Как рассчитать передаточное отношение зубчатой передачи. Механизм из шестеренок для кругового хода на магнитах В каких механизмах есть маленькие шестерни

Все мы время от времени задумываемся о том, как же всё-таки быстро это самое время течёт. Конечно простаивая, например, в очереди происходит с точностью наоборот - кажется, что минуты как минимум утраиваются в продолжительности. А заглядывая в альбом с фотографиями даже не верится, что что знаковые события происходили десятилетия назад.

В этом контексте очень наглядным является механизм сконструированный скульптором Артуром Генсоном , работающем в таком необычном направлении как кинетик-арт. Ничего высокотехнологичного в этом устройстве нет - по сути это просто редуктор - 12 последовательно соединённых и абсолютно одинаковых пар червячной передачи . Первая пара через редуктор приводится в движение электромотором, а ось последней замурована в бетонный куб. Казалось бы - ничего интересного: шестерёнки, моторчики, бетон зачем-то… Однако для тех, кто хочет увидеть насколько относительно время - этот прибор будет довольно интересен.

Начнём с того, что пары червячной передачи в этом «хронометре» имеют передаточный коэффициент частоты вращения 1:50. Что это означает? Это значит, что для того чтобы шестерня второго вала сделала один полный оборот вокруг оси, первый вал должен «крутануться» 50 раз. Зная частоту вращения червячного вала вращаемого электрическим мотором (200 оборотов в минуту) нетрудно посчитать, что первая червячная пара в механизме будет делать полный оборот за 15 секунд; вторая пара шестерёнок сделает полный оборот за 12,5 минут.

После третьего вала, который сделает полный оборот вокруг своей оси чуть меньше, чем за десять с половиной часов, движение шестерёночных колёс замедляется уже довольно заметно. А после шестого колеса движение механизма приобретает поистине космическую неторопливость и вальяжность. Для тех кому лениво самому подсчитывать скорость вращения червячных пар в этом механизме привожу эти фантастические и жестокие цифры.

  • 3-е колесо - 1 оборот за 10.4 часа
  • 4-е колесо - 1 оборот за 3.1 недели
  • 5-е колесо - 1 оборот за 2.98 года
  • 6-е колесо - 1 оборот за 149 лет
  • 7-е колесо - 1 оборот за 7452 года
  • 8-е колесо - 1 оборот за 372.6 тысяч лет
  • 9-е колесо - 1 оборот за 18.6 миллионов лет
  • 10-е колесо - 1 оборот за 932 миллиона лет
  • 11-е колесо - 1 оборот за 47 миллиардов лет
  • 12-е колесо - 1 оборот за 2.3 триллиона лет

Глядя на приведённые данные поневоле начинаешь понимать насколько одновременно быстротечно и неторопливо время: ведь ни у металлических колёс механизма, ни у электродвигателя, который приводит в движение систему нет ни малейшего шанса дожить до того момента, когда вал вмурованный бетонный куб начнёт движение и тем самым разрушит его.

Это познавательный механизм, созданный в нашем клубе, который дети любят без конца собирать и разбирать на части. Смысл механизма - 4 шестеренки с магнитами в центре вращаются по кругу и вокруг своей оси. на них надевается крыжка, а на нее кладутся любые фигурки-сувениры, тоже с магнитом, в нашем случае, это цветочки. При включении механизма цветы начинают вращаться силами магнитного притяжения. Все детали для механизма напечатаны на 3D принтере.

У нас есть 2 варианта - первый приводится в движение моторчиком, а второй рукояткой, вращаемой человеком. Внутри они содержат одни и те же элементы, отличаются только небольшой частью корпуса, к которой крепится или мотор или рукоять.

Вариант с мотором.


Вот из таких деталей состоит наша игрушка:
1) Корпус:


2) Крыжка:


3) Большая шестеренка в центре:

4) 4 маленьких шестеренки с магнитами и подшипниками:


Мы используем маленькие магниты - диаметром 12 мм и высотой 2 мм, а подшипники диаметром 13 мм, высотой 3 мм.
5) Центральная маленькая шестеренка:



6) Шестеренка для мотора, вращающая большую шестеренку:


А мотор мы использовали в нашей конструкции такой:

У нас есть подробное видео, о том как собирается эта конструкция:

Вариант с рукояткой.
Как уже было сказано - этот вариант отличается частью корпуса, поддерживающей рукоятку.


Эта часть состоит из двух полуцилиндров, соединяемых тремя винтиками, а рукоятка собирается из трех частей.

Еще печатаем разные варианты игрушек, вращающихся на магнитах.

С обратной стороны игрушек приклеиваем металлические диски, чтобы экономить магнитики.

Вот видео о втором варианте конструкции:

Также предлагаем вам stl файлы деталей и файлы проекта, сделанные в Blender 3D.

Для того чтобы определить передаточное отношение, у вас должно быть по крайней мере две шестерни, сцепленных друг с другом; такое сцепление называется зубчатой передачей. Как правило, первая шестерня является ведущей шестерней (крепится к валу двигателя), а вторая - ведомой шестерней (крепится к валу нагрузки). Между ведущей и ведомой шестернями может быть сколь угодно много шестерен. Они называются промежуточными.

  • Сейчас рассмотрим зубчатую передачу с двумя шестернями. Для определения передаточного отношения эти шестерни должны быть сцеплены друг с другом (то есть их зубья сцеплены и одна шестерня поворачивает другую). Например, дана небольшая ведущая шестерня (шестерня 1) и большая ведомая шестерня (шестерня 2).

Посчитайте количество зубьев на ведущей шестерне. Простейший способ найти передаточное отношение между двумя шестернями - сравнить количество зубьев на каждой из них. Начните с определения количества зубьев на ведущей шестерне. Вы можете сделать это вручную или посмотреть на маркировку шестерни.

  • В нашем примере допустим, что меньшая (ведущая) шестерня имеет 20 зубьев.
  • Посчитайте количество зубьев на ведомой шестерне.

    • В нашем примере допустим, что большая (ведомая) шестерня имеет 30 зубьев.
  • Разделите количество зубьев ведомой шестерни на количество зубьев ведущей шестерни, чтобы вычислить передаточное отношение. В зависимости от условий задачи вы можете записать ответ в виде десятичной дроби, обыкновенной дроби или в виде отношения (х:у).

    Более двух шестерен

    1. Зубчатая передача может включать сколь угодно большое количество шестерен. В этом случае первая шестерня является ведущей шестерней (крепится к валу двигателя), а последняя - ведомой шестерней (крепится к валу нагрузки). Между ведущей и ведомой шестернями может быть несколько промежуточных шестерен; они используются для изменения направления вращения или для сцепления двух шестерен (когда сцепление напрямую невозможно).

      • Рассмотрим пример, приведенный выше, но теперь ведущей шестерней станет шестерня с 7 зубьями, а шестерня с 20 зубьями превратится в промежуточную шестерню (ведомая шестерня с 30 зубьями остается той же).
    2. Разделите количество зубьев ведомой шестерни на количество зубьев ведущей шестерни. Помните, что при определении передаточного отношения зубчатой передачи с несколькими шестернями важно знать только количество зубьев ведомой шестерни и количество зубьев ведущей шестерни, то есть промежуточные шестерни на значение передаточного отношения не влияют.

      • В нашем примере: 30/7 = 4,3. Это означает, что ведущая шестерня должна совершить 4,3 оборота, чтобы ведомая (большая) шестерня совершила один оборот.
    3. Если необходимо, найдите передаточные отношения для промежуточных шестерен. Для этого начните с ведущей шестерни и двигайтесь в направлении ведомой шестерни. При каждом новом вычислении передаточного отношения для промежуточных шестерен рассматривайте предыдущую шестерню в качестве ведущей (и делите количество зубьев ведомой шестерни на количество зубьев ведущей шестерни).

      • В нашем примере передаточные отношения для промежуточной шестерни: 20/7 = 2,9 и 30/20 = 1,5. Заметьте, что передаточные отношения для промежуточной шестерни отличаются от передаточного отношения всей зубчатой передачи (4,3).
      • Также заметьте, что (20/7) × (30/20) = 4,3. То есть для вычисления передаточного отношения всей зубчатой передачи необходимо перемножить значения передаточных отношений для промежуточных шестерен.

    Про моделирование и печать шестеренок здесь написано достаточно. Однако, большинство статей предполагают использование спец. программ. Но, у каждого пользователя есть своя «любимая» программа для моделирования. Кроме того, не все хотят устанавливать и изучать дополнительный софт. Как же моделировать профиль зуба шестерни в программе, где не предусмотрено вычерчивание эвольвентного профиля? Очень просто! Но муторно…
    Нам понадобится любая программа, которая может работать с 2D графикой. Например, ваша любимая программа! Она работает с 3D? Значит и с 2D сможет! Строим профиль эвольвентного зуба без коррекции. Если кому-то захочется построить корригированный зуб, он может с этим разобраться самостоятельно. Информации полно - и в интернете, и в литературе. Если в вашей шестеренке зубьев больше 17-ти, то вам коррекция не понадобится. Если же зубьев 17 или меньше, то без коррекции возникает «утоньшение» ножки зуба, а при чрезмерной коррекции возникает заострение вершины зуба. Что выбрать? Решать вам. Определяем делительную окружность шестерни. Зачем это нужно? Чтобы определить межосевое расстояние. Т.е. где у вас будет располагаться одна шестерня, а где другая. Сложив диаметры делительных окружностей шестеренок и разделив сумму пополам, вы определите межосевое расстояние.
    Чтобы определить диаметр делительной окружности нужно знать два параметра: модуль зуба и количество зубьев. Ну, с количеством зубьев – тут всем все понятно. Количеством зубьев на одной и другой шестерне определяется нужное нам передаточное отношение. Что такое модуль? Чтобы не связываться с числом «пи», инженеры придумали модуль. Как вы знаете из курса школьной математики: D= 2 «Пи» R. Так вот, что касается шестеренок, там D = m* z, где D – это диаметр делительной окружности, m – модуль, z – количество зубьев. Модуль – величина, характеризующая размер зуба. Высота зуба равна 2,25 m. Модуль принято выбирать из стандартного ряда величин: 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25; 32 (ГОСТ-9563). Можно ли придумать «свой» модуль? Конечно! Но ваша шестеренка будет нестандартная! Чертим делительную окружность. У кого нет подходящей «проги», чертит на бумаге, фанере или металле! От делительной окружности «откладываем» наружу на величину модуля (m) окружность вершин зубьев. Внутрь откладываем модуль и еще четверть модуля (1,25 m) - получаем окружность впадин зубьев. Четверть модуля дается на зазор между зубом другой шестерни и впадиной этой шестерни.

    Строим основную окружность. Основная окружность – это окружность, по которой «перекатывается» прямая линия, своим концом вычерчивая эвольвенту. Формула для расчета диаметра основной окружности очень простая: Db = D * cos a, где а – угол рейки 20 градусов. Эта формула нам не нужна! Все гораздо проще. Строим прямую линию через любую точку делительной окружности. Удобнее взять самую высокую точку, на «12 часов». Тогда линия будет горизонтальная. Повернем эту линию на угол в 20 градусов против часовой стрелки. Можно ли повернуть на другой угол? Думаю, можно, но не нужно. Кому интересно, ищем в литературе или интернете ответ на вопрос.


    Прямую линию, которую мы получили, будем поворачивать вокруг центра шестерни маленькими угловыми шагами. Но, самое главное, при каждом повороте против часовой стрелки будем удлинять нашу линию на длину той дуги основной окружности, которую она прошла. А при повороте по часовой стрелки наша линия будет укорачиваться на ту же величину. Длину дуги или мерим в программе, или считаем по формуле: Длина дуги = (Пи * Db * угол поворота (в градусах)) / 360


    «Прокатываем» прямую линию по основной окружности с нужным угловым шагом. Получаем точки эвольвентного профиля. Чем точнее хотим строить эвольвенту, тем меньший угловой шаг выбираем.

    К сожалению, в большинстве программ автоматического проектирования (CAD) не предусмотрено построение эвольвенты. Поэтому эвольвенту строим по точкам либо прямыми, либо дугами, либо сплайнами. При построении эвольвента заканчивается на основной окружности. Оставшуюся часть зуба до впадины можно построить дугой того же радиуса, который получается на трех последних точках. Для 3D печати я рисовал эвольвенту сплайнами. Для лазерной резки металла мне пришлось рисовать эвольвенту дугами. Для лазера нужно создать файл в формате dwg или dxf (для некоторых, почему-то, только dxf). «Понимает» лазер только прямые, дуги и окружности, сплайны не понимает. На лазере можно сделать только прямозубые шестерни.

    Делим окружность на такое количество частей, которое в 4 раза больше количества зубьев шестерни. Эвольвенту отзеркаливаем относительно оси зуба и копируем с поворотом нужное количество раз.

    Чтобы получить шестерню в объеме, то задаем толщину и получаем прямозубую цилиндрическую шестерню:

    Если нужна косозубая шестерня, то вводим наклон зубьев и получаем:

    ТИПЫ ЗУБЧАТЫХ ПЕРЕДАЧ

    По сути, шестерни это устройства, которые передают вращательное движение от одной оси к другой. Некоторые типы передач могут осуществлять и поступательные движения. Существуют десятки различных типов передач в промышленности, лишь некоторые из которых показаны здесь.

    ЦИЛИНДРИЧЕСКИЕ ШЕСТЕРНИ

    Цилиндрические зубчатые колеса работают на валах оси которых параллельны

    Одним из побочных эффектов пар цилиндрических зубчатых колес является то, что выходные оси вращается в противоположном направлении, от входной оси, эффект, который можно ясно увидеть в анимации

    КОНИЧЕСКИЕ ЗУБЧАТЫЕ КОЛЕСА

    Конические шестерни работают на осях, которые не являются параллельными. Конические шестерни могут быть сделаны специально для осей практически под любым углом

    ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ

    Червячных передач (или винт) можно рассматривать как передачу одного зуба

    Червячные передачи имеют некоторые особые свойства, которые делают их отличимых от других передач. Во-первых, они могут достичь очень высоких передач произведенных за одну движение. Потому что большинство червячных передач имеет только один нагруженный зуб, передаточное отношение это просто число зубьев на соединение передач. Например, червячных пара передач в паре с 40- зубый цилиндрический редуктор имеет соотношение 40:1. Во-вторых, червячные передачи имеют гораздо более высокие трения (и ниже эффективность), чем другие типы передач. Это потому, что профиль зуба червячных передач постоянно скользят по зубам сопряженных передач. Это трение становится выше, тем больше нагрузка на передачу. Наконец, червячая передача не может работать с обратным эффектом. В анимации ниже, червячные передачи на зеленой оси ведет синие зубчатое колесо на красной оси. Но если вы включите красную ось в качестве ведущей, то червячных передач не получится. Это свойство передачи может применяться для остановки -блокировки вещи на определенном месте, без скатывания назад, например ворота гаража.

    ЛИНЕЙНЫЕ ПЕРЕДАЧИ

    Это средство преобразования вращательного движения от оси вращения или шестерни в поступательное движение зубчатой рейки. Шестерня вращается, и толкает рейку вперед, поскольку в ней перемещаются зубы шестерни. Регулируется например меньшим количеством зубов на ведущей шестерни и большим на рейке. движение в рейки будет пропорционально количеству зубьев на шестерне

    ДИФЕРЕНЦИАЛЬНАЯ ПЕРЕДАЧА

    Дифференциал - это механическое устройство, которое передает крутящий момент с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга. Такая передача момента возможна благодаря применению так называемого планетарного механизма. В автомобилестроении, дифференциал является одной из ключевых деталей трансмиссии. В первую очередь он служит для передачи момента от коробки передач к колёсам ведущего моста.

    Почему для этого нужен дифференциал? В любом повороте, путь колеса оси, двигающегося по короткому (внутреннему) радиусу, меньше, чем путь другого колеса той же оси, которое проходит по длинному (внешнему) радиусу. В результате этого, угловая скорость вращения внутреннего колёса должна быть меньше угловой скорости вращения внешнего колеса. В случае с не ведущим мостом, выполнить это условие достаточно просто, так как оба колеса могут не быть связанными друг с другом и вращаться независимо. Но если мост ведущий, то необходимо передавать крутящий момент одновременно на оба колеса (если передавать момент только на одно колесо, то возможность управления автомобилем по современным понятиям будет очень плохой). При жесткой же связи колёс ведущего моста и передачи момента на единую ось обоих колёс, автомобиль не мог бы нормально поворачивать, так как колеса, имея равную угловую скорость, стремились бы пройти один и тот же путь в повороте. Дифференциал позволяет решить эту проблему: он передаёт крутящий момент на раздельные оси обоих колёс (полуоси) через свой планетарный механизм с любым соотношением угловых скоростей вращения полуосей. В результате этого, автомобиль может нормально двигаться и управляться как на прямом пути, так и в повороте.

    ПЕРЕДАЧА С ПЕРЕКЛЮЧЕНИЕМ ШЕСТЕРЕН

    Движущей кольцо, в сочетании с парой промежуточных шестерен, которые не зафиксированы на своей оси, обладают функцией, включать и выключать шестерни в работу.

    Анимация показывает, работу шестерни, на отключение или или для того что бы обеспечить сцепление шетерен с помощью промежуточной шестерни. Движущееся кольца показаны красным цветом. , оси соединены с серой осью с белыми дисками которые скользит по пазам основной оси. Движущей белое кольцо вращается вместе с осями. Сначала , движущиеся кольцо отключено так как темно-серая и зеленая передача не зацеплены. Движущиеся кольцо, приходит в зацепление с зеленым и тем самым приводит в движение синюю передачу. Движущиеся кольцо не использует зубьев, а использует четыре конических пальца, существует значительный зазор между кольцом и пальцами. Что позволяет подключать кольцо на холостом ходу или когда шестерни вращаются с разными скоростями

    РЕГУЛИРУЕМЫЙ РОТОР