Измерение углов наклона в машиностроении. Методы и средства измерения углов и конусов. Что будем делать с полученным материалом

Для угловых измерений в машиностроении и приборостроении используют разные методы, реализуемые множеством средств измерений, различающихся по конструкции, точности, пределам измерений, производительности.

Измерения углов можно разделить на прямые (осуществляются средствами измерений, градуированными в угловых единицах) и косвенные, осуществляемые с помощью средств линейных измерений и требующие последующего расчета искомых значений углов с использованием тригонометрических функций. В некоторых литературных источниках прямые измерения углов называют «измерениями гониометрическим методом», а косвенные измерения – «измерениями тригонометрическим методом». Термин «гониометрический» может быть переведен с греческого как «угломерный», соответствующее название имеет один из приборов для измерения углов (гониометр).

К простейшим средствам измерений углов относят угловые концевые меры. Угловые меры («жесткие угловые меры») могут быть однозначными или многозначными. Они включают угольники (номинальный угол 90 о), призматические угловые концевые меры с одним или несколькими (тремя, четырьмя и более) рабочими углами, а также конические калибры. Угловые концевые меры, как и концевые меры длины, используют для измерительного контроля, а также для настройки приборов при измерении методом сравнения с мерой.

Многозначные штриховые угловые меры (транспортиры) имеют шкалу и все принадлежащие ей метрологические характеристики (цена деления, верхний и нижний пределы шкалы, диапазон шкалы).

Вторая группа средств измерения углов – гониометрические приборы, с помощью которых измеряемый угол сравнивается с соответствующими значениями встроенной в прибор угломерной круговой или секторной шкалы. К таким приборам можно отнести транспортирные угломеры с нониусом, оптические угломеры, делительные головки, гониометры. Делительные головки (оптические и механические) применяют для угловых измерений и для делительных работ при разметке и обработке деталей.

Кроме того, ряд универсальных средств измерений имеет специальные угломерные устройства, например, измерительные головки ОГУ, которыми комплектуют измерительные микроскопы, угломерные поворотные столы на больших измерительных микроскопах и больших проекторах и т.д.

Для измерений отклонения углов от горизонтали и/или вертикали применяют различные уровни (брусковые, рамные, с «цилиндрическими» и сферическими ампулами), оптические квадранты и другие приборы.

При измерении угломером плоские или «ножевые» грани линеек угломера накладывают «без просвета» на стороны измеряемого угла детали. Одна из линеек связана с круговой или секторной угломерной шкалой другая (поворотная) – с указателем или нониусом. При измерениях с помощью делительной головки, гониометра или измерительного микроскопа грани угла фиксируют с помощью вспомогательных оптических или иных устройств.


Суть косвенных («тригонометрических») измерений углов заключается в том, что угол получают путем измерения линейных размеров контролируемой детали, рассчитывая его значение через тригонометрические функции. При этом для линейных измерений могут применяться любые универсальные средства, а также вспомогательные средства, разработанные специально для обеспечения измерений углов конусов и призматических деталей.

Косвенные измерения углов чаще всего основаны на использовании синусных или тангенсных схем, а объектом измерения является угол специально выстроенного прямоугольного треугольника. Две стороны этого треугольника воспроизводятся и/или измеряются средствами линейных измерений. Например, можно измерить два катета на микроскопе или проекторе.

Из средств, предназначенных для реализации «тригонометрических измерений», наиболее распространенными являются «синусные линейки» различных типов. Измеряемый объект помещают на «синусную линейку» с известным значением гипотенузы (базовое расстояние линейки) и измеряют катет искомого угла (рис.3.97).

Рис.3.97. Схема измерительного контроля угла конуса

Встречаются и более сложные реализации синусных и тангенсных схем измерений (конусомеры, устройства для измерений внутренних конусов с помощью шаров и др.).

При изготовлении различных деталей машин в качестве средств измерений применяют угловые шаблоны с углом, который должно иметь изделие, причем изделие подгоняют по шаблону без просвета. Касание измерительных поверхностей с изделием должно быть линейным, поэтому для контроля углов изделий образованных плоскими гранями, шаблоны изготовляют с лекальной (закругленной малым радиусом) поверхностью одной или обеих сторон рабочего угла.

Рабочие углы предельных шаблонов отличаются один от другого на значение всего поля допуска угла изделия.

Металлические угольники с рабочим углом 90 о служат для проверки взаимной перпендикулярности плоскостей (кромок) изделий, а также для проверки перпендикулярности относительных перемещений деталей машин. Кроме того, угольники применяют при монтажных работах. Формы, размеры и технические условия на угольники стандартизованы (ГОСТ 3749 – 77).

При измерении угла изделия методом сравнения с углом угольника оценивают просвет между ними. Отклонение угла изделия от угла угольника определяется отношением ширины просвета к длине стороны угольника. Поскольку длина угольника неизменна, просвет может служить мерой отклонений угла. Просвет можно наблюдать как у конца стороны угольника (угол изделия меньше угла угольника), так и у вершины угла (угол изделия больше угла угольника). При контроле на просвет необходимо установить отсутствие просвета между измерительными поверхностями или его значение. При обычной освещенности порядка (100...150) лк невооруженный глаз обнаруживает просвет между плоской поверхностью и кромкой лекальной линейки примерно от (1,5...2) мкм. Погрешность оценки просвета тем больше, чем короче протяженность контактной линии изделия и угольника.

Важную роль играет и ширина поверхностей в направлении перпендикулярном направлению образующей угла. При ширине контактирующих поверхностей (3...5) мм невидимые просветы могут достигать 4 мкм. Если же при этом контактирующие поверхности не доведенные, а шлифованные, невидимый просвет может доходить до 6 мкм.

Для более точной оценки просветов, применяют так называемый образец просвета.

Просвет, ширину которого предстоит оценить, сравнивают на глаз с набором аттестованных просветов и по идентичности наблюдаемых щелей определяют его размер. При достаточном навыке и наличии лекальной поверхности у линейки такую оценку можно выполнить с погрешностью порядка (1...1,5) мкм при просветах до 5 мкм, а при больших просветах (до 10 мкм) – порядка (2...3) мкм. Для просвета свыше 10 мкм этот метод неприменим. При просветах от 20 мкм и более можно пользоваться щупами.

Для контроля размеров наружных и внутренних конусов применяют конические калибры. Контроль изделий калибрами обычно является комплексным, поскольку проверяется не только угол конуса, но также и его диаметр в расчетном сечении по положению калибра относительно изделия вдоль оси. Для этой цели на поверхности калибра-пробки имеются либо две ограничительные линии, либо срез уступом (срез уступом применяют и на калибре-втулке).

Угол конуса детали проверяют по прилеганию поверхности калибра к поверхности проверяемой детали. Для этого калибр тщательно очищают от пыли, масла и наносят на его коническую поверхность слой краски (берлинской лазури), равномерно распределяя ее по всей поверхности. Затем калибр-пробку осторожно вставляют или калибр-втулку надевают на проверяемую деталь (также заранее тщательно протертую) и поворачивают его на 2/3 оборота вправо и влево.

Если конусность калибра и проверяемой детали совпадает, краска будет равномерно стираться по всей образующей калибра. По доле стертой и оставшейся краски судят о годности детали по конусности. Погрешности этого метода измерения составляют примерно 20". Необходимо, чтобы на рабочих поверхностях и поверхностях контролируемых деталей отсутствовали забоины, царапины и другие подобные дефекты.

Для измерения внутренних конусов и клиновидных пазов применяют аттестованные шарики или ролики. Применяют синусные и тангенсные схемы, основанные на измерении или воспроизведении противолежащего измеряемому углу катета (в обеих схемах), гипотенузы (при синусной схеме) или прилежащего катета (при тангенсной схеме). Для небольших углов (примерно до 15 o) обе схемы по точности практически равноценны, но для больших углов погрешность измерения может быть значительной и здесь предпочтительна тангенсная схема.

Существует несколько способов измерения горизонтальных углов: способ приемов, способ круговых приемов, способ повторений, способ всех комбинаций. Наиболее простым и распространенным является способ приемов. Способ круговых приемов используется тогда, когда на одной точке требуется измерить несколько углов. Способ повторений рекомендуется использовать, если точность теодолита недостаточна и требуется измерить угол с более высокой точностью. Измерение горизонтального угла способом повторений может быть выполнено только повторительным теодолитом. Способ комбинаций характеризуется трудоемкостью и применяется только при высокоточных измерениях нескольких углов в одной точке, когда ошибки измерения углов должны находиться в пределах 1".

Измерение угла способом приемов состоит в его измерении двумя полуприемами. Каждый полуприем заключается в выполнении следующих действий:

  • 1) наведение вертикальной нити сетки нитей на правую визирную цель;
  • 2) взятие отсчета я, по горизонтальному кругу;
  • 3) запись в журнал отсчета я,;
  • 4) наведение вертикальной нити сетки нитей на левую визирную цель;
  • 5) взятие отсчета Ь ] по горизонтальному кругу;
  • 6) запись в журнал отсчета Ь{,
  • 7) вычисление значения горизонтального угла = а { - Ь { .

Визирные цели представляют собой

Вид сверху

Рис. 5.11. Визирный цилиндр

предмет или устройство, на которое наводят зрительную трубу. При наблюдении на пункты триангуляции визирной целью обычно является малофазный визирный цилиндр (рис. 5.11) геодезического знака. На данном рисунке представлено изображение, видимое в поле зрения трубы теодолита с прямым изображением. Вертикальную нить сетки нитей при этом наводят на воображаемую ось симметрии визирного цилиндра. При наблюдении на точки теодолитного хода в качестве визирных целей используют вертикально устанавливаемые на этих точках вехи или шпильки из комплекта мерного прибора для измерения расстояний.

После измерения угла первым полуприемом изменяют положение лимба. Изменить положение лимба горизонтального угломерного круга можно двумя способами:

  • 1) сделать 2-3 оборота наводящим винтом лимба, положение лимба при этом может измениться на 2-3°;
  • 2) при закрепленном закрепительном винте алидады открепить закрепительный винт лимба, повернуть лимб на произвольный угол (рекомендуется примерно на 90°), закрепить закрепительный винт лимба.

После выполнения описанных действий трубу переводят через зенит и выполняют измерение угла вторым полуприемом (при другом положении вертикального круга). Вычисление значения горизонтального угла из второго полуприема осуществляется аналогичным образом:

Р2 = я2 - Ь2.

Таким образом, угол будет измерен дважды. Результаты измерения угла двумя полуприемами соответственно равны р| и р 2 . Р ас_

хождение значений угла из двух полуприемов не должно превышать удвоенной погрешности измерения угла данным теодолитом, т.е. должно выполняться условие

где t - среднеквадратическая погрешность измерения угла одним приемом. Для теодолита 2Т30 данный допуск составляет Г.

Измерение углов двумя полуприемами осуществляется в целях:

  • 1) контроля измерений ;
  • 2) повышения точности измерений: ошибка среднего значения из нескольких измерений всегда меньше ошибки отдельного измерения.

Результаты измерения горизонтальных углов фиксируются в соответствующем журнале (табл. 5.1).

Таблица 5.1

Журнал измерения горизонтальных углов

по горизонтальному

Значение

в полуприеме

значение

При измерении горизонтальных углов важно понимать различие между наводящими винтами лимба и алидады. При вращении любого из этих винтов зрительная труба поворачивается в горизонтальной плоскости, или, как говорят, «по горизонту». Хотя со стороны действия наблюдателя при этом кажутся совершенно одинаковыми, различие между ними принципиальное. Если лимб закреплен и наведение зрительной трубы на различные точки осуществляется только с помощью винтов алидады, то отсчеты будут различаться, так как лимб при этом остается неподвижным. Если действовать противоположным образом, т.е. закрепить алидаду, и при наведении трубы на различные точки использовать только винты лимба, отсчет на любые точки будет один и тот же, так как лимб и находящаяся на нем алидада со зрительной трубой будут поворачиваться вместе с лимбом как единое целое. Отсюда следует, что если при измерении горизонтального угла трубу навели на правую точку и взяли отсчет, а при наведении на левую точку случайным образом повернули наводящий или закрепительный винт лимба, то дальнейшие действия выполнять не имеет смысла, так как нулевой диаметр горизонтального круга изменит свое положение. И в таком случае необходимо начинать выполнение полуприема заново. Путаница между винтами лимба и винтами алидады является наиболее распространенной ошибкой начинающих изучение теодолита.

Если точность измерения углов одним приемом с помощью имеющегося теодолита несколько ниже требуемой, то возможны два варианта действий:

  • воспользоваться теодолитом более высокой точности;
  • измерять угол не одним приемом, а п приемами. Тогда в качестве окончательного значения угла берется среднее из п приемов, среднеквадратическая погрешность М измерения угла при этом будет равна

где т - среднеквадратическая погрешность измерения угла одним приемом.

Следует обратить внимание, что погрешность многократного измерения угла убывает пропорционально квадратному корню из числа измерений. Например, чтобы уменьшить ошибку измерения угла в 3 раза, необходимо измерить угол девятью приемами. Поэтому многократное измерение угла в целях повышения точности измерений оправдано только тогда, когда требуемая точность незначительно отличается от точности используемого прибора.

Результаты угловых измерений в ГГС должны быть равноточными, ᴛ.ᴇ. на всœех пунктах иметь один и тот же вес, и получены с наивысшей точностью при наименьших затратах труда и времени. Для этого высокоточные измерения каждого направления и угла выполняют по строго одинаковой наиболее совершенной методике в периоды наивыгоднейшего времени наблюдений, когда влияние внешней среды минимально. Необходимо, чтобы каждое направление измерялось на разных диаметрах лимба, равномерно распределœенных по кольцу делœений; в приеме должно быть обеспечено единообразие операций при измерении каждого направления и симметрия во времени относительно среднего для приема времени наблюдений; целœесообразно всœе направления и углы на пункте измерять симметрично относительно момента изотермии воздуха.

Перед выполнением наблюдений на пункте производят осмотр геодезического знака, откапывают центр до марки с меткой, на площадку наблюдателя поднимают теодолит и другое снаряжение, крышу сигнала накрывают брезентом. В результате осмотра наблюдатель должен убедиться в прочности и устойчивости столика сигнала и в том, что внутренняя пирамида не соприкасается с полом площадки для наблюдателя и с лестницей. Обнаруженные недостатки крайне важно устранить.

Перед наблюдением с помощью теодолита согласно схеме геодезической сети отыскивают всœе подлежащие наблюдению пункты и после наведения на них делают с точностью до 1’ отсчеты по горизонтальному и вертикальному кругам. Вместе с тем, при наведении на пункты положение алидады фиксируют на нижней части прибора с помощью штрихов против индекса на алидаде. Теодолит устанавливают на штатив или столик сигнала не менее чем за 40 минут до начала наблюдений. К измерению горизонтальных направлений приступают при хорошей видимости, когда изображения визирных целœей спокойны или слегка колеблются (в пределах 2”).

Измерение отдельного угла. Незакрепленную алидаду отводят влево на 30 – 40 0 и обратным вращением наводят на визирную цель первого направления так, чтобы она оказалась справа от биссектора, алидаду закрепляют. Наводящим винтом алидады, только ввинчиванием, биссектор наводят на визирную цель и берут отсчет по оптическому микрометру (если имеется окулярный микрометр, то трижды наводят его биссектор на визирную цель и берут отсчеты). Открепляют алидаду и наводят на 2-е направление аналогично тому, как и на 1-е. На этом заканчивается полуприем.

Трубу переводят через зенит, по часовой стрелке наводят на 2-е направление, предварительно отведя алидаду на 30 – 40 0 ; наводящим винтом биссектор наводят на визирную цель и берут отсчет по оптическому микрометру. По часовой стрелке алидаду поворачивают на угол, дополняющий измеряемый до 360 0 , наводят на визирную цель 1-го направления, берут отчет. Заканчивается прием.

Способ круговых приемов – способ Струве. Способ был предложен в 1816 ᴦ. В.Я. Струве, получил широкое применение почти во всœех странах. В нашей стране используется в геодезических сетях 2 - 4 классов и сетях более низкой точности.

В этом способе при неподвижном лимбе алидаду вращают по ходу часовой стрелки и биссектор сетки нитей трубы последовательно наводят на первый, второй,…, последний и снова на первый (замыкание горизонта) наблюдаемые пункты, каждый раз отсчитывая по горизонтальному кругу. В этом состоит первый полуприем. Далее трубу переводят через зенит и, вращая алидаду против часовой стрелки, наводят биссектор на те же пункты, но в обратной последовательности: на первый, последний, …, второй, первый; заканчивают второй полуприем и первый прием., состоящий из первого и второго полуприемов.

Между приемами лимб переставляется на угол

где m – число приемов, i – цена делœения лимба.

Наведение биссектора на на визирную цель выполняют только ввинчиванием наводящего винта алидады. Перед каждым полуприемом алидаду вращают по ее движению в данном полуприеме.

В результаты измеренных направлений вводят поправки за рен, наклон вертикальной оси теодолита (при углах наклона визирного луча в 1 0 и более) и поправки за кручение знака – по отсчетам по окулярному микрометру поверительной трубы.

Контроль угловых измерений: по расхождениям значений первого направления в начале и конце полуприема (незамыкание горизонта), по колебанию двойной коллимационной ошибке, определяемой для каждого направления, и по расхождению приведенных к нулю значений одноименных направлений, полученных в разных приемах. В триангуляции 2 – 4 классов незамыкание горизонта и колебание направлений в приемах не должны превышать 5, 6 и 8” для Т05, Т1; ОТ-02 и Т2; колебание 2С – 6,8 и 12” для этих же теодолитов соответственно.

В пунктах 2 класса направления измеряют 12-15 круговыми приемами, на пунктах 3 класса – 9, на пунктах 4 класса – 6, а в сетях полигонометрии 2, 3, 4 классов – 18, 12, 9 приемами.

Уравнивание на станции сводится к вычислению среднего значения по каждому направлению из m приемов. При этом предварительно всœе измеренные направления приводят к начальному, придав ему значение 0 0 00’00,00”. Вес уравненного направления равен p = m – числу приемов измерений. Для оценки точности направления обычно применяют приближенную формулу Петерса

где μ – с.к.о. направления, полученного из одного приема (с.к.о. единицы веса); ∑‌‌[v ] – сумма абсолютных величин уклонений измеренных направлений от их средних значений, вычисленных по всœем направлениям; n, m – число направлений и приемов соответственно. Значения k при m = 6, 9, 12, 15 равны 0,23; 0,15; 0,11; 0,08. С.к.о. уравненного направления (среднего из m приемов) вычисляют по формуле

Достоинства способа круговых приемов: простота программы измерений на станции; значительное ослабление систематических ошибок делœений лимба; высокая эффективность при хорошей видимости по всœем направлениям.

Недостатки: сравнительно большая продолжительность приема, особенно при большом числе направлений; повышенные требования к качеству геодезических сигналов; крайне важно сть примерно одинаковой видимости по всœем направлениям; разбивка направлений на группы при их большом числе на пункте; более высокая точность начального направления.

Способ измерения углов во всœех направлениях – способ Шрейбера. Этот метод предложен Гауссом. Методика разработана Шрейбером, применившим его в 1870-х годах в прусской триангуляции. В России начал применяться с 1910 ᴦ., используется и в настоящее время. Суть способа: на пункте с n направлениями измеряют всœе углы, образующиеся при сочетании из n по 2, ᴛ.ᴇ.

1.2 1.3 1.4 … 1.n

Число таких углов

Значение углов можно получить путем непосредственных измерений и путем вычислений. В случае если вес непосредственно измеренного угла равен 2 , то вес этого же угла, полученного из вычислений, будет равен 1. Следовательно. Вес угла, полученного из вычислений, в два раза меньше веса непосредственно измеренного угла.

При уравнивании на станции для каждого угла вычисляют его среднее значение из всœех приемов (при допустимых расхождениях между приемами). Используя эти средние, находят уравненные на станции углы как среднее весовое значение. Учитывая, что сумма весов измеренного и вычисленных значений данного угла , находим

где n – число направлений на пункте. Углы, полученные в результате уравнивания на станции, по направлениям – равноточны.

Применяя формулу веса функции, для угла находим

Так как , то , откуда . При Р = 1 , , ᴛ.ᴇ. веса уравненных углов равны половинœе числа направлений, наблюдаемых с данного пункта. В случае если каждый угол измерен m приемами, то при n направлениях вес каждого угла будет равен mn / 2. Для равенства весов окончательных углов на всœех станциях крайне важно, чтобы произведение mn для всœех пунктов сети являлось постоянным. Так как вес направления в два раза больше веса угла, то mn – вес направления.

Вес углов, измеренных во всœех комбинациях должен быть равен весу углов, измеренных способом круговых приемов, ᴛ.ᴇ. p = m кр = mn / 2 , откуда 2m кр = mn , где m кр – число приемов в методе круговых приемов. К примеру, в случае если углы в триангуляции 2 класса измеряют 15 круговыми приемами (m кр = 15), то mn = 30; при числе направлений n = 5 способом во всœех комбинациях их нужно измерять 6 приемами (m = 30 / 5 = 6).

При измерении углов способом во всœех комбинациях выполняют следующий контроль: 1) расхождение углов из двух полуприемов – 6” для теодолита с окулярным микрометром и 8” – без; 2) расхождение углов из разных приемов 4 и 5” для сетей 1 и 2 классов соответственно; 3) колебание среднего значения угла, полученного по результатам непосредственных измерений и найденного из вычислений, не должно превышать 3 “ при n до 5 и 4” – более 5. В случае если законченные приемы не удовлетворяют этим допускам, то их переделывают на тех же установках круга. В случае если второй контроль не выполняется, то перенаблюдают углы, имеющие максимальное и минимальное значение, при тех же установках круга. Все наблюдения выполняют заново, в случае если число повторных приемов более 30% от числа приемов, предусмотренных программой. Наблюдения повторяют и при несоблюдении третьего контроля.

С.к.о. единицы веса и уравненного угла определяют по формулам

Достоинства способа: уравненные результаты являются рядом равноточных направлений; углы можно измерять в любой последовательности, выбирая наиболее благоприятные условия видимости и обеспечивая в итоге высокую точность; малая продолжительность одного приема (2-4 минуты измерения угла) обеспечивает меньшую зависимость точности результата от кручения сигнала; большое число перестановок горизонтального круга ослабляет влияние ошибок диаметров лимба.

Недостатки: быстрое уменьшение числа m приемов измеренного угла с ростом числа n направлений на пунктах (малое число приемов непосредственного измерения углов снижает точность их средних и уравненных значений); быстрый рост объёма работ при n > 5.

Способ неполных приемов предложен в 1954 ᴦ. Ю.А. Аладжаловым. Все направления разбивают на группы по три направления (без замыкания горизонта) так, чтобы определяемые по ним углы соответствовали бы углам, измеренным во всœех комбинациях, но требовали бы меньшего объёма работ и позволили увеличить число приемов непосредственных измерений каждой группы направлений. Следовательно, в данном способе заложено стремление избавиться от недостатков методов Струве и Шрейбера при наблюдении на пунктах с большим количеством направлений.

Практически не всœегда путем подбора можно разбить направления на группы из трех направлений. В этом случае кроме групп из трех направлений измеряют отдельные углы, дополняющие программу. Программа измерений приведена в Инструкции. Способ неполных приемов применяется в триангуляции 2 класса на пунктах с 7 – 9 направлениями.

Обработка результатов измерений на станции состоит в определœении средних значений направлений из m приемов в каждой группе и средних значений отдельных углов. По этим средним значениям вычисляют всœе углы – по три угла из каждой группы из трех направлений. Окончательно уравненные углы вычисляют по формулам способа Шрейбера. С.к.о. уравненных направлений определяют по формуле

где v – разности между измеренными и уравненными значениями углов; n – число направлений на пункте; r – число отдельно измеренных углов в программе. Вес уравненных направлений

где m – число приемов измерений направлений и отдельных углов; n, k – число направлений на пункте и в группе соответственно (k = 3, для углов k = 2).

Достоинства способа: результаты уравнивания на станции равноточны; объём работы на пункте на 20 – 25% меньше, чем в способе Шрейбера; число приемов непосредственных измерений групп при n = 7 – 9 больше, чем в способе Шрейбера, что позволяет более полно ослаблять ошибки измерений; дает возможность измерять направления, на которые в данный момент имеется хорошая видимость; короткая продолжительность приема (2 – 4 минуты), что позволяет уменьшить зависимость точности измерений от качества сигнала.

Недостатки: отсутствуют правила образования групп из трех направлений; при n = 8 нужно измерять большое число отдельных углов, что приводит к неклторому нарушению равноточности уравненных направлений; программа не предусматривает ослабление односторонне действующих ошибок измерений.

Видоизмененный способ измерения углов в комбинациях предложен А.Ф.Томилиным. Используется в триангуляции 2 класса на пунктах с 6 – 9 направлениями. В этом способе на станции с n направлениями независимо измеряют 2n углов:

1.2 2.3 3.4 … n.1;

1.3 2.4 3.5 … n.2.

Каждый угол измеряют 5 или 6 приемами. В этом способе измеряют не всœе углы, образующие сочетания направлений из n по 2, в связи с этим результат уравнивания на станции не является рядом равноточных направлений, и формулы для вычислений поправок в измеренные углы являются довольно сложными.

Достоинства способа: при n =7 – 9 число приемов непосредственных измерений углов больше и их точность выше, чем в способе Шрейбера; требует меньшего объёма измерений, чем способ во всœех комбинациях.

Недостатки: сложные формулы для вычисления поправок в измеренные углы.

Средства измерения углов и конусов

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минуты – из 60 угловых секунд.

Методы измерения углов можно разделить на 3 основных вида:

1. Метод сравнения с жесткими угловыми мерами или шаблонами.

2. Абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой.

3. Косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Простейшие инструменты для контроля углов – угольники с углом 90 0 , предназначенные для разметки и проверки взаимной перпендикулярности отдельных поверхностей деталей при монтаже оборудования и для контроля инструмента, приборов и станков. В соответствии со стандартом различают 6 типов угольников (рис. 2.12.):


Более универсальные инструменты для контроля и разметки углов – транспортирные угломеры (простые, оптические, универсальные). В машиностроении широко применяются угломеры с нониусом типа УН для измерения наружных и внутренних углов и типа УМ для измерения только наружных углов (рис. 2.13.).


а - для измерения наружных и внутренних углов: 1 - нониус; 2 - основание; 3 - линейка; 4 - стопор; 5 - сектор; 6 - угольник; 7 - съемная линейка; 8 - державка линейки; 9 - державка угольника; б - для измерения только наружных углов: 1 - державка угольника; 2 - угольник; 3 - линейка; Рисунок 2.13 Угломеры а, в - до 90 о: 1 - угольник; 2 - блок концевых мер длины; 3 - линейка; б - до 140 о; г,д - до 60 о; е - внутренних углов; пунктиром показаны положения подвижной измерительной линейки при измерении минимального размера в заданном диапазоне Рисунок 2.14 Приемы измерения углов различной величины

Приемы измерения углов смотрите рис. 2.14.



Калибры применяются для контроля размеров отверстий и наружных поверхностей деталей. В производстве не всегда нужно знать действительный размер. Иногда достаточно убедиться в том, что действительный размер детали находится в пределах установленного допуска, т.е. между наибольшими и наименьшими предельными размерами. В соответствии с этими размерами применяют предельные калибры, которые имеют две (или две пары) измерительные поверхности проходной и непроходной частей. Различают калибры гладкие, резьбовые, конусные и др. Калибры-пробки, калибры-скобы в зависимости от размеров контролируемых деталей, типа производства и других факторов имеют различные конструктивные формы (рис. 2.15, рис. 2.16).

Проходная сторона (ПР) пробки или скобы имеет размер, равный наименьшему предельному размеру отверстия или вала, а непроходная сторона (НЕ) – наибольшему предельному размеру вала и соответственно отверстия. Приемы измерения калибрами-пробками и калибрами-скобами показаны на рис. 2.16.

Калибры для конусов инструментов представляют собой калибры-пробки и калибры-втулки. Контроль инструментальных конусов производят комплексным методом, т.е. одновременно проверяют угол конуса, диаметры и длину (рис. 2.17).

а - калибрами-пробками; б - калибрами-втулками Рисунок 2.17 Приемы измерения конусов

Шаблоны применяют для проверки сложных профилей деталей и линейных размеров. Шаблоны изготовляют из листовой стали. Контроль производят сопряжением шаблона с проверяемой поверхностью. По размеру и равномерности просвета судят о качестве обработки (рис. 2.18., рис. 2.19.).

а - двусторонние; б - односторонние двухпредельные; в, г, д, е - предельные, измеряющие "на просвет"; ж,з - предельные, измеряющие "надвиганием"; и - предельные, измеряющие по методу "рисок" Рисунок 2.19 Предельные шаблоны для контроля линейных размеров

Контроль резьбы в зависимости от типа (профиля) и точности производится различными контрольно-измерительными средствами.

Шаблоны резьбовые для определения шага и профиля резьбы представляют собой закрепленные в обойме наборы стальных пластин с точными профилями (зубьями) метрической и дюймовой резьб. На каждой пластине указаны значения шага, диаметры резьбы или количество ниток на дюйм.

Шаблоны радиусные служат для измерения отклонения размеров выпуклых и вогнутых поверхностей деталей (рис. 2.18.). Для измерения глубины пазов, высоты и длины уступов применяют предельные калибры-шаблоны, работающие на просвет. Они также имеют две стороны и обозначены Б (для большего размера) и М (для меньшего размера). На рис. 2.19. показаны шаблоны для контроля длины, ширины и высоты выступов и пазов различными методами: "на просвет", "надвиганием" и "методом рисок".

Резьбовые калибры (пробки и кольца) применяют для контроля внутренних и наружных резьб (рис. 2.20.).

Рисунок 2.20 Резьбовые калибры (пробки и кольца) и приемы измерения резьбы

Резьбовые микрометры со вставками применяют для измерения среднего диаметра треугольной наружной резьбы.

Вставки выбирают в соответствии с шагом измеряемой резьбы из набора имеющегося в футляре для микрометра (рис. 2.21.). Чтение показаний микрометра производят так же, как при измерении гладких цилиндрических поверхностей.


Контроль резьбы также может быть осуществлен микрометром с применением трех измерительных проволочек (рис. 2.22.). При этом методе измеряется расстояние М между выступающими точками трех проволочек, помещаемых во впадины резьбы, затем путем математических преобразований определяют средний диаметр d 2 резьбы.

Диаметр проволочек d пр выбирают по таблице в зависимости от шага резьбы. Две проволочки устанавливают во впадины с одной стороны, а третью – в противоположную впадину (рис. 2.22.)

Средний диаметр метрической резьбы d 2 = М – 3 d пр + 0,866 Р

Средний диаметр дюймовой резьбы d 2 = М – 3,165 d пр + 0,9605 Р

Плоскопараллельные концевые меры длины применяются для переноса размера единицы длины на изделие (при разметке), проверки и настройки средств измерения (микрометров, калибр скоб и др. измерительных приборов), непосредственного измерения размеров изделий, приспособлений, при наладке станков и т.п.

Одним из основных свойств концевых мер является прилипаемость, способность прочно соединяться между собой при прикладывании и надвигании одной меры на другую с некоторым давлением, что достигается благодаря очень низкой шероховатости измерительных поверхностей. Концевые меры комплектуются в наборе с количеством 7…12 плиток (рис. 2.23).

Рисунок 2.23 Набор плоскопараллельных концевых мер длины в футляре

Наиболее широко применяют наборы, состоящие из 87 и 42 концевых мер. Каждая плитка воспроизводит только один размер, который маркируется на одной из ее сторон. Для удобства использования концевых мер длины к ним выпускают наборы принадлежностей (рис. 2.24.), в состав которых входят: основания – 5, плоскопараллельные, радиусные – 2, чертильные – 3, центровые боковички – 4, державки – 1 для крепления блоков концевых мер с боковичками. Составление блока концевых мер длины производят в соответствии с классом или разрядом плиток и размерами плиток, имеющихся в данном наборе.

Первоначально подбирают меньшую плитку, в размер которой входит последний десятичный знак и т.д. Допустим, необходимо собрать блок концевых мер размером 37,875 мм из набора, состоящего из 87 плиток:

1 плитка 1,005 мм, остаток 36,87

2 плитка 1,37 мм, остаток 35,5

3 плитка 5,5 мм, остаток 30,00

4 плитка 30 мм, остаток 0.

Сумма блок 1,005+1,37+5,5+30 = 37,875.

Таким же способом набирают блок из набора, состоящего из 42 плиток.

1,005+1,07+4,00+30 = 37,875.

а - составление блока требуемого размера; б - притирка плиток в блок; в - проверка погрешности микрометра; г - проверка межосевого расстояния; д - проверка предельных размеров скобы; е - измерение внутреннего диаметра; ж - разметка на плоскости; з - пространственная разметка Рисунок 2.25 Приемы измерения и разметки плоскопараллельными концевыми мерами длины

Приемы измерения плоскопараллельными концевыми мерами длины и разметки с использованием принадлежностей к ним показаны на рис. 2.25.

Угловые призматические меры (плитки) предназначены для проверки и настройки измерительных угломерных приборов и инструментов, а также для непосредственного измерения наружных и внутренних углов деталей с высокой плотностью. Угловые меры выполняют при измерении углов ту же роль,

что и концевые меры при измерении длины. К рабочим сторонам угловых мер предъявляют такие же требования, что и к концевым мерам, т.е. обеспечение адгезии (прилижаемости).

1 - линейка; 2 - державки; 3 – клиновые штифты; 4 - отвертка Рисунок 2.27 Набор принадлежностей к призматическим угловым мерам

Угловые меры выпускают наборами с количеством 7…93 плиток в каждом (рис. 2.26.). Проверку углов плитками выполняют "на просвет".

Для увеличения прочности блока, собранного из угловых плиток, к ним выпускают набор принадлежностей, в состав которых входят стяжки, винты, клинья и другие (рис. 2.27.). Укрепляют блок через специальные отверстия в плитках.

Правила расчета угловых мер для образования блоков, а также правила подготовки к сборке и сборка их в блок аналогичны правилам, применяемым при составлении концевых мер длины.

Приемы измерения угловыми мерами показаны на рис. 2.28.


Средства измерения углов и конусов

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минуты – из 60 угловых секунд.

Методы измерения углов можно разделить на 3 основных вида:

1. Метод сравнения с жесткими угловыми мерами или шаблонами.

2. Абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой.

3. Косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Простейшие инструменты для контроля углов – угольники с углом 90 0 , предназначенные для разметки и проверки взаимной перпендикулярности отдельных поверхностей деталей при монтаже оборудования и для контроля инструмента, приборов и станков. В соответствии со стандартом различают 6 типов угольников (рис. 2.12.):


Более универсальные инструменты для контроля и разметки углов – транспортирные угломеры (простые, оптические, универсальные). В машиностроении широко применяются угломеры с нониусом типа УН для измерения наружных и внутренних углов и типа УМ для измерения только наружных углов (рис. 2.13.).

а - для измерения наружных и внутренних углов: 1 - нониус; 2 - основание; 3 - линейка; 4 - стопор; 5 - сектор; 6 - угольник; 7 - съемная линейка; 8 - державка линейки; 9 - державка угольника; б - для измерения только наружных углов: 1 - державка угольника; 2 - угольник; 3 - линейка; Рисунок 2.13 Угломеры а,в - до 90 о: 1 - угольник; 2 - блок концевых мер длины; 3 - линейка; б - до 140 о; г,д - до 60 о; е - внутренних углов; пунктиром показаны положения подвижной измерительной линейки при измерении минимального размера в заданном диапазоне Рисунок 2.14 Приемы измерения углов различной величины

Приемы измерения углов смотрите рис. 2.14.


а - калибрами-пробками; б - калибрами-скобами Рисунок 2.16 Приемы измерения

Калибры применяются для контроля размеров отверстий и наружных поверхностей деталей. В производстве не всегда нужно знать действительный размер. Иногда достаточно убедиться в том, что действительный размер детали находится в пределах установленного допуска, т.е. между наибольшими и наименьшими предельными размерами. В соответствии с этими размерами применяют предельные калибры, которые имеют две (или две пары) измерительные поверхности проходной и непроходной частей. Различают калибры гладкие, резьбовые, конусные и др. Калибры-пробки, калибры-скобы в зависимости от размеров контролируемых деталей, типа производства и других факторов имеют различные конструктивные формы (рис. 2.15, рис. 2.16).

Проходная сторона (ПР) пробки или скобы имеет размер, равный наименьшему предельному размеру отверстия или вала, а непроходная сторона (НЕ) – наибольшему предельному размеру вала и соответственно отверстия. Приемы измерения калибрами-пробками и калибрами-скобами показаны на рис. 2.16.

Калибры для конусов инструментов представляют собой калибры-пробки и калибры-втулки. Контроль инструментальных конусов производят комплексным методом, т.е. одновременно проверяют угол конуса, диаметры и длину (рис. 2.17).



Шаблоны применяют для проверки сложных профилей деталей и линейных размеров. Шаблоны изготовляют из листовой стали. Контроль производят сопряжением шаблона с проверяемой поверхностью. По размеру и равномерности просвета судят о качестве обработки (рис. 2.18., рис. 2.19.).


Контроль резьбы в зависимости от типа (профиля) и точности производится различными контрольно-измерительными средствами.

Шаблоны резьбовые для определения шага и профиля резьбы представляют собой закрепленные в обойме наборы стальных пластин с точными профилями (зубьями) метрической и дюймовой резьб. На каждой пластине указаны значения шага, диаметры резьбы или количество ниток на дюйм.

Шаблоны радиусные служат для измерения отклонения размеров выпуклых и вогнутых поверхностей деталей (рис. 2.18.). Для измерения глубины пазов, высоты и длины уступов применяют предельные калибры-шаблоны, работающие на просвет. Они также имеют две стороны и обозначены Б (для большего размера) и М (для меньшего размера). На рис. 2.19. показаны шаблоны для контроля длины, ширины и высоты выступов и пазов различными методами: "на просвет", "надвиганием" и "методом рисок".

Резьбовые калибры (пробки и кольца) применяют для контроля внутренних и наружных резьб (рис. 2.20.).



Резьбовые микрометры со вставками применяют для измерения среднего диаметра треугольной наружной резьбы.

Вставки выбирают в соответствии с шагом измеряемой резьбы из набора имеющегося в футляре для микрометра (рис. 2.21.). Чтение показаний микрометра производят так же, как при измерении гладких цилиндрических поверхностей.


Контроль резьбы также может быть осуществлен микрометром с применением трех измерительных проволочек (рис. 2.22.). При этом методе измеряется расстояние М между выступающими точками трех проволочек, помещаемых во впадины резьбы, затем путем математических преобразований определяют средний диаметр d 2 резьбы.

Диаметр проволочек d пр выбирают по таблице в зависимости от шага резьбы. Две проволочки устанавливают во впадины с одной стороны, а третью – в противоположную впадину (рис. 2.22.)

Средний диаметр метрической резьбы d 2 = М – 3 d пр + 0,866 Р

Средний диаметр дюймовой резьбы d 2 = М – 3,165 d пр + 0,9605 Р

Плоскопараллельные концевые меры длины применяются для переноса размера единицы длины на изделие (при разметке), проверки и настройки средств измерения (микрометров, калибр скоб и др. измерительных приборов), непосредственного измерения размеров изделий, приспособлений, при наладке станков и т.п.

Одним из основных свойств концевых мер является прилипаемость, способность прочно соединяться между собой при прикладывании и надвигании одной меры на другую с некоторым давлением, что достигается благодаря очень низкой шероховатости измерительных поверхностей. Концевые меры комплектуются в наборе с количеством 7…12 плиток (рис. 2.23).


Наиболее широко применяют наборы, состоящие из 87 и 42 концевых мер. Каждая плитка воспроизводит только один размер, который маркируется на одной из ее сторон. Для удобства использования концевых мер длины к ним выпускают наборы принадлежностей (рис. 2.24.), в состав которых входят: основания – 5, плоскопараллельные, радиусные – 2, чертильные – 3, центровые боковички – 4, державки – 1 для крепления блоков концевых мер с боковичками. Составление блока концевых мер длины производят в соответствии с классом или разрядом плиток и размерами плиток, имеющихся в данном наборе.

Первоначально подбирают меньшую плитку, в размер которой входит последний десятичный знак и т.д. Допустим, необходимо собрать блок концевых мер размером 37,875 мм из набора, состоящего из 87 плиток:

1 плитка 1,005 мм, остаток 36,87

2 плитка 1,37 мм, остаток 35,5

3 плитка 5,5 мм, остаток 30,00

4 плитка 30 мм, остаток 0.

Сумма блок 1,005+1,37+5,5+30 = 37,875.

Таким же способом набирают блок из набора, состоящего из 42 плиток.

1,005+1,07+4,00+30 = 37,875.

а - составление блока требуемого размера; б - притирка плиток в блок; в - проверка погрешности микрометра; г - проверка межосевого расстояния; д - проверка предельных размеров скобы; е - измерение внутреннего диаметра; ж - разметка на плоскости; з - пространственная разметка Рисунок 2.25 Приемы измерения и разметки плоскопараллельными концевыми мерами длины

Приемы измерения плоскопараллельными концевыми мерами длины и разметки с использованием принадлежностей к ним показаны на рис. 2.25.

Угловые призматические меры (плитки) предназначены для проверки и настройки измерительных угломерных приборов и инструментов, а также для непосредственного измерения наружных и внутренних углов деталей с высокой плотностью. Угловые меры выполняют при измерении углов ту же роль,

что и концевые меры при измерении длины. К рабочим сторонам угловых мер предъявляют такие же требования, что и к концевым мерам, т.е. обеспечение адгезии (прилижаемости).


Угловые меры выпускают наборами с количеством 7…93 плиток в каждом (рис. 2.26.). Проверку углов плитками выполняют "на просвет".

Для увеличения прочности блока, собранного из угловых плиток, к ним выпускают набор принадлежностей, в состав которых входят стяжки, винты, клинья и другие (рис. 2.27.). Укрепляют блок через специальные отверстия в плитках.

Правила расчета угловых мер для образования блоков, а также правила подготовки к сборке и сборка их в блок аналогичны правилам, применяемым при составлении концевых мер длины.

Приемы измерения угловыми мерами показаны на рис. 2.28.