Косметология. Как избавиться от влажности и сырости в доме О важных особенностях воды

Ежедневно на кожу каждого человека оказывают влияние различные негативные факторы, такие как погодные условия, окружающая среда, экологическая обстановка в регионе проживания. Наиболее негативное воздействие на кожный покров оказывают лучи ультрафиолета при нахождении на открытом солнце или при обычном загаре. Но важное значение имеет и влияние влажности воздуха на кожу, так как здесь существует немало тонкостей.

Влажность воздуха и кожа

Конечно, каждый человек замечал то, что в жаркие дни и сухую погоду, а также при длительном нахождении на сухом ветру, очень хочется пить. Организм в это время требуют большого количества жидкости, так как теряет воду по причине внешних природных факторов и нуждается в восполнении этих потерь.

Однако, даже при употреблении больших объемов жидкости при наличии сухого воздуха, клеткам кожи не хватает влаги для нормального функционирования, так как она в большом количестве испаряется через кожу.

Влажностью воздуха называют определенный показатель количества, содержащейся в нем воды. Показатель этот имеет особую важность для общего состояния человека и его кожи, а также влияет на степень комфорта нахождения в помещении или на улице.

Например, в летнее время, в наиболее жаркие дни, большинству людей очень некомфортно находиться на улице из-за того, что трудно дышать. Объясняется это тем, что при нагревании воздух насыщается влагой (ее испарением с поверхности водоемов и почвы), при этом, чем выше температура воздуха, тем больший объем воды он может в себя впитать. В результате в жаркие дни, особенно если перед этим прошел дождь, люди ощущают серьезный дискомфорт и проблемы с дыханием. Конечно, такое состояние отражается и на коже, так как из-за жары начинается усиленное потоотделение, что может привести к серьезным потерям жидкости.

Примерно тоже самое происходит и в зимнее время, когда на улице сильные морозы. В этот период влажность воздуха обычно понижается, поскольку из-за низкой температуры не происходит испарения воды, но при этом воздух также готов принимать влагу и впитывать ее. В результате на морозе из-за сухости воздуха очень сложно дышать. С дыханием выходит много пара, молекулы которого сразу впитываютя в воздух. В результате организм теряет большие объемы воды. Воздух отнимает воду и у кожи лица, а также у других открытых участков тела. Именно поэтому после длительного пребывания на морозе, как и на жаре, кожа становится сухой и обезвоженной.

Как правило, если температура воздуха высокая, но при этом влажность воздуха понижена, это переносится людьми значительно легче и меньше отражается на состоянии кожи. При низкой температуре, сопровождающейся высоким уровнем влажности воздуха, может наступить быстрое переохлаждение.

Чем опасно нарушение уровня влажности

Наиболее комфортными показателями влажности воздуха для состояния человека, его здоровья и сохранения правильного водного баланса в организме и в клетках кожи является значение от 30% до 60%. Если показатели отклоняются в какую-либо сторону, это может привести к разным негативным последствиям.

При низкой влажности воздуха кожа из-за сильного испарения влаги очень быстро пересыхает, обезвоживается, начинает шелушиться и трескаться. В результате появляются повреждения кожного покрова, которые не всегда заметны глазу, но, тем не менее, открывают свободный доступ в организм разнообразным патогенным микроорганизмам, которые могут спровоцировать образование воспалительного процесса и прыщей, а также заражение серьезными заболеваниями.

Кроме этого, при слишком высокой влажности в жаркое время года организм усиленно потеет, пытаясь охладить кожу и защитить ее от перегрева, не только теряя при этом воду, но и образуя на поверхности кожи липкую пленку, на которую прилипает пыль и прочие загрязнения. В результате может появиться не только обезвоживание кожи, но и большое количество прыщей, вызванное закупоркой пор и сальных протоков.

Если влажность воздуха высокая, в организме начинается увеличение отдачи тепла одновременно с интенсивным выделением пота, в результате чего возникает серьезная опасность перегрева. При этом страдает не только кожа человека, но и весь организм. При длительном пребывании в помещениях с высокой влажностью воздуха у человека может наблюдаться общее снижение иммунитета, в результате которого возникают не только заболевания кожи, но и разные болезни внутренних органов, а также происходит обострение имеющихся заболеваний.

Конечно, утверждать однозначно о том, что при повышении или понижении уровня влажности воздуха у человека обязательно начнутся проблемы с кожей нельзя, поскольку каждый организм индивидуален и его реакцию на определенные изменения окружающей среды, предугадать просто невозможно. Реакция кожи разных людей на изменение окружающей среды будет различной, при этом, если на кожу одного человека определенный уровень влажности воздуха оказывает положительное влияние, то в отношении кожи другого человека оно может оказаться отрицательным.

Например, при сухой коже высокий уровень влажности воздуха будет полезен, так как вода в воздухе станет дополнительным источником увлажнения эпидермиса. А низкий уровень влажности при коже сухого типа будет провоцировать появление шелушения и обезвоженности. Кроме этого, влажность помогает и разглаживать морщины. Однако при коже жирного типа высокий уровень влажности может стать фактором, вызывающим появление прыщей. Поэтому совсем нередко состояние кожи зависит от того, какая влажность воздуха в квартире или ином помещении.

В большинстве случаев в зимнее время в квартирах и домах воздух имеет низкий уровень влажности, чему способствует работа различных отопительных приборов. В результате кожа становится более сухой, истончается, на ней могут появиться признаки старения. Поэтому в зимний период кожа нуждается в дополнительном уходе, увлажнении и питании. Рекомендуется также увлажнять и воздух в квартире, используя для этого, специальные увлажнители воздуха или просто поставив в комнатах емкости с чистой водой, испарения которой будут обеспечивать дополнительную влажность.

Как правило, чтобы избежать нежелательных последствий и осложнений, косметологи рекомендуют подстраиваться под определенный уровень влажности воздуха, обеспечивая коже необходимые условия. При низком уровне влажности кожу необходимо обрабатывать кремами и прочими средствами для глубокого интенсивного увлажнения и питания. Такие средства имеют достаточно плотную структуру, и их применение помогает предотвратить обезвоживание. Однако при высоком уровне влажности также не следует забывать об увлажнении, особенно в летний период. Но здесь кремы с плотной структурой не подойдут. Летом лучше всего использовать увлажняющие гели, которые быстро проникают в кожу и не создают лишней тяжести.

Виде о сухом воздухе в квартирах

Уровень влажности в доме играет важнейшую роль в формировании микроклимата, обеспечивая здоровую и комфортную атмосферу, либо, наоборот, способствуя развитию болезнетворных микроорганизмов, росту плесени, размножению пылевых клещей, вызывающих аллергию, возникновению неприятных запахов и дискомфорта. Повышенный уровень влажности строительных конструкций, элементов и материалов, сниженная или отсутствующая возможность для естественного или принудительного просыхания приводит к постоянному или временному накоплению влаги в толще или на поверхностях материалов, что может способствовать увеличению их теплопроводности, ускорению коррозии или биологического разрушения.
Недостаточный уровень влажности в доме также приводит к дискомфорту внутренней атмосферы дома.

Оптимальным уровнем относительной влажности в доме считается влажность от 30 до 50%. Относительная влажность определяется отношением количества водяного пара в воздухе к максимально возможному его содержанию при данной температуре. Чем выше температура воздуха, тем больше водяного пара может в нем содержаться. Температура, при которой воздух не может содержать дополнительного количества водяного пара называется "точка росы ". Невысокий уровень относительной влажности обеспечивает максимальный комфорт для человека, не способствует развитию потенциально вредоносных микроорганизмов (пылевых клещей) и обеспечивает сохранность строительных конструкций и материалов.

Признаки повышенной влажности в доме.

Неприятные запахи. Интенсивность запахов в помещении увеличивается с ростом влажности. Усиление бытовых запахов может свидетельствовать о росте влажности в атмосфере помещения. Затхлый запах может сигнализировать о росте плесени, грибков или гнили.

Ощущение сырости. Свидетельствует о повышении влажности и нарушении вентиляции помещения.

Выпадение конденсатов, образование изморози и льда на холодных поверхностях. Конденсат, иней, лед на холодных поверхностях сигнализирует об избытке влаги в помещении и о наличии недостаточного утепления внешнего контура здания и о возможных утечках теплого воздуха через щели.

Изменение цвета, фактуры и влажности поверхностей материалов. Коробление, набухание, деформация, образование трещин, пузырей, крошение, отслаивание, обесцвечивание, потемнение, появление темных или цветных пятен или прожилокна поверхностях материалов может свидетельствовать о повышенной влажности в помещении. Рост плесени или грибка сопровождается появлением пятен белого, оранжевого, зеленого, коричневого, синего или черного цветов. Интенсивное размножение грибков начинается при относительной влажности в помещении 70%.

Образование пузырей, трещин краски свидетельствует о капиллярном подпоре влаги в пористых структурах. Выпадение солей, порошкообразных веществ на бетонных поверхностях является показателем наличия влаги, которая испарялась с поверхности бетона. Образование пластинчатых сколов на поверхности бетона говорит о замерзании избыточного количества влаги в толще материала.

Биологическое разрушение дерева. Гниль и распад деревянных конструкций указывает на постоянное повреждающее воздействие влаги, которое создает оптимальные условия для роста и размножения разрушающих дерево микроорганизмов. При биологическом разрушении древесина изменяет свой цвет, становится рыхлой и мягкой, что может привести к нарушению целостности деревянных конструкций под нагрузкой.

Влажные трубы. «Потеющие» холодные трубы являются признаком повышенной влажности в доме. Текущая холодная вода значительно охлаждает поверхности труб, на которых конденсируется избыточная влага.

Показания гигрометра. Превышение относительной влажности в доме более 50% может свидетельствовать о наличии проблем с влажностью. При этом даже низкий уровень влажности в атмосфере дома не гарантирует отсутствие проблем с избыточной влажностью в конструкциях или отдельных помещениях (подвалы, чердаки и т.п.).

Источники повышенной влажности в доме.

  1. Интерстициальная влага. Пористые строительные материалы, такие как дерево, бетон и другие содержат определенное количество влаги, находящейся в структуре материала. Влага из материалов способна при подходящих условиях (отсутствии паронепроницаемых барьеров, повышении температуры материала, наличия разницы в давлении водяных паров) начинать испаряться во внутреннюю атмосферу дома, повышая уровень влажности. Объем сезонных испарений из строительных материалов может достигать от 3 до 8 литров воды в сутки. Во внутреннюю среду вновь построенного или отремонтированного дома влажные строительные материалы испаряют в среднем до 5 литров воды в сутки.
  1. Магистральная влага. Влага может попадать в дом в виде дождя, снега или грунтовых вод, протечек водопровода и канализации, накопительных емкостей для воды, просачиваясь через неплотности влагоизолирующих сред (кровля, стены, гидроизоляция, трубы, запорная фурнитура, емкости).
  1. Капиллярная влага. Капиллярная влага поступает в домпо микроскопическимсообщающимся порам таких материалов как бетон, кирпич, дерево из внешней влажной среды при отсутствии гидроизолирующих слоев или слоев, разрывающих капилляры. Даже наличие фундаментной плиты не является препятствием для влаги, попадающей в дом из грунта, если под плитой нет слоя гидроизоляции и гранулированного минерального слоя (крупный песок, щебень, гравий), разрывающего грунтовую капиллярную сеть. Количество влаги, поступающей в дом при нарушениях гидроизоляции фундамента, может быть весьма значительным – до 50 литров воды в сутки.
  1. Пароперенос влаги через пористые материалы. Под воздействием разницы давления водяные пары могут проникать через пористые материалы, такие как ячеистые бетоны или дерево. Способствовать увеличению влажности может как избыточный пароперенос при паропереносе извне-вовнутрь, например, в жарком и влажном климате, так и недостаточный или заблокированный пароперенос изнутри-кнаружи. Значительное увлажнение строительных конструкций происходит при испарении влаги из неизолированного грунта под домом, особенно при отсутствии достаточной вентиляции подпольного пространства.
  1. Перенос влаги с потоком воздуха. Потоки воздуха через щели в строительных конструкциях, на неуплотненных разделах сред, вокруг проходящих через стены и перекрытия коммуникации или открытые проемы, окна или двери способны переносить насыщенные водяные пары с улицы. С потоками воздуха в дом поступает до 98% всей влаги. На все остальные пути приходится не более 2% объема влаги в доме. Некотролируемый приток холодного зимнего воздуха, содержащего пониженное количество влаги, может привести к обратному эффекту: пересушиванию воздуха в помещении. Недостаточная или отсутствующая вытяжная вентиляция способствует повышению уровня влажности в доме. Влагоперенос с вентиляционными воздушными потоками позволяет максимально быстро и эффективно снижать уровень влажности в доме.
  1. Человеческий фактор образования влаги внутри дома. Человек сам по себе испаряет достаточное количество влаги во внутреннюю среду жилого помещения за счет дыхания и потоотделения. Семья из 3-4 человек испаряет до 200 мл влаги в час (4,8 литра за 24 часа). Немало влаги образуется при хозяйственных, бытовых и гигиенических мероприятиях. При влажной уборке испаряется до 150 мл влаги с квадратного метра площади. Приготовление пищи на семью из 3-4 человек в течение дня (завтрак, обед и ужин) и мытье посуды приводит к испарению до 3 литров влаги. Приготовление пищи на газу увеличивает количество влаги еще на 1 литр. Сушка белья в помещении приводит к испарению от 4 до 6 литров влаги. Кроме повышения влажности в доме сушка белья в помещении приводит к испарениям остатков моющих средств и увеличению ворсинок в воздухе, что может привести к провокации аллергических заболеваний. При приеме душа испаряется 100 мл влаги каждые 5 минут. К увеличению влажности в доме приводит приготовление пищи в посуде без крышек, значительное количество живых растений в горшках, открытые аквариумы, работа увлажнителей воздуха.

Изнутри или снаружи? Капиллярный тест. Для определениявнешнего или внутреннегоисточника образования избыточной влажности и сырости на стенах или полу проводится капиллярный тест:

  1. Найдите участок увлажненной стены или пола.
  2. Тщательно высушите его с помощью салфеток и фена.
  3. Закройте исследуемый участок листом паронепроницаемого пластика или пленки.
  4. Тщательно приклейте материал к поверхности водопроводной клейкой лентой, не пропускающей влагу.
  5. Через 2-3 дня исследуйте лист пластика и поверхность стены или пола под ним. Если влага проступила под листом, это означает капиллярное происхождение поступающей влаги через строительные конструкции. Если влага конденсируется на наружной поверхности пластика – источник повышенной влажности находится внутри помещения. Если влага определяется и под листом и на листе – это может означать наличие двух путей поступления влаги одновременно.

Варианты решения проблем с избыточной влажностью в доме.

Фундамент и подвал.

Уменьшить вероятность поступления влаги капиллярным путем через фундамент можно следующими путями: отводом поверхностных вод, понижением уровня грунтовых вод и гидроизоляцией фундаментов и подземных конструкций здания.

Комплекс мероприятий включает:

  1. Устройство системы сбора осадков с кровли и отвода их в ливневую канализацию. Предпочтительна закрытая система водосточных труб с подачей осадков непосредственно в ливневую канализацию, без промежуточного излива собираемых вод на отмостку или грунт. При открытой системе поверх отмостки устанавливаются водоотводящие лотки. При наличии системы сбора и отвода осадков с кровли ее необходимо регулярно прочищать от листьев и другого мусора, способного затруднять ее работу.
  2. Устройство грунтового уклона в направлении от здания. Минимальная рекомендуемая ширина уклона составляет 150 см при величине подъема у дома 7 см, а оптимальная – 3 метра при подъеме 15 см.
  3. Широкая гидроизолирующая отмостка вокруг здания поможет уменьшить обводнение прилегающих к фундаменту и подвалу грунтов. Не обязательно устраивать бетонную отмостку: можно использовать более экономичную мягкую подземную отмостку из гидроизолирующих полимерно-битумных материалов, герметично соединенных путем наклейки или наплавления с поверхностной гидроизоляцией фундамента.
  4. Гидроизоляция фундамента выполняется в виде наклейки или наплавления полимерно-битумных гидроизолирующих материалов на грунтованную праймером бетонную поверхность. Гидроизоляция наносится на все грани бетонных поверхностей фундамента, а не только на наружные. Для гидроизоляции не стоит использовать рубероид – его срок службы до образования трещин не превышает 5-7 лет. Снизить подпор грунтовых вод поможет установка вертикальной дренирующей мембраны типа «Дельта».
  5. Устройство кольцевого дренажа вокруг фундамента с отводом вод ниже по рельефу, либо в дренажные водоемы или колодцы. Рекомендуется утроить как минимум два дренажных кольца – рядом с фундаментом и рядом с краем гидроизолирующей отмостки вокруг фундамента.
  6. При строительстве нового здания и закладке фундамента и подземных конструкций подвалов обязательно устраивают утрамбованные подушки из крупного песка, песчано-гравийной смеси или щебня (толщиной минимум 10 см)для снижения и разрыва капиллярного подпора. Под фундамент плиту укладывается гидроизоляционный материал либо плиты пенополистирола, имеющие практически нулевую влагопроницаемость. Все бетонные конструкции, которые будут находиться в грунте, защищаются несколькими слоями гидроизоляции.
  7. Установка защитной пластины-козырька для защиты от брызг осадков и проникновения насекомых по всему периметру фундамента, накрывающей всю верхнюю грань фундамента, позволит значительно улучшить гидроизоляцию стен от фундамента в дополнение к стандартным полимерно-битумным материалам.
  8. Не складируйте дрова на отмостке вдоль стен здания – это ухудшает вентиляцию фундамента и стен, что может привести к росту увлажнения конструкций.

Подполья.

При строительстве вновь возводимых зданий лучше избегать устройства подполий, как теплотехнически и конструкционно нерациональных элементов, заменяя их на утсройство полов по грунту, либо на фундамент плиту. При желании иметь подполье, либо при наличии подполья в уже существующем здании для контроля влаги, поступающей через подполье, проводят следующие мероприятия:

  1. Изоляция грунта. Грунт под зданием в пределах фундамента укрывается битумно-полимерным гидроизолирующим материалом, толстой ПВХ или бутил-каучуковой пленкой. Края пленки с нахлестом приклеиваются на внутреннюю поверхность фундамента. Листы проклеиваются между собой с нахлестом не менее 15 см. При наличии свайного или свайно-ростверкового фундамента производится укрытие грунта без приклейки гидроизоляции к сваям. Гидроизолирующий материал в подполье укрывается слоем песка 10 см или стяжкой толщиной 5см для обеспечения его механической защиты.
  2. Адекватная вентиляция подпольного пространства. При отсутствии изоляции грунта под зданием в фундаменте должны быть устроены продухи общим сечением не менее 1/400 (требования Международного строительного кода - 1/150) от площади подполья. Продухи должны располагаться напротив друг друга для обеспечения сквозной вентиляции и не далее чем в 90 см от внутренних углов фундамента. Минимальная площадь сечения одного продуха составляет 0,05 м2 (например, 20 на 25 см). При наличии правильно выполненной изоляции грунта от продухов в фундаменте можно отказаться.

Стены

Нижние части наружных стен , стены, к которым прилегают кровли пристроек или нижних уровней наиболее подвержены воздействию отраженных брызг осадков и скоплению снега. Для предупреждения переувлажнения этих частей стен выполняются следующие мероприятия:
  1. Минимальная рекомендованная высота фундамента или цоколя под наружной частью стены должна составлять 60 см. Если высота фундамента меньше, то необходимо защищать стену отражающим брызги козырьком, либо устраивать нависающие над фундаментом стены с гидроизоляцией нижней грани. Также нижние 50 см наружных стен из минеральных материалов, либо с отделкой из них можно защитить от воздействия влаги кальматирующей гидрофобной пропиткой.
  2. Стены, к которым примыкают кровли можно защитить слоем гидроизоляции с укрытием пристенным металлическим профилем.
  3. Нижние части наружных стен не стоит закрывать высокими растениями, складировать рядом дрова, так как это ухудшает циркуляцию воздуха и естественное высыхание стен. Кроме того, отсадки, отражаясь от предметов у наружных стен, могут попадать на менее защищенные от влаги участки стен.

Особое внимание стоит уделить гидро-пароизоляции вокруг окон и дверей . Окна должны быть оборудованы отливами с капельниками, препятствующими стеканию капель по нижней поверхности отлива к стенам. Большинство окон и дверей в настоящее время устанавливается с помощью пенополиуретановой монтажной пены. Пенополиуретановая пена с открытой ячеистой структурой не является препятствием для паропереноса и проникновения влаги.

Поэтому на сразу же после отвердевания монтажная пена должна укрываться пароизоляционной лентой изнутри и гидроизоляционной паропроницаемой лентой снаружи. Для уплотнения зазоров можно использовать предварительно сжатые саморасширяющиеся уплотнительные ленты – ПСУЛ. Откосы вокруг окон и дверей лучше дополнительно утеплить для предупреждения их охлаждения и образования конденсатов.

Наружная отделка и навесные фасады на стенах.

Основное правило устройства многослойных стен для предупреждения их переувлажнения сформулировано в пункте 8.8 СП 23-101-2004 «Проектирование тепловой защиты зданий»: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. Это означает, что материалы наружной отделки не должны препятствовать естественному паропереносу через стеновые материалы. Такая ситуация может возникнуть при наружном покрытии паропроницаемых стеновых материалов, таких как автоклавный газобетон, паронепроницаемыми утеплителями, кирпичной кладкой , штукатурками и красками, устройством навесных паронепроницаемых фасадов без вентиляции зазора между стенами и фасадом.

Плоские уступы на стенах, не оснащенные защитными козырьками или уклонами для отвода воды, уступы с отрицательным уклоном на стенах являются местом сбора осадков с последующим увлажнением стен и проникновением влаги в дом капиллярам. Непрочищенные водостоки приводят к попаданию переливающейся воды на стены.

Внутренняя пароизоляция стен. Основное назначение внутренней пароизоляции – снижение или предупреждение паропереноса через паропроницаемые стеновые материалы. Устройство правильной пароизоляции особенно актуально для сохранения свойств пористых, ячеистых и волокнистых теплоизоляционных или конструкционно-теплоизоляционных стеновых материалов. При увлажнении теплоизоляционных материалов их теплопроводность растет в геометрической прогрессии. Основная ошибка, совершаемая при установке пароизоляции, заключается в отсутствии герметизации соединений листов пароизоляционных материалов и их примыканий к стенам и конструкциям. Обязательно запечатывать все отверстия или проколы в пароизоляции, которые могут возникнуть во время строительства. Пароизоляционный материал сам по себе способен противостоять лишь диффузионному переносу влаги. Однако, как известно, 98% влаги переносится не диффузией, а с потоками воздуха. При наличии микрозазоров и щелей в стыках и примыканиях эффективность пароизоляции значительно снижается, а риск увлажнения стеновых материалов значительно увеличивается. Сплошной дополнительный слой пароизоляционной штукатурки или краски на внутренних поверхностях помещений позволит снизить риски увлажнения стен от внутренних источников влаги.

Холодные чердаки. Основным источников влаги в чердачных помещениях служитее проникновение с утечками воздуха из нижележащих помещений через неплотности чердачного перекрытия. Для обеспечения нормального влажностного режима чердака он должен хорошо вентилироваться через вентиляционные проемы во фронтонах, слуховые окна. Рекомендуется, чтобы не менее половины вентиляционных отверстий находилось на 1 метр выше к коньку по отношению к остальным. В вальмовых кровлях должна быть предусмотрена коньковая вентиляция. Для предупреждения выпадения конденсатов все проходящие через холодный чердак вентиляционные и дымовые трубы должны быть утеплены. Запрещается выводить вытяжную вентиляцию помещений в чердачное пространство.

Теплые чердаки. Основной ошибкой при устройстве теплых кровель является недостаточный вентиляционный зазор, отсутствие коньковой вентиляции и глухая подшивка свесов, блокирующая подкровельную вентиляцию. Существующие коньковые вентиляционные отверстия, кровельные вентиляторы и софитная перфорация может забиваться пыльцой растений, паутиной и листьями, что приводит к ухудшению вентиляции подкровельного пространства теплых кровель.

Вентиляция помещений. Вентиляция играет основную роль в удалении избыточной влаги из дома. Естественной вентиляции обычно недостаточно для эффективной вентиляции мест с повышенной влажностью: в санузлах, в саунах, на кухнях, в технических помещениях. В таких помещениях рекомендуется устанавливать локальную вытяжную вентиляцию, которая позволяет быстро удалить избыток влаги. Вытяжные вентиляторы могут настраиваться на автоматическое включение при достижении определенного уровня влажности в помещении. Рекомендуемый минимальный уровень вентиляции для ванных комнат составляет от 80 до 100 кубических футов в минуту (CFM) и 150 CFM или более для кухонь. Минимальный рекомендуемый диаметр воздуховода для местной вентиляции составляет 100 мм. Простейшим способом устройства принудительной местной вытяжной вентиляции является вывод воздуховода через стену.
Лучший результат по контролю влажности в доме достигается при установке системы приточно-вытяжной вентиляции всего дома. При расчете приточной вентиляции дома требуемый объем воздушного потока рассчитывается по формуле: CFM = 0,03 х площадь дома + 7,5 х (количество спален + 1).
При отсутствии в доме системы приточной вентиляции рекомендуется устанавливать окна с клапанами микровентиляции и стеновые клапаны притока воздуха КПВ. Особенно важно иметь приточную вентиляцию в помещениях с отопительными приборами с открытым пламенем, на кухнях с газовыми приборами и в котельных.

Контроль внутренних источников влаги.

Значительный вклад в повышение влажности могут вносить открытые или скрытые (в стенах, перекрытиях, подпольях, грунте) протечки водопроводных труб и канализации. Установить наличие скрытой протечки водопровода можно по счетчику расхода воды, который покажет расход воды при отсутствии ее потребления.

Следует предусмотреть сушку белья на открытом воздухе, либо в сушильной машине. Открытые аквариумы можно закрыть крышкой. В доме следует хранить запас дров не более чем на 1-2 дня. При проживании большого количества людей в маленьком по площади помещении, можно использовать механический осушитель воздуха.

Заключение.
Задуматься от контроле влажности в доме следует на этапе его проектирования, предусмотрев все необходимые конструкционные барьеры для проникновения влаги в дом и его конструкции как снаружи, так и изнутри. Планировка дома, расположение окон и дверей, элементов естественной и принудительной вентиляции должны способствовать эффективному воздухообмену и удалению влажного воздуха.

Вдумчивый анализ причин возникновения повышенной влажности в уже построенном доме поможет принять верное решение о возможных путях решения возникших проблем с избыточной влажностью.

Зачем нужны водоотталкивающие пропитки, на каких законах физики основано действие Durable Water Repellent, какими бывают современные DWR и как выбрать подходящую пропитку для защиты одежды и снаряжения от влаги

Обладатели современной туристической одежды или обуви часто сталкиваются с рекомендациями производителей периодически обрабатывать изделия водоотталкивающей пропиткой DWR. Это не вызывает возражений, когда речь идет, например, о флисе, но к чему пропитка мембранной одежде? Ведь наличие мембраны уже подразумевает, что изделие будет надежно защищать от дождя или мокрого снега.

О том, как работает сама мембрана, мы писали в статье о . Но эффективность мембраны зависит от многих факторов и не в последнюю очередь от DWR.

Даже самая дорогая мембрана разочарует своего владельца, если дополнительное водоотталкивающее покрытие не будет защищать ее от внешней влаги.

Для чего нужна водоотталкивающая пропитка

Строго говоря, водоотталкивающая пропитка нужна не мембране, а лицевой стороне мембранного сэндвича. Именно наружный слой одежды или обуви в первую очередь подвергается воздействию влаги. К чему приводит намокание внешнего слоя?

    Вода, впитанная волокнами, заполняет все воздушные промежутки в ткани и создает препятствия для свободного выхода испарений. Дышащая способность мембраны резко снижается — испарениям некуда деться и человек начинает потеть.

    В результате замещения воздуха водой повышается общая теплопроводность слоя одежды — в ней становится холоднее.

    Пропитанная водой наружная ткань тяжелеет.

Для того чтобы избавиться от этих проблем, как раз и применяется пропитка DWR.

Как работает водоотталкивающая пропитка DWR

Durable Water Repellent (DWR) — долговременная защита от влаги. Чтобы понять принцип работы пропитки, необходимо вспомнить о некоторых физических свойствах жидкости, а именно об эффекте поверхностного натяжения и капиллярных явлениях, которые еще называют фитильным эффектом.

О важных особенностях воды

Силы поверхностного натяжения возникают из-за того, что молекулы воды притягиваются друг к другу. Взаимное притяжение молекул заставляет воду собираться в капли. Влажный конденсат на охлажденной поверхности, мелкий водяной бисер или барабанящий по зонту дождь — все это водяные капли различных размеров. Силы взаимного притяжения молекул невелики, и крупную каплю можно легко разрушить. Однако законы физики нарушить сложнее: большая капля разобьется на сотни мелких, но принцип их формирования останется таким же.

Какой бы маленькой ни была капля, «сито» климатической мембраны не может пропустить ее сквозь себя — даже самые крошечные из капель слишком велики, чтобы проникнуть сквозь мембранные поры. Чем больший объем воды вбирает в себя капля, тем большая площадь на поверхности материала освобождается от водяной пленки. Это значит, что площадь, через которую испарения выводятся от тела, увеличивается. Можно сказать, что «упитанная» и ясно очерченная капля — залог успешной работы мембраны.

Если притяжение между молекулами воды и молекулами твердого тела намного слабее, чем притяжение молекул воды друг к другу, то капля лежит на поверхности твердого тела и не смачивает его

Но может ли что-то разрушить каплю, размазать ее до бесформенной пленки на поверхности материала? К сожалению, да. Дело в том, что молекулы воды притягиваются не только друг к другу. Между молекулой воды и молекулой любого другого вещества, с которым вода соприкасается, тоже возникает притяжение. В некоторых случаях оно настолько сильно, что молекулы воды буквально тянутся к молекулам иного материала, и если это притяжение сравнимо с силами поверхностного натяжения, капля растягивается, растекается по материалу. В таких случаях обычно говорят, что материал хорошо смачивается.

Но если притяжение между молекулами твердого тела и молекулами воды слабое, то смачивания не произойдет.

Если притяжение между молекулами воды и молекулами твердого тела сильнее, чем притяжение молекул воды друг к другу, то капля растекается по поверхности твердого тела и впитывается в его поры — поверхность твердого тела смачивается

Большая часть текстильных материалов соткана из нитей, а нити скручены из волокон. В их переплетениях множество воздушных полостей-капилляров, и если материал хорошо смачивается, то он втягивает воду во все эти полости. Этот втягивающий эффект и называется фитильным или капиллярным. Понятно, что пока материал пропитан водой, ни о какой транспортировке пара сквозь него не может идти и речи.

Мы знаем, как ведет себя вода на поверхности, обработанной жиром, — она скатывается в капли, похожие на бисер, не растекается и легко стряхивается. Жир не притягивает воду. И мы помним, что происходит с футболкой, когда мы попали под дождь или вспотели, — молекулы воды притягиваются к молекулам материала, и по тончайшим капиллярам жидкость распределяется по ткани, смачивая ее волокна.

Как избежать капиллярного эффекта? Как ослабить притяжение между молекулами воды и молекулами вещества, из которых состоят волокна ткани? Как предотвратить смачивание и сохранить каплю воды «упитанной», самостоятельной и независимой?

Именно эту задачу и решает DWR.

Фокус с подменой

Законы физики изменить нельзя, но что мешает использовать их в своих интересах? Смачиваемость различных материалов зависит от многих факторов, прежде всего от свойств и структуры волокна, шероховатости поверхности, ее форм и размеров. Искусственные волокна, например полиэстер, имеют, как правило, низкую смачиваемость, натуральные — хлопок или шерсть — смачиваются намного лучше. Если материал, применяемый в наружном слое одежды, слишком хорошо смачивается, то, может быть, стоит заменить его на другой, менее дружелюбный по отношению к воде?

Такое решение было бы идеальным, но, к сожалению, оно труднореализуемо. Дело в том, что материал для изделия подбирается по совокупности нескольких параметров, и характеристика смачиваемости — только один из них. Но если нельзя заменить материал, то, может быть, можно изменить его свойства? Например, нанести на смачиваемый материал тончайшую пленку несмачиваемого вещества и тем самым «обмануть» воду?

Пропитка DWR работает именно так. Вещество, практически не притягивающее молекулы воды, наносится на лицевую ткань и покрывает ее нити. Вода перестает впитываться в материал и собирается в капли на его поверхности. Ткань становится гидрофобной, то есть она не смачивается и при этом пропускает сквозь себя пар.

Вещества, снижающие смачиваемость

Жирование и обработка воском — традиционные способы придания материалу гидрофобных свойств. Жир и воск издревле применяют для защиты обуви от промокания, они являются классической водоотталкивающей пропиткой. После нанесения воска между кожей ботинок и внешней влагой образуется дополнительная прослойка из вещества, молекулы которого не притягивают или очень слабо притягивают молекулы воды. В результате такой обработки на какое-то время ботинки будут защищены от намокания.

Но для обработки высокотехнологичных мембранных материалов ни жир, ни воск не подходят. Относительно толстая пленка этих веществ создаст препятствие не только для атмосферной влаги, но и для пара, который мембрана должна выводить наружу.

Современные химические водоотталкивающие пропитки — это растворы или эмульсии, которые при нанесении на ткань или другой материал пропитывают ее волокна, после чего растворитель испаряется, а на поверхности ткани остается тонкий гидрофобный слой водоотталкивающего вещества. Вода, попадая на этот защитный слой, не проникает в ткань, скатывается в капли, стекает и легко стряхивается.

Виды современных водоотталкивающих пропиток

Следует различать первичную заводскую водоотталкивающую обработку, которая осуществляется производителем, и вторичную, восстанавливающую, которую обычно проводит владелец изделия после стирки или определенного срока эксплуатации.

По своему назначению водоотталкивающие пропитки DWR можно условно разделить на несколько групп:

    пропитки для водонепроницаемых дышащих тканей с мембраной;

    пропитки для водонепроницаемых дышащих тканей без мембраны;

    пропитки для изделий с утеплителем;

    пропитки для тканей, где паропроницаемость не важна;

    пропитки для обуви.

Пропитки для тканей с мембраной являются специализированными. Их разрабатывают таким образом, чтобы обеспечить гидрофобность лицевой ткани и в то же время не помешать работе мембраны.

Пропитки для дышащих тканей без мембраны не должны препятствовать транспортировке испарений изнутри.

Пропитки для изделий, где паропроницаемость не важна, подойдут для большинства изделий, не относящихся к одежде, например палаток или рюкзаков.

Средства обработки для обуви могут быть и универсальными, и предназначенными для конкретных видов материалов, например кожи или текстиля.

Поэтому при выборе пропитки следует всегда точно придерживаться назначения данной DWR и инструкции по ее применению.

Долговременное воздействие влаги и ультрафиолетовых лучей, перепады температуры, трение, грязь и стирка постепенно удаляют водоотталкивающее вещество с поверхности и из пор обработанной ткани, поэтому пропитку рекомендуют время от времени обновлять, чтобы восстановить защитные функции одежды и снаряжения.

Особенно внимательно следует относиться к той зоне плеч, которая находится под лямками рюкзака, — водоотталкивающая пропитка стирается там быстрее всего.

Классификация водоотталкивающих пропиток по степени защиты

Водоотталкивающие пропитки разделяют не только по назначению, но и по их устойчивости к смыванию. Эта характеристика отражается в аббревиатуре (WR, DWR или SDWR) и указывает на количество «стирок», после которых водоотталкивающее покрытие сохраняет 80 % эффективности. Под эффективностью в данном случае подразумевается площадь ткани, которая сохранила способность отталкивать воду.

Применяемые аббревиатуры относятся прежде всего к заводским технологиям нанесения водоотталкивающих пропиток. Тип заводской обработки можно узнать либо с ярлыка, либо из описания изделия или материала на сайте производителя.

WR (Water Repellent) — 5/80

Самая слабая устойчивость. В среднем такая пропитка теряет 20 % эффективности уже после 5 стирок.

DWR (Durable Water Repellent) — 10/80-20/80

Нормальная устойчивость. На большую часть мембранных штормовок нанесено именно такое покрытие. Сохраняет 80 % эффективности после 10-20 стирок.

SDWR (Super Durable Water Repellent) — 50/80-100/80

Высокая устойчивость. Характерна для пропиток, применяющихся в мембранных материалах и изделиях топ-класса. Сохраняет 80 % эффективности после 50-100 стирок.

Слово «стирок» взято нами в кавычки не зря. К сожалению, производители предпочитают не упоминать тот факт, что стирка в их понимании — это простое полоскание изделия в теплой воде в щадящем режиме и без всяких моющих средств. Как только владелец изделия начинает пользоваться моющими средствами, картина меняется.

При стирке с применением специальных шампуней, предназначенных для ухода за мембранными тканями, показатели устойчивости пропиток падают примерно в 5 раз. То есть пропитку WR придется восстанавливать уже после первой стирки, а DWR — примерно после третьей.

В случае применения обычного стирального порошка ситуация еще хуже — большая часть водоотталкивающих пропиток не выдержит и одной такой стирки.

Состав пропиток

Всякая пропитка состоит из двух основных компонентов — действующего вещества и растворителя. Современные DWR могут быть на углеводородных растворителях или на водной основе.

Углеводородные DWR содержат фторкарбоновые смолы, где действующим веществом чаще всего является политетрафторэтилен (фторопласт, тефлон). Молекулы политетрафторэтилена примерно в четыре раза «слабее» молекул воды. По притягивающей способности политетрафторэтилен уступает многим веществам, поэтому поверхность, покрытая им, на ощупь кажется скользкой и даже жирной.

Однако такие пропитки считаются не только прочными, но и вредными. Они имеют сильный химический запах растворителя, их следует наносить только на сухие вещи, а обработка должна происходить на открытом воздухе. Однако наибольшие экологические проблемы возникают еще на стадии производства, когда использование вредных веществ осуществляется в промышленных масштабах. Недаром в последние годы в индустрии outdoor все чаще возникают дискуссии о негативном влиянии перфторированных соединений на экологию. Появился запрос на поиск решений, минимизирующих вредное воздействие DWR на человека и природу.

Пропитки на водной основе считаются более экологичными, они не содержат ядовитых растворителей и не имеют такого сильного запаха. Их можно наносить и на сухие, и на мокрые вещи. В составе таких DWR содержится силикон, притягивающий молекулы воды не намного сильнее, чем политетрафторэтилен.

По способу нанесения DWR бывают в виде жидкостей в небольших емкостях или в виде спреев. Жидкие DWR применяются или сразу после стирки — изделие опускают на время в воду с раствором, — или наносят поролоновой губкой, выдавливая раствор из тубы. Спреями удобно пользоваться в походных условиях.

Основное правило обработки любой пропиткой — вещь не должна быть грязной.

Наиболее известными производителями современных водоотталкивающих пропиток на российском рынке являются Granger`s, Nikwax, Storm Waterproofing, Woly Sport, Holmenkol, Toko, Salamander, Kongur, Collonil.

Резюме

    Водоотталкивающая пропитка Durable Water Repellent (DWR) — это средство обработки внешней стороны одежды, обуви или снаряжения для придания им гидрофобных свойств.

  • По степени эффективности пропитки делятся на WR (5/80), DWR (10/80-20/80), SDWR (50/80-100/80) — первое число в отношении указывает на количество стирок, при котором сохраняется 80 % эффективности пропитки.
  • Пропитки DWR обеспечивают эффективную работу мембраны во время дождя или в условиях высокой влажности.

    Трение, длительное воздействие влаги, ультрафиолетовых лучей, загрязнение и частые стирки разрушают водоотталкивающее покрытие, поэтому пропитку следует время от времени обновлять.

    Пропитки DWR различаются по своему назначению. Они используются как для мембранной, так и любой другой водоотталкивающей воздухопроницаемой одежды, а также для одежды с утеплителем и обуви.

  • При выборе DWR следует всегда придерживаться назначения данной пропитки и точно следовать инструкции по ее применению.

Испарение влаги с водных поверхностей в условиях крытых аквапарков.

Генеральный директор

«Стройинженерсервис»

Главный специалист

«Стройинженерсервис»

Профессор кафедры ВИТУ

докт. техн. наук

В условиях крытых аквапарков различные бассейны и развлекательные водные аттракционы являются основными источниками значительных влагопоступлений, которые необходимо учитывать при проектировании их систем вентиляции и кондиционирования воздуха. Недостаточный учет влагопоступлений от указанных источников может привести в период эксплуатации крытых аквапарков к постоянному возникновению конденсации влаги из воздуха на внутренних поверхностях различных строительных конструкций и к несоблюдению допустимого температурно-влажностного режима воздушной среды в зоне пребывания купающихся. Наш опыт проектирования систем вентиляции и кондиционирования воздуха крытых аквапарков показал, что для оценки их влагопоступлений требуется проведение тщательного анализа:

– технологических режимов использования бассейнов и водных аттракционов;

В этой связи следует отметить, что наибольшие затруднения возникли с установлением (обоснованным выбором) расчетных зависимостей для определения влагопоступлений с водных поверхностей.

В настоящее время имеется множество формул, рекомендуемых для оценки испарения влаги, которые основаны на результатах лабораторных экспериментов. Возникло сомнение, что лабораторные эксперименты учитывают всю полноту условий, при которых происходит испарение влаги с водных поверхностей бассейнов и аттракционов в условиях крытых аквапарков. Поэтому было решено проанализировать расчетные зависимости для определения интенсивности испарения влаги с водных поверхностей, рекомендуемые различными нормативными документами, существующими в отечественной и зарубежной практике. При проведении анализа особое внимание было обращено на условия получения и возможные области применения рекомендуемых расчетных зависимостей для оценки испарения с водных поверхностей.

В отечественной практике для расчета количества влаги, испаряющейся с открытой водной поверхности, широкое применение получила зависимость, предложенная сушильной лабораторией Всесоюзного Теплотехнического Института (г. Москва), которая базируется на результатах обширных опытов, проведенных при следующих условиях:

– температура воздуха – t=40÷225 0С;

– скорость движения воздуха – υ=1÷7,5 м/с.

В опытах обеспечивались условия испарения близкие к адиабатическому процессу. Разработанная при этом зависимость была включена в «Указания по проектированию отопления и вентиляции» (СН 7-57), а затем в «Справочник проектировщика. Вентиляция и кондиционирование воздуха» кн. 1, изд. 1992 г. (СПВ) в следующем виде:

G=7,4(аt+0.017∙υ)∙(Pн-Рв)∙∙F, (1)

где G – количество испаряющейся влаги с открытой водной поверхности площадью F (м2), кг/ч;

υ – относительная скорость движения воздуха над водной поверхностью, м/с. Для залов бассейнов, согласно СНиП 2.08.02-89*, можно рекомендовать не более 0,2 м/с;

аt – коэффициент, зависящий от температуры воды в бассейне (0,022÷0,028 при tводы=28-40 0С);

Pв – парциальное давление водяного пара в воздухе рабочей зоны помещения, кПа;

Pн – давление насыщенного водяного пара в воздухе при температуре, равной температуре воды, кПа;

Как отмечает проф. в книге «Вентиляция, увлажнение и отопление на текстильных фабриках» (изд. 1953г.) формула (1) представляет собой модифицированную формулу Дальтона, которая имеет следующий вид:

G= , (2)

где С – коэффициент испарения (0,86 – при сильном движении воздуха; 0,71 – при умеренном движении воздуха; 0,55 – при спокойном состоянии воздуха).

Эта зависимость была получена Дальтоном в результате проведения им многочисленных опытов по испарению воды, которая подогревалась в круглых чашах ø8,25 и ø15,24 см на жаровнях до различной температуры. При этом в опытах скорость движения воздуха над поверхностью испарения изменялась произвольно. Поэтому в формуле Дальтона не указывается количественные характеристики скорости движения воздуха над поверхностью испарения. В книге «Вентиляция» (изд. 1959 г.) проф. дана оценка возможных скоростей движения воздуха в опытах Дальтона:

– при сильном движении воздуха скорость воздуха могла составлять 1,57 м/с;

– при умеренном движении воздуха - 1,13 м/с;

– при спокойном состоянии воздуха - 0,58 м/с.

На основании этих данных было установлено значение коэффициента испарения С=0,4 при скорости движения воздуха над поверхностью испарения равной 0,2 м/с.

В зарубежной практике для расчета испаряющейся влаги с водной поверхности бассейнов применяются формулы, приведенные в «Руководстве по проектированию» фирмы Dantherm, которые дают возможность учитывать влияние занятости бассейна купающимися и их активности на испарение влаги. В Руководстве отмечается, что в Германии используется для расчета испарения воды с водяной поверхности крытых плавательных бассейнов формула стандарта VDI 2086, разработанная обществом немецких инженеров:

G=ε∙F ∙(Pн-Рв)∙10-3 , (3)

где ε – эмпирический коэффициент испарения воды с водной поверхности бассейна, г/м2∙ч∙мбар, зависящий от подвижности водной поверхности, количества купающихся и их активности.

e=35 – для бассейнов с горками и значительным волнообразованием;

e=28 – при средней подвижности водной поверхности для общественных бассейнов и нормальной активности купающихся (бассейны для отдыха и развлечений);

e=13 – при малоподвижной водной поверхности для небольших плавательных бассейнов с ограниченным количеством купающихся;

e=5,0 – для неподвижной воды в бассейнах;

e=0,5 – закрытая поверхность воды в бассейнах.

Следует отметить, что формула (3) является также модификацией формулы Дальтона, а ее эмпирический коэффициент e отражает влияние на процесс испарения влаги, как скорости движения водной поверхности, так и скорости движения воздуха ввиде относительной скорости движения указанных сред.

В Великобритании для расчета количества испаряющейся влаги с водной поверхности бассейнов, как отмечается в «Руководстве по проектированию» фирмы Dantherm, чаще используются формулы Бязина-Крумме, которые установлены на основе натурных измерений интенсивности испарения влаги, проведенных в действующих бассейнах. Для дневного периода (период использования бассейна) рекомендуется формула Бязина-Крумме в следующем виде:

G= ∙F , (4)

где А – коэффициент занятости бассейна купающихся, зависящий от количества купающихся n (чел) и от площади бассейна F (м2);

DР – разность между давлением водяных паров насыщенного воздуха при температуре воды в бассейне и парциальным давлением водяных паров в воздушной среде бассейна, мбар.

Для ночного периода (в период бездействия бассейна) рекомендуемая формула Бязина-Крумме имеет вид:

G= [-0,059+0,0105∙]∙F (5)

Нами были выполнены расчеты интенсивности испарения влаги с водной поверхности бассейнов в период их использования (в дневное время) по формулам (1÷4). При этом были рассмотрены три типа бассейнов и водных аттракционов в зависимости от температуры применяемой воды:

тип 1 – общие бассейны водных аттракционов, tводы=30 0С;

тип 2 – детские бассейны, tводы=35 0С;

тип 3 – бассейны «Джакузи», tводы=40 0С.

В качестве исходных данных в расчетах интенсивности испарения влаги при использовании бассейнов были приняты:

Рн – давление насыщенных водяных паров в воздухе при температуре воды в бассейнах (для бассейнов 1 типа - 37,8 мбар; 2 типа - 42,4 мбар; 3 типа - 73,7 мбар);

Рв – парциальное водяного пара при допустимых параметрах воздуха для всех типов бассейнов. В теплый период года Рв=25,4 мбар (tдоп=30 0С и jдоп=60%), в холодный период года Рв=20,1 мбар (tдоп=29 0С и jдоп=50%).

Таким образом, расчетные значения DР=(Рн- Рв) для различных типов бассейнов составляют для бассейнов 1 типа от 12 до 18 мбар; 2 типа - от 18 до 23 мбар; 3 типа - от 48 до 54 мбар.

При расчетах интенсивности испарения влаги были приняты:

– в формуле (1) среднее значение коэффициента аt=0,025 при скоростях движения воздуха υ=0,2 ; 0,9 ; 1,5 м/с и Рбар=101,3кПа;

– в формуле (2) скорости движения воздуха υ=0,2 ; 0,9 ; 1,5 м/с, а значение Рбар=760 мм. рт. ст.;

– в формуле (3) значения коэффициента e=35 ; 28 и 19;

– в формуле (4) значения занятости бассейнов купающимися: А=0,5 ; 1,0.

Результаты расчетов интенсивности испарения влаги с водных поверхностей по формулам (1÷4) представлены на графиках рис. 1, сопоставление которых позволяет отметить следующее.

Результаты расчетов испарения влаги с водной поверхности по формулам стандартаVDI (при e=35; 28 и 19) и СПВ (при скорости движения воздуха над водной поверхностью υ=1,5; 0,9 и 0,2 м/с) совпадают с результатами расчетов по формуле Дальтона (при скоростях движения воздуха υ=1,5; 0,9 и 0,2 м/с). Это свидетельствует о том, что указанные формулы получены на основании результатов лабораторных опытов, аналогичных опытам Дальтона. Для этих лабораторных опытов характерны следующие условия:

– спокойная гладкая (без волнообразования) водная поверхность испарения, над которой при движении воздуха постоянно существует неразрушаемый пограничный слой воздуха с давлением насыщенного водяного пара при температуре поверхности воды;

– температура поверхности воды ниже температуры основной массы воды на несколько градусов, т. е. процесс тепломассообмена между водной поверхностью и движущемся над ней воздухом «стремиться» к адиабатическому процессу.

Область результатов расчетов интенсивности испарения влаги с водной поверхности по формуле Бязина-Крумме (при значениях коэффициента занятости бассейна купающимися А от 0,5 до 1,0) «лежит» ниже области результатов интенсивности испарения влаги, установленных по формулам Дальтона, СПВ и стандарта VDI. Это указывает на наличие принципиальных отличий процесса тепломассообмена между водной поверхностью и воздушной средой действующих бассейнов от процесса тепломассообмена при проведении опытов в лабораторных условиях. К этим принципиальным отличиям процесса тепломассообмена в действующих бассейнах и водных аттракционах следует отнести:

– постоянное разрушение водной поверхности (образование волн, брызг и капель), интенсивность которого зависит от занятости бассейнов купающимися и их активности;

– постоянное разрушение над водной поверхностью пограничного слоя воздуха с давлением насыщенного водяного пара при температуре, равной температуре воды в бассейне, которая устанавливается в результате ее перемешивания купающимися. Поэтому процесс тепломассообмена между водной поверхностью и движущимся над ней воздухом в этом случае не «стремится» к адиабатическому процессу, а по существу является некоторым политропическим процессом, «направленным» на температуру воды, устанавливающуюся во всей ее массе в бассейне.

Результаты расчетов интенсивности испарения влаги, полученные по формулам Дальтона, СПВ и стандарта VDI при скорости движения воздуха υ=0,2 м/с, пересекают область результатов расчетов интенсивности испарения влаги, полученных по формуле Бязина-Крумме при значениях коэффициента занятости бассейна купающимися А от 0,5 до 1,0. Характер пересечения этих результатов подчеркивает отмеченное выше принципиальное отличие условий испарения влаги при проведении лабораторных опытов от условий испарения влаги в действующих бассейнах.

Вышеизложенное позволяет сделать вывод о том, что наиболее объективные данные об интенсивности испарения влаги с водных поверхностей бассейнов и аттракционов аквапарков в период их использования можно получить при их оценке по формуле Бязина-Крумме (формула 4). При этом необходимо принимать значения занятости бассейнов купающимися А, исходя из существующих норм их использования. В соответствии с данными «Руководства по проектированию» фирмы Dantherm значения занятости бассейнов купающимися А определяются по формуле:

где 6,0 – нормативное значение площади бассейна, приходящейся на одного купающегося, (м2/чел) при коэффициенте занятости А=1.

Для большинства общественных бассейнов в качестве расчетной величины рекомендуется принимать значение коэффициента занятости бассейна А=0,5.

Нами были произведены расчеты интенсивности испарения влаги с водной поверхности бассейнов в период их бездействия (в ночное время) по формулам (1÷3 и 5). В этом случае исходные данные были приняты те же, что и для периода использования бассейнов. При этом при в расчетах интенсивности испарения влаги были приняты:

– в формуле (1) скорость движения воздуха υ=0;

– в формуле (2) при скорости движения воздуха υ=0 коэффициент испарения С=0,3;

– в формуле (3) значение коэффициента испарения e=5,0.

Результаты расчетов интенсивности испарения влаги с водной поверхности по формулам (1÷3 и5) представлены на графиках рис. 2, сопоставление которых позволяет отметить следующее.

Результаты расчетов интенсивности испарения влаги с водной поверхности по формулам Дальтона и СПВ значительно превосходят результаты расчетов интенсивности испарения влаги с водных поверхностей бассейнов по формулам стандарта VDI и Бязина-Крумме. Это обстоятельство можно объяснить тем, что формулы стандарта VDI и Бязина-Крумме более строго учитывают реальные температурно-влажностные условия взаимодействия воздуха с поверхностью воды в период бездействия бассейнов, тогда как формулы Дальтона и СПВ, основанные на результатах лабораторных опытов, эти условия не отражают. Поэтому для расчетов интенсивности испарения влаги с водных поверхностей бассейнов в период их бездействия следует отдавать предпочтение последним формулам и, прежде всего, формуле Бязина-Крумме.

1. Для крытых аквапарков не могут быть рекомендованы зависимости «Справочника проектировщика. Вентиляция и кондиционирование воздуха» по определению интенсивности испарения влаги с водных поверхностей, основанные на результатах опытов, которые не учитывают условия эксплуатации действующих бассейнов и водных аттракционов.

2. При проектировании систем вентиляции и кондиционирования воздуха крытых аквапарков для определения влагопоступлений от водных поверхностей бассейнов и водных аттракционов (в период их использования и бездействия) целесообразно применять формулы Бязина-Крумме, как наиболее полно отражающие процессы испарения влаги в условиях действующих бассейнов.

Каждый представитель царства флоры испаряет внушительные объемы влаги. Вода необходима растениям для осуществления процессов жизнедеятельности и поглощается ими через корневую систему. По стеблям она перекачивается в листья, откуда, следовательно, и испаряется. Как показывают научные исследования, растения усваивают только 3% поступающей к ним воды, а остальное - испаряют.

Процесс испарения воды с поверхности растений называется транспирацией. Фактически, это избавление живого организма от излишков воды, а также аналог потоотделения у представителей царства животных. Основная часть растений испаряет воду обратной стороной листьев, где находятся особые зеленые клетки (устьица), образующие между собой небольшие щели.

Роль испарения воды в жизни растений

  • Когда растение всасывает воду, оно поглощает различные минеральные компоненты из жидкости. В самой воде их не очень много, поэтому через стебли прогоняется большой объем жидкости за сутки. Постепенно из-за корневого давления уровень воды в растении поднимается, и она поступает в листья, откуда и испаряется.
  • Благодаря испарению жидкости растение может охлаждать себя. Это связано с эффектом максимальной теплоемкости воды. Если представитель флоры долгое время находится на солнце, начинается автоматическая транспирация, и водяной пар уносит лишнее тепло с собой.
  • Испарение влаги является также необходимостью для растений, поскольку вода должна подниматься вверх для осуществления разных биохимических процессов, например, фотосинтеза.

Для окружающей среды, и в частности, для человека, испарение воды растениями тоже весьма значимо. Интенсивность этого явления, например, снижает питательность и вкусовые качества сельскохозяйственных культур. Чем чаще испаряется влага, тем скуднее становится почва, постоянно отдающая воду, обогащенную минеральными компонентами. Отсюда возникает необходимость регулярного облагораживания земель и их удобрения.

Процесс испарения воды растением

Как уже было обозначено, испарение воды возможно за счет наличия устьиц на листьях. Их количество у каждого организма неодинаковое и определяется ареалом обитания и характеристиками того или иного представителя флоры (уровнем воды в клетках, возрастом, осмотическим давлением клеточного сока). Интенсивность испарения влаги также зависит от наличия тени, воздушных масс и уровня воды в грунте.

Когда растение накапливает излишки воды, устьица расширяются, и их клетки образуют отверстия, откуда выходит водяной пар. В межклетниках жидкость всегда пребывает в состоянии пара, но выйти за пределы листа она может только при открытии устьиц. Обычно процесс транспирации происходит днем, когда устьица автоматически открыты. Но если растение страдает от засухи, оно меняет свой режим и минимизирует испарение воды.

Растения, которые произрастают в теплом климате, например, в тропиках, всегда имеют большие листья, чтобы с их поверхности испарялся максимальный объем воды в короткие сроки. В холодном или засушливом климате, соответственно, наоборот. Также, если растение не заинтересовано в регулярном избавлении от избытков воды, его листья в процессе эволюции покрываются восковым налетом или мелкими ворсинками. Нередки случаи, когда листья скручиваются при солнечном освещении, чтобы испарение уменьшилось.

Покрытосеменные растения испаряют воду не только с обратной, но и лицевой стороны листовых пластин. Это связано с тем, что устьица размещены по обеим сторонам, однако изнанка листа практически всегда находится в воде и испарение невозможно.