Строение вируса и функции структур. Вирусы. Общие характеристики. Способы передачи вирусных болезней

Они везде: в воздухе, воде, почве и на поверхностях предметов. Они настолько малы, что не все их типы возможно рассмотреть в обычный микроскоп. Это вирусы, удивительные природные образования, не до конца изученные и обладающие поразительной выживаемостью.

Знакомьтесь: ядовитый и опасный

Вирус абсолютно оправдывает свое название, если перевести его с латыни: яд. Ранее это слово употреблялось по отношению ко всем возбудителям болезни без разбора. Но в конце 19 столетия ситуация переменилась.

Два века тому назад российский ученый Ивановский в ходе экспериментов с листьями табака, пораженного специфической болезнью, выяснил, что если от выжатого сока с помощью фильтра отделить бактериальное содержимое, то получившийся биоматериал все равно сохраняет способность инфицировать здоровые растения. Далее ученые начали выделять новые виды агрессивных агентов способом фильтрации, например вирус ящура или желтой лихорадки. Постепенно, слово «фильтрующийся» исчезло, и на данном этапе развития науки то, что вызывает большинство заболеваний во всем мире, принято называть вирусами.

Ни живой, ни мертвый

Этот вопрос по сей день является предметом научных споров. Дело в том, что с тех пор, как было изучено строение вирусов (прежде всего, вызывающего табачную мозаику), их поведенческие схемы, то выяснились важные подробности, которые заставили задуматься: он скорее жив, чем мертв, или наоборот?

Аргументы за:

  • молекулярная структура;
  • содержат геном;
  • внутри клетки ведут себя довольно активно.

Аргументы против:

  • вне клеточной полости абсолютно инертны;
  • самостоятельно не синтезируют белок, поэтому не способны делиться генным материалом без наличия клетки-хозяина.

Структурные особенности

Строение вирусов, вызывающих многие болезни, разнится в деталях, но имеет много общих черт. Прежде всего, внеклеточная форма вируса именуется вирионом. Он состоит из таких элементов:

  • ядра, которое вмещает в себя от 1 до 3 молекул нуклеиновой кислоты;
  • капсида - чехла из белка, защищающего кислоту от воздействий;
  • оболочки, состоящей из белково-липидных соединений (не всегда есть в наличии).

Нуклеиновая кислота - это генетический код вируса. Интересно, что никогда дезоксирибонуклеиновая и рибонуклеиновая кислоты не содержатся вместе. В то время как микроорганизмы, в «живости» которых никто не сомневается, к примеру, хламидии, имеют в своем составе обе кислоты. Что касается генной информации, то она может быть ограничена 1-3 генами, а иногда содержит до 100 единиц.

Дополнительную оболочку вирионы позаимствовали у оккупированного организма, внеся изменения в строение клетки. Вируса, который имеет такое дополнение, интересует цитоплазматическая или ядерная мембрана, чтобы из ее фрагментов сформировать вторичный защитный слой. Причем такая оболочка свойственна только сравнительно крупным экземплярам, таким как герпес или вирус гриппа.

Компоненты вирионов выполняют не только функции защиты, хранения информации, но и отвечают за вирусное размножение и необходимые мутации.

Форменный вирус

Особенности строения вирусов таковы, что от формы капсида зависит их классификация.

Самые простые вирусы имеют строение, которое отличается наличием одного вида белковых молекул в составе капсидов. Это так называемые голые вирусы, то есть напрочь лишенные оболочки.

Но есть вирионы, покрытые капсомерами - это объединение нескольких молекул, образующее определенную геометрическую форму. Строение вирусов, а также их капсомеров играет важную роль в идентификации агрессивного агента. Форма значительно варьируется: головка с хвостиком, прямоугольник (оспа), шар (грипп), палочка (табачная мозаика), нить (болезни картофельных клубней), многогранник (полиомиелит), пулевидный (бешенство).

Наноразмеры

Вирусы настолько малы, что большинство из них можно детально рассмотреть только в электронный микроскоп. Каковы бы ни были форма и строение вируса, бактерии всегда будут отличаться более крупными размерами (примерно в 50 раз). Величина вирионов варьируется в диапазоне от мелких (20-30 нм), до крупных (400 нм).

Клеточная оккупация

Вирусное вторжение в клетку не поддается никакому сравнению - в природе подобный механизм не встречается больше нигде. Вне клетки вирион находится в спящем, кристаллизованном состоянии. Но стоит ему попасть в желаемую полость, как начинаются активные действия.

  1. Адсорбция. Другими словами, это прикрепление вирионов (иногда сотен) к стенкам избранной клетки.
  2. Виропексис. Процесс непосредственного погружения в клетку, происходящий через участок прикрепления вируса. Интересный момент: клетка никак не препятствует вторжению, потому что частица вируса, вернее, его белок, идентифицируется клеткой, как "свой".
  3. Редупликация. Инфекционная инвазия начинается тогда, когда вирусы размножаются в клетке. Они синтезируют новые, подобные себе молекулы, образуя многочисленные капсиды.
  4. Выход . В момент перенасыщения нарушается клеточное строение, вирусов уже ничего не сдерживает, и они вырываются поражать новые клетки. При этом произойти такой процесс может несколькими способами.

Удивительно, но микроорганизмы в сотни раз меньше клетки уверенно и быстро разрушают ее работу, деструктивно воздействуя на обменные процессы и часто уничтожая жертву.

Типы вирусных вторжений

Подобная классификация зависит от характера клеточной деструкции, а также от длительности пребывания агрессивного агента. В связи с этим различают три типа инфицирования:

  • разрушительный: этот тип инфекции называют литическим, при нем вирусы массово вырываются из клеточного пространства, и, разрушая все на своем пути, стремятся к завоеванию новых клеток;
  • стойкий, или персистентный: характеризуется постепенным истеканием вирусных масс наружу, не нарушая работы клетки;
  • скрытый: латентный тип отличается встраиванием вирусного генома в клеточные хромосомы и позже, при делении, клетка передает вирус дочерним структурам.

В заключение стоит отметить поражающее разнообразие этих микроскопических субстанций, чем и обусловлена разность наблюдаемых симптомов. Существуют вирусы с наличием ДНК - герпес, оспа, а также содержащие РНК - ящур, несколько бактериофагов. Кроме прочего, данные вирионы содержат липиды.

Другие варианты: безлипидные вирусы, такие как аденовирусы и подавляющее большинство бактериофагов.

Обнадеживает то обстоятельство, что рано или поздно ученый мир научится подчинять эти формы жизни и обращать их на пользу человечеству.

2.4.1. Открытие

В 1852 г. русский ботаник Д.И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, задерживающий , отфильтрованная жидкость все еще сохраняла инфекционные свойства. В 1898 г. голландец Бейеринк придумал новое слово «вирус» (от латинского слова, означающего «яд»), чтобы обозначить этим словом инфекционную природу определенных профильтрованных растительных жидкостей. Хотя удалось достичь значительных успехов в получении высокоочищенных проб вирусов и было установлено, что по химической природе это нуклеопротеины (сложные соединения, состоящие из и нуклеиновых кислот), сами частицы все еще оставались неуловимыми и загадочными, потому что они были слишком малы, чтобы их можно было увидеть с помощью светового . Именно поэтому вирусы и оказались в числе первых биологических структур, которые были исследованы в электронном микроскопе сразу же после его изобретения в тридцатые годы XX столетия.

2.4.2. Свойства вирусов

Вирусы обладают следующими свойствами.

Ниже мы рассмотрим эти свойства более подробно.

Размеры

Вирусы – это мельчайшие живые организмы, размеры которых варьируют в пределах от 20 до 300 нм; в среднем они раз в пятьдесят меньше . Их нельзя увидеть с помощью светового микроскопа, и они проходят через фильтры, не пропускающие бактерий.

Происхождение

Исследователи часто задаются вопросом, живые ли вирусы? Если считать живой любую структуру, обладающую генетическим материалом (ДНК или РНК) и способную к самовоспроизведению, то ответ должен быть утвердительным: да, вирусы – живые. Если же признаком живого считать наличие клеточного строения, то ответ будет отрицательным: вирусы не живые. К этому следует добавить, что вне клетки-хозяина вирусы неспособны к самовоспроизведению.

Для более полного представления о вирусах необходимо знать их происхождение в процессе эволюции. Существует предположение, хотя и недоказанное, что вирусы – это генетический материал, некогда «сбежавший» из прокариотических и эукариотических клеток и сохранивший способность к воспроизведению при возвращении в клеточное окружение. Вне клетки вирусы находятся в совершенно инертном состоянии, однако они обладают набором инструкций (генетическим кодом), необходимых для того, чтобы вновь проникнуть в клетку и, подчинив ее своим инструкциям, заставить производить много идентичных себе (вирусу) копий. Следовательно, логично предположить, что в процессе эволюции вирусы появились позже клеток.

Строение

Строение вирусов очень простое. Они состоят из следующих структур:

  1. сердцевины – генетического материала, представленного либо ДНК, либо РНК; ДНК или РНК может быть одноцепочечной или двухцепочечной;
  2. капсида – защитной белковой оболочки, окружающей сердцевину;
  3. нуклеокапсида – сложной структуры, образованной сердцевиной и капсидом;
  4. оболочки – у некоторых вирусов, таких как ВИЧ и вирусы гриппа, имеется дополнительный липопротеиновый слой, происходящий из плазматической мембраны клетки-хозяина;
  5. капсомеров – идентичных повторяющихся субъединиц, из которых часто бывают построены капсиды.
  6. Рис. 2.16. Схематическое изображение вируса в разрезе.

    Общая форма капсида отличается высокой степенью симметрии, обусловливая способность вирусов к кристаллизации. Это дает возможность исследовать их как методом рентгеновской кристаллографии, так и с помощью электронной микроскопии. Как только в клетке-хозяине образуются субъединицы вируса, они сразу же могут путем самосборки объединиться в полную вирусную частицу. Упрощенная схема строения вируса показана на рис. 2.16.

    Рис. 2.17. А. Икосаэдр. Б. Электронная микрофотография вируса простого герпеса, полученная методом негативного контрастирования (окрашивается не сам препарат, а его фон). Обратите внимание, насколько отчетливо видны детали строения вируса. Индивидуальные капсомеры просматриваются как раз там, где между ними проник краситель.

    Для структуры капсида характерны определенные типы симметрии, особенно полиэдрическая и спиральная. Полиэдр – это многогранник. Наиболее распространенная полиэдрическая форма у вирусов – икосаэдр, у которого имеется 20 треугольных граней, 12 углов и 30 ребер. На рис. 2.17, А мы видим правильный икосаэдр, а на рис. 2.17, Б – вирус герпеса, в частице которого 162 капсомера организованы в икосаэдр.

    Рис. 2.18. А. Строение вируса табачной мозаики (ВТМ); видна спиральная симметрия капсида. Показана только часть палочковидного вируса. Рисунок построен на основе результатов рентгено-структурного анализа, биохимических данных и электронно-микроскопических исследований. Б. Электронная микрофотография вируса табачной мозаики, полученная методом негативного контрастирования (х 800 000). Капсид (оболочка) образован 2130 идентичными белковыми капсомерами. В. Растение табака, инфицированное ВТМ. Обратите внимание на характерные пятна в тех местах, где ткань листа отмирает.

    Наглядной иллюстрацией спиральной симметрии может служить показанный на рис. 2.18, Б РНК-содержащий вирус табачной мозаики (ВТМ). Капсид этого вируса образован 2130 идентичными белковыми капсомерами. ВТМ был первым вирусом, выделенным в чистом виде. При заражении этим вирусом на листьях больного растения появляются желтые крапинки – так называемая мозаика листьев (рис. 2.18, В). Вирусы распространяются очень быстро либо механически, когда больные растения или его части приходят в соприкосновение со здоровыми растениям, либо воздушным путем с дымом от сигарет, для изготовления которых были использованы зараженные листья.

    Рис. 2.19. А. Строение бактериофага Т2. Б. Электронная микрофотография бактериофага, полученная методом негативного контрастирования.

    Вирусы, атакующие бактерий, образуют группу, называемую бактериофагами или просто фагами. У некоторых бактериофагов имеются четко выраженная икосаэдрическая головка и хвост, обладающий спиральной симметрией (рис. 2.19). На рис. 2.20 и 2.21 приводятся схематические изображения некоторых вирусов, иллюстрирующие их относительные размеры и общее строение.

    Рис. 2.20. Несколько упрощенных схематических изображений вирусов, отражающих различие их симметрии и размеров. Фаг Т2 показан с нитями хвостового отростка, которые фаг выпускает перед тем как инфицировать клетку; у фага? нитей хвостового отростка нет.

    Рис. 2.21. Строение вируса иммунодефицита человека (ВИЧ), относящегося к ретровирусам. Конусовидный капсид состоит из уложенных по спирали капсомеров. Спереди капсид срезан, чтобы были видны две копии РНК-геномов. Под действием фермента, называемого обратной транскриптазой, информация, закодированная в этих одноцепочечных РНК-цепях, транскрибируется в соответствующие двухцепочечные ДНК-нити. Капсид окружен белковой оболочкой, заякоренной в липидном бислое – оболочке, полученной от плазматической мембраны клетки-хозяина. В этой оболочке содержатся встроенные в нее вирусные гликопротеины, которые, специфически связываясь с рецепторами Т-клеток, обеспечивают проникновение вируса в клетку-хозяина.

Строение вирусов

1) Вирусы не имеют клеточного строения. Каждая вирусная частица состоит из расположенного в центре носителя генетической информации и оболочки.Генетический материал представляет собой короткую молекулу нуклеиновой кислоты, это образует сердцевину вируса. Нуклеиновая кислота у разных вирусов может быть представлена ДНК или РНК, причем эти молекулы могут иметь необычное строение: встречается однонитчатая ДНК и двух нитчатая РНК.

2) Оболочка называется капсид .

Капсид выполняет несколько функций.

    Защита генетического материала (ДНК или РНК) вируса от механических и химических повреждений.

    Определение потенциала к заражению клетки.

    На начальных стадиях заражения клетки: прикрепление к клеточной мембране, разрыв мембраны и внедрение в клетку генетического материала вируса.

частицы вируса табачной мозаики, вируса, вызывающего бородавки, и аденовируса

Она образована субъединицами – капсомерами, каждый из которых состоит из одной или двух белковых молекул. Число капсомеров для каждого вируса постоянно (в капсиде вируса полиомиелита их 60, а у вируса табачной мозаики – 2130). Иногда нуклеиновая кислота вместе с капсидом называется нуклеокапсидом. Если вирусная частица кроме капсида, больше не имеет оболочки, её называют простым вирусом, если имеется ещё одна – наружная, вирус называется сложным.

3) Наружную оболочку также называют суперкапсидом , генетически она не принадлежит вирусу, а происходит из плазматической мембраны клетки-хозяина и формируется при выходе собранной вирусной частицы из инфицированной клетки. организованный двойным слоем липидов и специфичными вирусными белками, наиболее часто образующими выросты-шипы, пронизывающие липидный бислой. Такие вирусы называют «одетыми».Выполняет защитные функции у вириона,функцию прикрепления к восприимчивой клетке и проникновения в ее цитоплазму,определяет многие характеристики вируса (антигенные свойства, чувствительность к повреждающим факторам и др.).-вирусы гриппа и герпеса

4) У каждого вируса капсомеры капсида располагаются в строго определённом порядке, благодаря чему возникает определённый тип симметрии. При спиральной симметрии капсид приобретает трубчатую (вирус табачной мозаики) или сферическую (РНК-содержащие вирусы животных) форму. При кубической симметрии капсид имеет форму икосаэдра (двадцатигранника), такой симметрией обладают изометрические вирусы. В случае комбинированной симметрии капсид обладает кубической формой, а расположенная внутри нуклеиновая кислота уложена спирально. Правильная геометрия капсида даже позволяет вирусным частицам совместно образовывать кристаллические структуры.

ДЕЗОКСИВИРУСЫ

1. ДНК двухнитчатая

2. ДНК однонитчатая

1.1. Кубический тип симметрии :

1.1.1. Без внешних оболочек:

аденовирусы (рис. 3)

1.1.2. С внешними оболочками:

герпес-вирусы (рис. 2)

1.2. Смешанный тип симметрии :

Т-четные бактериофаги

(рис. 5)

1.3. Без определенного типа симметрии :

оспенные вирусы

2.1. Кубический тип симметрии :

2.1.1. Без внешних оболочек:

крысиный вирус Килхама, аденосателлиты

РИБОВИРУСЫ

1. РНК двухнитчатая

2. РНК однонитчатая

1.1. Кубический тип симметрии :

1.1.1. Без внешних оболочек

реовирусы,

вирусы раневых опухолей растений

2.1. Кубический тип симметрии :

2.1.1. Без внешних оболочек:

вирус полиомиелита (рис. 4), энтеровирусы, риновирусы

2.2. Спиральный тип симметрии :

2.2.1. Без внешних оболочек:

вирус табачной мозаики

2.2.2. С внешними оболочками:

вирусы гриппа(рис. 1), бешенства, онкогенные РНК-содержащие вирусы

Вирусы. Классификация вирусов. Типы взаимодействия клеток и вирусов

Размеры – от 15 до 2000 нм (некоторые вирусы растений). Наибольшим среди вирусов животных и человека является возбудитель естественной оспы – до 450 нм.

Простые вирусы имеют оболочку – капсид , которая состоит лишь из белковых субъединиц (капсомеров ). Капсомеры большинства вирусов имеют спиральную или кубическую симметрию. Вирионы со спиральной симметрией имеют палочкообразную форму. По спиральному типу симметрии построено большинство вирусов, поражающих растения. Большая часть вирусов, поражающих клетки человека и животных, имеют кубический тип симметрии.

Сложные

Сложные вирусы могут быть дополнительно покрыты липопротеидной поверхностной мембраной с гликопротеидами, которые являются частью плазматической мембраны клетки хозяина (например, вирусы оспы, гепатита В), то есть имеют суперкапсид . С помощью гликопротеидов происходит распознавание специфических рецепторов на поверхности оболочки клетки хозяина и прикрепление вирусной частицы к ней. Углеводные участки гликопротеидов выступают над поверхностью вируса в виде заостренных палочек. Дополнительная оболочка может сливаться с плазматической мембраной клетки хозяина и способствовать проникновению содержимого вирусной частицы вглубь клетки. Дополнительные оболочки могут включать ферменты, обеспечивающие синтез вирусных нуклеиновых кислот в клетке хозяина и некоторые другие реакции.

Бактериофаги имеют довольно сложное строение. Их относят к сложным вирусам. Например, бактериофаг Т4 состоит из расширенной части – головки, отростка и хвостовых нитей. Головка состоит из капсида, в котором содержится нуклеиновая кислота. Отросток включает воротничок, полый стержень, окруженный сокращающимся чехлом и напоминающий растянутую пружину, и базальную пластинку с хвостовыми шипами и нитями.

Классификация вирусов

Классификация вирусов основана на симметрии вирусов, наличии или отсутствии внешней оболочки.

Дезоксивирусы Рибовирусы
ДНК

двухцепочечная

ДНК

одноцепочечная

РНК

двухцепочечная

РНК

одноцепочечная

Кубический тип симметрии:

– без внешних оболочек (аденовирусы);

– с внешними оболочками (герпес)

Кубический тип симметрии:

– без внешних оболочек (некоторые фаги)

Кубический тип симметрии:

– без внешних оболочек (ретровирусы, вирусы ранковых опухолей растений)

Кубический тип симметрии:

– без внешних оболочек (энтеровирусы, полиовирус)

Спиральный тип симметрии:

– без внешних оболочек (вирус табачной мозаики);

– с внешними оболочками (гриппа, бешенства, онкогенные РНК-содержащие вирусы)

Смешанный тип симметрии (Т-парные бактериофаги)
Без определенного типа симметрии (оспы)

Проявляют жизнедеятельность вирусы только в клетках живых организмов. Их нуклеиновая кислота способна вызвать синтез вирусных частиц клетки хозяина. Вне клетки вирусы не проявляют признаков жизни и называются вирионами .

Жизненный цикл вируса состоит из двух фаз: внеклеточной (вирион), в которой он не проявляет признаков жизнедеятельности, и внутриклеточной . Вирусные частицы вне организма хозяина некоторое время не теряют способности к заражению. Например, вирус полиомиелита может сохранять инфекционную активность на протяжении нескольких суток, оспы – месяцев. Вирус гепатита В сохраняет ее даже при кратковременном кипячении.

Активные процессы одних вирусов протекают в ядре, других – в цитоплазме, у некоторых – и в ядре, и в цитоплазме.

Типы взаимодействия клеток и вирусов

Взаимодействие клеток и вирусов бывает нескольких типов:

  1. Продуктивного – нуклеиновая кислота вируса индуцирует в клетке хозяина синтез собственных веществ с образованием нового поколения.
  2. Абортивного – репродукция прерывается на какой-нибудь стадии, и новое поколение не образуется.
  3. Вирогенного – нуклеиновая кислота вируса встраивается в геном клетки хозяина и не способна к репродукции.

Строение вирусов является неклеточным, так как они не имеют никаких органелл. Одним словом, это переходная стадия между мертвой и живой материей. Вирусы были открыты русским биологом Д.И. Ивановским в 1892 году в процессе рассмотрения мозаичной болезни табака. Все строение вирусов - это РНК или ДНК, заключенные в белковую оболочку, называемую капсидом. Вирионом называется сформированная инфекционная частица.

Вирусы гриппа или герпеса имеют дополнительную липопротеидную оболочку, которая возникает из цитоплазматической мембраны клетки хозяев. Вирусы подразделяются на ДНК-содержащие и РНК-содержащие, ведь они могут иметь только 1 тип Однако подавляющее количество вирусов - это РНК-содержащие. Их геномы бывают одноцепочечными и двуцепочечными. Внутреннее строение вирусов позволяет им размножаться только лишь в клетках других организмов, и никак иначе. Они совершенно не проявляют никакой внеклеточной жизнедеятельности. Размеры широко распространенных вирусов - от 20 до 300 нм диаметром.

Строение вирусов-бактериофагов

Вирусы, которые поражают бактерии изнутри, называют Они способны проникнуть в и разрушить.

Тело бактериофага кишечной палочки имеет головку, из которой выходит полый стержень, укутанный чехлом На конце этого стержня находится базальная пластинка, на которой закреплены 6 нитей. Внутри головки находится молекула ДНК. При помощи специальных отростков вирус-бактериофаг прикрепляется к телу бактерии кишечной палочки. Используя специальный фермент, фаг растворяет и проникает внутрь. Далее из канала стержня за счет сокращений головки выпрыскивается молекула ДНК, и буквально через 15 минут бактериофаг полностью перестаивает метаболизм клетки бактерии на нужный ему лад. Бактерия перестает синтезировать свою ДНК - она теперь синтезирует нуклеиновую кислоту вируса. Все это завершается тем, что появляется около 200-1000 особей фагов, а клетка бактерии разрушается. Все бактериофаги делятся на вирулентные и умеренные. Последние не совершают репликаций в клетке бактерии, а вирулентные образуют поколение особей в уже зараженном участке.

Вирусные болезни

Строение и жизнедеятельность вирусов обуславливается тем, что они способны существовать только в клетках других организмов. Поселившись в любой клетке, вирус может вызвать серьезное заболевание. Нередко их атакам подвергаются сельскохозяйственные растения и животные. Данные заболевания резко ухудшают плодовитость культур и являются причиной многочисленной гибели животных.

Существуют вирусы, которые способны вызвать различные заболевания и у человека. Всем известны такие болезни, как оспа, герпес, грипп, полиомиелит, свинка, корь, желтуха и СПИД. Все они возникают из-за деятельности вирусов. Строение вируса оспы почти не отличается от строения вируса герпеса, так как они входят в одну группу - Herpes Virus, куда входят еще некоторые В наше время активно распространяется вирус иммунодефицита человека (ВИЧ). Как побороть его, пока никому неизвестно.