вынуждает многих примитивных насекомых летать с большим углом возвышения, как бы приподнимая тела над горизонталью и тем самым, направляя вихревую дорожку под углом к горизонту для того, чтобы создать подъемную силу. Образование сил в данном случае, как при махе вниз, так и при махе вверх, следует трактовать с позиции квазистационарного действия крыла .

Следующий шаг в эволюции полета состоял в том, что при махе вниз, осуществляемом с большими значениями угла атаки, чем при махе вверх, крылья стали продуцировать вихревые кольца большей интенсивности и, следовательно, меньшего размера. Кольцо, сошедшее с крыльев в конце маха вниз, имеет меньший диаметр, вследствие чего ось следа отклоняется вниз, а равнодействующая импульсов колец направлена под углом вверх (рис. 5, б). Образующая за крыльями вихревая дорожка получила название косой, а природа сил, создаваемых при взмахе крыльев, в принципе такая же, что и в предыдущем случае.

У некоторых насекомых в полете за крыльями образуется вихревой след, форма которого аналогична той, которая характерна для наиболее примитивных насекомых (рис. 5 , в). Есть, однако, существенное отличие. Исследования показали, что кольцо малого диаметра, образовавшееся при махе вниз, во время подъема крыльев расширяется. Как и в предыдущем случае (рис. 5, б), в данном случае мах вниз активнее, чем вверх, но из-за того, что кольцо малого диаметра при подъеме крыльев расширяется, след принимает вид прямой вихревой дорожки. Расширяющееся кольцо придает ускорение струе воздуха, направленной косо вниз, что, по предположению компенсирует отрицательную подъемную силу, создаваемую при махе вверх. В итоге распределение сил в цикле взмаха выглядит следующим образом: подъемная сила создается при махе вниз, а тяга – в течение всего цикла взмаха. Следовательно, генерацию сил при махе вверх можно объяснить с позиций нестационарного действия крыла. Более того, при развороте крыльев в верхней точке взмаха они отталкивают ближайшее к телу кольцо, а вместе с ним и всю цепочку назад, в результате чего насекомое получает небольшой толчок вперед. Следовательно, образование сил в верхней точке взмаха можно объяснить действием механизма, близкого к реактивному.

Роль последнего возрастает у ширококрылых бабочек, которые в полете отбрасывают дискретные вихревые кольца. У этих насекомых по мере увеличения скорости полет цепочка вихревых колец сначала размыкается в верхней точке взмаха (рис. 5, г), что достигается энергичным хлопком крыльев над спинкой, а затем и в нижней точке. В итоге при наиболее скоростном миграционном полете, а также при взлете крылья бабочки отбрасывают дискретные вихревые кольца: при хлопке крыльев в верхней точке кольцо отбрасывается назад бабочка получает толчок вперед; в нижней точке взмаха бабочка хлопает крыльями и отбрасывает кольцо вниз, получая вследствие этого толчок вверх. И наконец, у насекомых с высокой частотой взмаха крыльев отбрасывание мелких дискретных колец становится основным способом создания полезных аэродинамических сил.

Заключение.

Таким образом, объяснение природы сил, создаваемых машущими крыльями, нельзя свести исключительно к квазистационарному действию крыла. У многих насекомых при взмахе вверх, когда ранее образовавшееся кольцо расширяется и ускоряет струю воздуха назад, возникает кратковременный импульс силы, происхождение которого следует отнести на счет нестационарного действия крыла. Значение механизма, аналогичного реактивному, когда насекомое отбрасывает назад вихревые кольца, резко усиливается по мере того, как непрерывная цепочка колец разрывается. Существенную роль в этом играют особые движения крыльев, в частности их хлопок в верхней или нижней точке взмаха. Немецкий исследователь В. Нахтигаль рассмотрел несколько особых движений крыльев, которые могут иметь значения с точки зрения создания аэродинамических сил способом, отличным от квазистационарного. Эти движения крыльев порождают различные, еще недостаточно изученные нестационарные эффекты, роль которых в полете, несомненно, возрастает по мере того, как наблюдается рост частоты взмаха крыльев.

Литература.

1. Шмидт – Ниельсон К. Размеры животных: Почему они так важны? М.: Мир, 1987. 260с.

2. Бродский А.К. Механика полета насекомых и эволюция их крылового аппарата. Л.: Изд-во ЛГУ, 1988. 207 с.

3. Захваткин Ю.А. Курс общей энтомологии. М.: Агропромиздат, 1986. 320 с.

4. Brodsky A.K. The Evolution of Insect Flight. Oxford: Oxford Univ Press, 1994. 229 p.

5. Бродский А.К., Львовский А.Л. Пауки, насекомые. Л.: Ленинздат, 1990. 140 с.


Но и бабочки, жуки, стрекозы и другие насекомые, которые радуют глаз своими причудливыми формами, рисунком и гаммой цветов, а также пением, грациозными движениями. Значение насекомых для жизни человека хорошо освещено в учебной и научно-познавательной литературе. Поэтому мы остановимся лишь некоторых вопросах, дополняющих сведения о сотрудничестве человека с этими удивительнейшими представителями...

Дефолиация, т. е. уничтожение листвы. Голодные личинки бабочек могут буквально оголять поля, огороды и даже лесные насаждения. 1. Характеристика отряда Чешуекрылые, или Бабочки Отряд бабочек именуется «лепидоптера», что значит «чешуекрылые» - второй по числу видов (после жуков) отряд насекомых с полным превращением. В настоящее время известно 140 тысяч, а по некоторым данным – даже 200 ...

Появляющихся на свет малышей дана разная степень готовности к самостоятельной жизни, в зависимости от их видовой принадлежности. При всей кажущейся простоте или сложности репродуктивного поведения насекомых – это всегда удивительно целесообразный комплекс инстинктивных действий. Он связан с сохранением видовой жизни животного. Большинство насекомых характеризуется высокой плодовитостью и не...

Половых партнеров, отпугивания соперников и врагов, а высокочувствительное обоняние способно улавливать запах этих веществ даже за несколько километров. Многие в своих представлениях связывают органы чувств насекомых с головой. Но оказывается структуры, ответственные за сбор информации об окружающей среде, находятся у насекомых в самых различных частях тела. Они могут определять температуру...