Содержание co2 в воздухе. Сколько вешать в граммах: нормы CO2. Симптомы, на которые стоит обратить внимание

В сентябре 2016 года концентрация углекислого газа в атмосфере Земли преодолела психологически значимую отметку в 400 ppm (долей на миллион). Это делает сомнительными планы развитых стран по недопущению повышения температуры на Земле более чем на 2 градуса.

Глобальное потепление — это повышение средней температуры климатической системы Земли. За период с 1906 по 2005 год средняя температура воздуха возле поверхности планеты выросла на 0,74 градуса, причем темпы роста температуры во второй половине столетия примерно в два раза выше, чем за период в целом. За все время наблюдений самым жарким считается 2015 год, когда все температурные показатели на 0,13 градуса превысили показатели 2014 года — предыдущего рекордсмена. В различных частях земного шара температуры меняются по-разному. С 1979 года температура над сушей выросла вдвое больше, чем над океаном. Объясняется это тем, что температура воздуха над океаном растет медленнее из-за его большой теплоемкости.

Движение углекислого газа в атмосфере

Основной причиной глобального потепления считается деятельность человека. Косвенными методами исследования было показано, что до 1850 года на протяжении одной или двух тысяч лет температура оставалась относительно стабильной, правда с некоторыми региональными флуктуациями.

Таким образом, начало климатических изменений практически совпадает с началом промышленной революции в большинстве западных стран. Основной причиной на сегодняшний день считаются выбросы парниковых газов. Дело в том, что часть энергии, которую планета Земля получает от Солнца, переизлучается обратно в космическое пространство в виде теплового излучения.

Парниковые газы затрудняют этот процесс, частично поглощая тепло и удерживая его в атмосфере.

Добавление в атмосферу парниковых газов ведет к еще большему разогреву атмосферы и росту температуры у поверхности планеты. Основные парниковые газы в атмосфере Земли — это углекислый газ (СО 2) и метан (СН 4). В результате промышленной деятельности человечества в воздухе растет концентрация именно этих газов, что приводит к ежегодному росту температуры.

Поскольку потепление климата угрожает буквально всему человечеству, в мире неоднократно принимаются попытки взять этот процесс под контроль. До 2012 года основным мировым соглашением о противодействии глобальному потеплению был Киотский протокол.

Он охватывал более 160 стран мира и покрывал 55% мировых выбросов парниковых газов. Однако после окончания первого этапа Киотского протокола страны-участники не смогли договориться о дальнейших действиях. Отчасти составлению второго этапа договора помешало то, что многие участники избегают применения бюджетного подхода для определения своих обязательств в отношении эмиссии СО 2 . Эмиссионный бюджет СО 2 — количество выбросов за определенный период времени, который рассчитывается из температуры, которую участники не должны превысить.

Согласно решениям, принятым в Дурбане, никакое обязывающее климатическое соглашение не будет действовать до 2020 года, несмотря на необходимость срочно предпринять усилия по сокращению эмиссии газа и снизить выбросы. Исследования показывают, что в настоящее время единственной возможностью обеспечить «разумную вероятность» ограничения потепления величиной 2 градуса (характеризующей опасное изменение климата) будет ограничение экономик развитых стран и их переход к стратегии антироста.

И вот в сентябре 2016 года, по данным обсерватории Мауна-Лоа, был преодолен очередной психологический барьер эмиссии парникового газа СО 2 — 400 ppm (долей на миллион). Нужно сказать, что эта величина многократно превышалась и раньше,

но сентябрь традиционно считается месяцем с самой низкой концентрацией СО 2 в Северном полушарии.

Объясняется это тем, что зеленая растительность успевает за лето поглотить некоторое количество парникового газа из атмосферы, прежде чем листья с деревьев опадут и часть СО 2 вернется обратно. Поэтому если психологически важный порог в 400 ppm был превышен именно в сентябре, то, скорее всего, ежемесячные показатели уже никогда не будут ниже этого значения.

«Возможно ли, что в октябре этого года концентрация снизится по сравнению с сентябрем? Полностью исключено,

— поясняет в своем блоге Ральф Килинг, сотрудник Скриппсовского института океанографии Сан-Диего. — Кратковременные падения уровня концентрации возможны, но усредненные за месяц величины теперь всегда будут превышать 400 ppm».

Также Килинг отмечает, что тропические циклоны могут снизить уровень концентрации СО 2 на короткое время. С ним соглашается и Гэвин Шмидт, главный климатолог : «В лучшем случае можно ожидать некий баланс, и уровень СО 2 не будет расти слишком быстро. Но, по моему мнению, СО 2 уже никогда не упадет ниже 400 ppm».

Согласно прогнозу, к 2099 году концентрация СО 2 на Земле будет равняться 900 ppm, что составит порядка 0,1% от всей атмосферы нашей планеты. В результате средняя дневная температура в таких городах, как Иерусалим, Нью-Йорк, Лос-Анджелес и Мумбаи, будет близка к +45°C. В Лондоне, Париже и Москве летом температура будет превышать +30°C.

ЖЕНЕВА, 24 окт - РИА Новости, Елизавета Исакова. Усредненная концентрация углекислого газа в атмосфере Земли выросла до рекордной отметки в 2015-2016 годах, достигнув существенного значения в 400 частей на миллион, говорится в ежегодном Бюллетене Всемирной метеорологической организации (ВМО) по парниковым газам, опубликованном в понедельник.

Чубайс: нанотехнологии могут снизить мировые выбросы парниковых газов Для снижения эмиссии парниковых газов не обязательно заниматься только энергоэффективностью, заявил председатель правления госкомпании Роснано Анатолий Чубайс.

Согласно данным ВМО, уровни CO2 ранее достигали пороговой отметки в 400 частей на миллион в определенные месяцы года и в определенных точках планеты, однако никогда прежде этот уровень не наблюдался в глобальном среднем масштабе за целый год. По прогнозам станции мониторинга парниковых газов на Мауна-Лоа (Гавайи), концентрации CO2 останутся на уровне выше 400 частей на миллион в течение всего 2016 года, и не опустятся ниже этой отметки в течение жизни многих поколений.

Причиной такого скачка СО2 метеорологи называют мощное явление Эль-Ниньо, которое послужило толчком для развития засух в тропических регионах и уменьшению способности лесов, растительности и океанов поглощать углекислый газ. Эти поглотители в настоящее время вбирают в себя примерно половину выбросов CO2, однако существует риск их насыщения, что приведет к увеличению доли выбрасываемой двуокиси углерода, которая остается в атмосфере.

Помимо сокращения потенциала растительности поглощать CO2, Эль-Ниньо также привел к увеличению объема выбросов углекислого газа в результате лесных пожаров. Объем выбросов CO2 в экваториальной Азии, где в августе-сентябре 2015 года в Индонезии наблюдались масштабные лесные пожары, был более чем вдвое выше средних значений за 1997-2015 годы.

"Без решения проблемы выбросов CO2 мы не сможем решить проблему изменения климата и удержать повышение температуры на уровне ниже 2 °С в сравнении со значениями доиндустриального периода. В этой связи крайне важно, чтобы Парижское соглашение действительно вступило в силу со значительным опережением графика 4 ноября, а также чтобы мы ускорили его осуществление", — заявил генеральный секретарь ВМО Петтери Таалас, комментируя данные, опубликованные в бюллетене ВМО.

На двуокись углерода приходится около 65 % от общего объема радиационного воздействия долгоживущих парниковых газов. Уровень концентрации СО2 в доиндустриальный уровень составлял 278 частей на миллион. Рост среднегодовых концентраций CO2 в 2015 году составил 144 % от доиндустриальных уровней, достигнув отметки в 400 частей на миллион. Прирост CO2 с 2014 года по 2015 года был больше, чем в среднем за предыдущие 10 лет.

Вторым наиболее важным долгоживущим парниковым газом является метан. На него приходится примерно 17 % вклада в радиационное воздействие. В настоящее время его концентрация составляет 256 % от доиндустриального уровня. Концентрация в атмосфере третьего парникового газа — закиси азота - в прошлом году составила около 328 частей на миллиард, что является 121 % от доиндустриальных уровней. Закись азота также играет важную роль в разрушении стратосферного озонового слоя, который защищает нас от пагубного воздействия ультрафиолетовых солнечных лучей.

Воздух является смесью газов, в котором диоксид углерода (CO2) занимает по количеству лишь четвертое место, однако важнейшее значение для всего живого. Измерить концентрацию углекислого газа достаточно легко, а данные о количестве CO2 позволяют косвенно судить о содержании других веществ и использовать эти данные для анализа качества воздуха. Основной единицей измерения концентрации углекислого газа являются промилле (ppm).

При небольшом повышении уровня CO2 человек ощущает духоту, усталость, сонливость, невозможность сосредоточиться, потерю внимания, раздражительность, снижение работоспособности и т.д.

В замкнутых помещениях с недостаточной вентиляцией человек достаточно активно поглощает кислород (O2), при этом выдыхая большое количество углекислого газа, и если к перепадам содержания в воздухе кислорода человек мало восприимчив, то перепады содержания CO2 чувствуются каждой клеткой (и это не метафора) Связанно это с тем, что процесс газообмена O2 и CO2 в легких происходит за счет пассивной диффузии через мембрану клетки, а диффузионная способность CO2 в 25-30 раз выше, чем у O2, именно поэтому к изменениям концентрации CO2 в воздухе, человек очень чувствителен.

Так же существенное влияние оказывает то, что газообмен в клетках протекает нормально только при правильном значении парциального давления CO2 в крови (PA CO2). При этом как повышение, так и понижение PA CO2 приводит к тому, что ухудшается перенос O2 к клеткам, а так же к множеству других изменений. Простой пример: если задержать дыхание, то в легких ухудшается перенос O2 к клеткам, но перенос CO2 не прекращается, при этом первоначально желание сделать глубокий вдох вызывает именно рост PA CO2. Это защитная функция организма - команда нацеленная вернуть уровень PA CO2 в норму, предупреждение, что что-то не в порядке. Аналогично организм ведёт себя в душных помещениях с повышенным уровнем CO2 - появляется желание сделать глубокий вдох, открыть окно, выйти подышать на балкон или улицу.

Как видим наиболее вредным является долговременное пребывание в помещениях с высоким содержанием CO2 , именно поэтому особое внимание надо уделять домашней вентиляции и вентиляции рабочих мест. При этом наиболее правильный и энергоэффективный метод регулирования воздухообмена, это регулирование по датчику CO2 .

Применение данного метода регулирования ещё и наиболее удобно для пользователя, так как не требуется щелкать выключателями, крутить регулятор, постоянно подстраивая воздухообмен, и тем более переключать скорости на пульте управления. Пользователь вообще никак не вмешивается в работу системы вентиляции, агрегат всё регулирует автоматически и максимально точно, создавая идеальную атмосферу в помещениях независимо от постоянно изменяющихся условий.

Варианты управления по датчику CO2

Следует обратить внимание, что возможно два типа регулирования воздухообмена по датчику CO2.

Вентилирование одним агрегатом нескольких помещений

Вентилирование нескольких изолированных объемов воздуха, например квартиры, дома, нескольких офисов. Применяется в основном на бытовой линейке оборудования CAPSULE и I-VENT, а так же на приточно-вытяжных агрегатах ZENIT, ZENIT HECO. Для каждого помещения нам потребуется:

  • Пропорциональный клапан на приточном канале
  • Пропорциональный клапан на вытяжном канале (Если вытяжка в каждом помещении)
  • Датчик CO2 для каждого помещения или вытяжного канала каждого помещения.
  • VAV-система на агрегате (устанавливается заводом-изготовителем).

При появлении в помещении человека, датчиком CO2 будет регистрироваться повышение уровня CO2. Пропорциональный клапан с электроприводом будет регулировать воздухообмен на основании показаний именно своего датчика CO2. Такой вариант управления позволит максимально точно поддерживать качество воздуха в помещении, не позволяя появиться чувству нехватки воздуха, и не создавая излишнего воздухообмена.

Пример работы вентиляции по датчикам CO2 установленным в помещениях:

В помещении №2 находится один человек, и для компенсации повышения концентрации CO2 достаточно подавать в помещение 25 м³/ч, В помещении №1 же находятся два человека и для компенсации требуется подавать уже 75 м³/ч. Если из помещений выйдет по одному человеку, то в помещении №2 выделение CO2 прекратится полностью, клапан закроется, и вентилирование помещения прекратится. В помещении №1 выделение CO2 сократится, и агрегат постепенно снизит воздухообмен помещения №1 до 25 м³/ч.

ВНИМАНИЕ!!!

Применение одного датчика CO2 в вытяжном канале при наличии нескольких помещений нежелательно. Датчик CO2 будет регистрировать суммарную концентрацию углекислого газа и в обоих помещениях одинаково увеличивать воздухообмен. В результате в верхнем помещении воздухообмена недостаточно для компенсации повышения уровня CO2, а в нижнее подается излишнее количество воздуха.

Вентилирование одним агрегатом одного помещения

Вентилирование одного изолированного объема воздуха, например офиса, спортзала, производственного помещения, квартиры-студии. В этом случае нам потребуется только датчик CO2 установленный в вытяжном канале (устанавливается заводом-изготовителем). Воздухообмен будет автоматически регулироваться для поддержания требуемого уровня CO2 , независимо от изменения количества людей в помещении, а так же от их рода деятельности.

Данный вариант регулирования применяется в основном на промышленной линейке оборудования серии Zenit , Zenit HECO , CAPSULE и даже в установках i-Vent . Применение данной системы позволит организовать максимально энергоэффективную систему вентиляции, с минимальными эксплуатационными издержками и полностью автоматическим управлением.

Пример работы вентиляции по датчикам CO2 установленным в вытяжном канале:

В помещении находится один человек, и для компенсации повышения концентрации CO2 достаточно подавать в помещение 50 м³/ч, по мере увеличения в помещении количества людей увеличивается регистрируемый уровень CO2, и агрегат автоматически увеличивает количество воздуха, которое требуется подавать в помещение, для компенсации повышения уровня CO2.

Расчет системы вентиляции по CO2

Это один из вариантов расчета системы вентиляции, но, к сожалению, применяется достаточно редко, так как систем умеющих регулировать воздухообмен по датчику CO2 не слишком много. Для расчета нм понадобится знать следующие данные:

  1. Концентрация CO2 на улице.
  2. Расписание пребывания людей в обслуживаемых помещениях.
  3. Тип физической активности в обслуживаемых помещениях.
  4. Требуемый поддерживаемый уровень CO2.

Формула расчета воздухообмена для компенсации выделения CO2 одним человеком: L=(G×550)/(X2-X1)

  • L - воздухообмен, м3/ч;
  • X1 - концентрация CO2 в наружном (приточном) воздухе, ppm;
  • X2 - допустимая концентрация CO2 в воздухе помещения, ppm;
  • G - количество CO2 выделяемое одним человеком, л/час;
  • 550 – преобразование значений X1 и X2 из ppm в г/м3.

Данные для G и концентрации CO2 на улице подбираются из таблиц.

Пример расчета квартиры с количеством проживающих 3 чел.

Для данных условий наиболее подходящим будет агрегат Zenit-350 Heco .

Если составить расписание дня, то можно будет увидеть картину изменения воздухообмена в течение дня, в зависимости от выделения CO2 в квартире.

Как видим даже по усредненному расписанию график изменения воздухообмена весьма существенный, в реальности же система постоянно регулирует воздухообмен, практически не имея на графике «полок». При этом, если агрегат подобран верно, в данном случае это Zenit-350 Heco, то значение CO2 в квартире всегда будет неизменно.

*Для расчета не принципиально, какой тип управления агрегатом по CO2 применяется. Это может быть как датчик в вытяжном канале, если это вентиляция квартиры студии, так и комнатные датчики CO2 совместно с

Ранее писал статью об угарном газе . Теперь же задался практическим исследованием CO 2 . Интерес оказался настолько великим, что я потратился. Газоанализатор AZ7787: замеряет CO 2 , температуру и влажность, почти 9000 рублей. Инструкция предоставляется только на английском языке, но разобрать можно.

Эксперимент делился на несколько частей:
- принес домой и включил в комнате 3x6x2.8 метра (50.4 кубических метра) с закрытым окном и открытой дверью. 990ppm (температура 29.2 градуса, влажность 55.9%);
- заснул с ним. Утром прибор показывал 1260ppm (температура 27.1 градуса, влажность 59.9%);
- ушел на 11 часов, вечером вошел в комнату: 1010ppm (температура 29.5 градуса, влажность 54%);
- открыл окно, находясь в комнате: 600ppm (температура 29.1 градуса, влажность 50%)
- заснул с открытым окном. Утром: 485 ppm (температура 28.5 градуса, влажность 44%);
- вечером закрыл окно и закрыл дверь: 980ppm (температура 28.8 градуса, влажность 47%);
- так и заснул: 1810ppm (температура 28.6 градусов, влажность 53%);
- включил прибор ранним утром на открытом воздухе: 390ppm (температура 19 градусов, влажность 60%).

Теперь о самом любопытном. Как интерпретировать полученные результаты:
- 1ppm - миллионная доля чего-либо. 1000ppm - 0.1% углекислого газа в воздухе;
- анализируя сайты на ПДК углекислого газа, попадались величины сильно различные (да ещё и в разных единицах измерения). И смертельная цифра разная: 35000-100000ppm (остановка дыхания, удушье). В научных журналах верхняя безопасная граница CO 2 (когда совсем никаких последствий) составляет 1000ppm: Наумов А.Л., Капко Д.В. Вентиляция с переменным расходом воздуха для офисных зданий.//НП "АВОК", №8, 2012 г. ; Гурина И.В. Безопасный уровень углекислого газа требует ревизии.//Журнал "Экологический Вестник России", №10, 2008 г. Смертельная доза: 40000ppm (Соколов В.А. Переносные приборы для контроля состава воздуха в колодцах и подземных объектах.//Журнал "Техника безопасности" №3 (4), 2004 г. ).
- нельзя путать углекислый газ с диоксином, сильнейшим экотоксикантом и ядом;
- если в случае с угарным газом нужно падать на пол и ползти к выходу - то с CO 2 , наоборот, надо на цыпочки вставать и дышать через что-нибудь влажное (молекулярная масса воздуха 29г/моль, CO 2 - 44г/моль). На концертах, к примеру, используют генераторы тяжелого дыма для смеси паров воды и углекислого газа (что делает его безопасным);
- углекислый газ находится в крови и тканях внутренних органов, стимулирует защитные системы организма (в частности, при физической нагрузке);
- гемоглобин меняет углекислый газ на кислород. Проблема в том, что если углекислого газа в организме мало, он будет испытывать кислородное голодание. Потому что гемоглобин умеет работать только с этими двумя газами, при недостатке хотя бы одного из них угнетается весь механизм передачи газов. Книга Исмукова Н.Н. "Естественная активация защитных систем организма " подробно описывает этот процесс в 6 главе. В защиту этой позиции служит статья, упоминающая о собственной атмосфере в альвеолах легких организма, где концентрация CO 2 составляет 5.7%, 57000ppm (Голик А.С., А.Ф.Син, В.Р.Дингес. Влияние углекислого газа на дыхание в изолирующих средствах индивидуальной защиты.//Журнал "Горная Промышленность", №3, 2006 г. );
- именно большое количество CO 2 создает ощущение духоты в комнате. При этом кислорода может быть ещё достаточно для того, чтобы дышать без проблем.

Выводы:
- замеры проводились в озелененном районе города Москвы. В других ее районах ситуация может быть хуже;
- без углекислого газа человеку не выжить из-за особенностей организма;
- в помещении объемом 50.4 кубических метра без полной или частичной вентиляции возможно пребывание не более 9 часов (концентрация превысит 1800ppm, почти двойное превышение ПДК);
- симптомы отравления. При концентрации выше 1500ppm и ниже 5000ppm наблюдаются симптомы первой степени отравления углекислым газом: понижение умственной и физической работоспособности, легкое головокружение, глубокое дыхание (при сохранении частоты дыхания), сонливость, апатия, несильная головная боль, некоторое падение пульса и кровяного давления. Вторая степень: частое и глубокое дыхание, резкая одышка, стук в висках, чувство жара во всем теле. Третья стадия: судороги в мышцах грудной клетки и по всему телу, потеря сознания, глубокий сон (без посторонней помощи уже не спастись);
- проветривание помещения несет основную функцию не столько в доставке в него кислорода, сколько избавления от избытка углекислого газа. В потрясающей работе Квашнина И.М. и Гурина И.И высчитывается, сколько воздуха в час нужно заменять в помещении (К вопросу о нормировании воздухообмена по содержанию CO 2 в наружном и внутреннем воздухе.//НП "АВОК", №5, 2008 г. ). Ярые энтузиасты могут вооружиться калькулятором и посчитать, насколько сильно в комнате нужно открывать окно (чтобы зимой при проветривании не мерзнуть, например).

Техника безопасности:
- при открытии подпола, погреба, подвала - не залезать сразу, а дать время для проветривания. Если там хранится картофель - проветривать длительное время: картофель поглощает кислород и выделяет CO 2 , особенно когда прорастает. Случаи смерти от CO 2 картофеля в подвале представлены в СМИ;
- на дне колодца также может содержаться губительная доза CO 2 (особенно, если пересохший);
- ни в коем случае нельзя пользоваться в дыму или в воздухе с высокой концентрацией CO 2 противогазом! При высокой температуре угольный фильтр восстанавливает CO 2 до CO. Для дыхания в таких ситуациях нужен изолирующий противогаз (пожарные ходят с ним, с баллонами на спине), либо противогаз с гопкалитовым патроном (например, РШ-4 с ДП-1). А от попадания частиц пепла в легкие защитит обычный респиратор, лучше многослойный (правда с ним особо не побегаешь).

Косвенные выводы:
- на планете до промышленного бума человечества концентрация CO 2 была около 280ppm. С развитием промышленности эта цифра растет и по сей день, чем современнее - тем быстрее; и в этом году на Гавайях станция наблюдения зафиксировала рекорд в 400ppm;
- повышение CO 2 рождает 2 вещи: на планете становится все более душно (открытие окна лет через 100 может уже не помочь), но в то же время и более растительно (стимулируется рост зеленого растительного покрова Земли, что приводит к увеличению поглощения CO 2 из воздуха). Природа сама регулирует баланс данного вещества; правда, более медленными темпами;
- огромное количество моих труда и времени потрачено как на изучение CO, так и на изучение CO 2 . А это всего лишь два самых простых газа. Уверен, если кислород взять - ещё и не такого узнать можно. Интересно, как сильно в странах ценятся химики...

(добавлено 27.07.2013): включение в той же комнате масляного обогревателя на полную мощность (2кВт) приводит к незначительному повышению CO 2: на 30 единиц. Таким образом, информация о том, что масляные обогреватели не сжигают кислород - истинна.

Датчики углекислого газа являются составной частью системы автоматизации здания и управляют, как правило, принудительной вентиляцией и кондиционированием. Настройка мощности приточно-вытяжной вентиляции ранее должна была осуществляться в соответствии с установленными нормативами, которые ориентировались на максимальные расчетные показатели, к примеру, на необходимую кратность воздухообмена в зависимости от типа и объема здания.
Адаптивная система вентиляции, управляемая датчиками CO2, потребляет на 30 – 50% меньше электроэнергии в сравнении с постоянно работающей принудительной системой вентиляции. Ведь в течение для требуемый объем подаваемого и удаляемого воздуха может быть намного меньше расчетных показателей. При этом адаптивная система вентиляции, оснащенная датчиками CO2, своевременно выполняет воздухообмен в помещении, когда это требуется, создавая комфортные и безопасные условия для жизни и труда.

Чем опасен для человека углекислый газ

Предельно допустимая норма содержания CO2 в воздухе составляет всего 700 ppm. Если этот порог превышен в 2,5 раза, у людей, дышащих загрязненным углекислым газом воздухом, появляются головные боли и чувство усталости. Уже через 6 часов работы в таких условиях сильно снижается концентрация внимания и работоспособность. При этом содержание CO2 в плохо проветриваемом помещении, где находится большое количество человек, увеличивается в арифметической прогрессии за считанные минуты. К примеру, когда в небольшом переговорном кабинете (около 20 кв. м), собирается около 20 человек, концентрация углекислого газа в течение часа вырастет до 10000 ppm, если не будет выполняться подача свежего воздуха.

Повышенная концентрация CO2 негативно влияет на состояние здоровья человека не только днем, но и ночью, даже несмотря на то, что все процессы в организме замедляются. Ученые из Нидерландов установили, что для здорового сна будет важнее качество воздуха, а не продолжительность сна. Длительное вдыхание воздуха с повышенным содержанием углекислоты приводит к ухудшению иммунитета, развитию острых и хронических заболеваний верхних дыхательных путей, сердечно-сосудистой системы, крови и др.

Влияние концентрации углекислого газа на организм человека
Уровень CO2 (ppm) в атмосферном воздухе Качество воздуха и его влияние на человека
400-600 ppm рекомендованное качество воздуха для спален, детских и образовательных учреждений;
600-1000 ppm появляются жалобы на качество воздуха; у больных астмой учащается количество приступов;
1000-2000 ppm ощутимый дискомфорт испытывает 1 из 3-х человек; у всех наблюдается потеря концентрации внимания на 30%, падение пульса и кровяного давления;
2000 ppm 4 из 5 человек быстро утомляются, 2 из 3-х человек теряют способность сосредоточиться; мигрень в течение дня у 97%;
5000 - 10000 ppm одышка, учащенное сердцебиение, чувство жара во всем теле, мигрень, ощутимое снижение умственной и нервной активности;
35000- 40000 ppm потеря сознания, удушье, остановка дыхания
Последствия постоянного и кратковременного воздействия воздуха с повышенным содержанием CO2 (выше 1000 ppm) на организм человека
Кратковременное воздействие (в течение одного дня) Длительное воздействие (регулярно, от нескольких недель и месяцев до нескольких лет)
  • головная боль;
  • усталость;
  • головокружение;
  • снижение мозговой и нервной активности;
  • повышенное артериальное давление;
  • наблюдается раздражение слизистых глаз, носоглотки и верхних дыхательных путей;
  • ощущение духоты;
  • плохой сон.
  • острые и хронические болезни носоглотки и дыхательных путей (риниты; обострение аллергических заболеваний, бронхиальной астмы);
  • снижение иммунитета;
  • ухудшение репродуктивной функции;
  • изменения ДНК;
  • развитие метаболического ацидоза, который в свою очередь может вызвать сахарный диабет, заболевания крови и сердечно-сосудистой системы, остеопороз и другие серьезные заболевания.

В каких случаях необходимы датчики углекислого газа

Датчики CO2 позволяют запускать вентиляцию, в том числе и аварийную, и другие системы инженерных коммуникаций.

Сфера применения:

  • адаптация работы принудительной приточно-вытяжной вентиляции в соответствии с показателями концентрации углекислоты в воздухе в общественных, промышленных и жилых зданиях, особенно в изолированных помещениях (туннелях, подземных гаражах, моторных и испытательных стендов и др);
  • запуск аварийной сигнализации в общественных и промышленных сооружениях;
  • снижение потребляемой мощности системами вентиляции и кондиционирования;
  • контроль качества отработанного воздуха на промышленных предприятиях для своевременного устранения неисправностей.

Представляем вашему вниманию линейку датчиков CO2 от FuehlerSysteme:

Точность диагностики концентрации CO2 составляет 100 ppm (промилей). Возможна настройка трех различных интервалов пороговых значений: 0 – 2000/5000/10000 ppm.

Устройства способны работать при температуре от -20 до +50 градусов по Цельсию. Рабочий диапазон относительной влажности – от 0 до 98%, при условии, что воздух не конденсирован и не содержит большого процента химических веществ.

Имеется возможность как двухпроводного, так и трехпроводного подключения. Сигнал на выходе составляет 0 – 10 вольт или от 4 – 20 миллиампер. Предусмотрена ручная настройка нулевой точки. Производится автоматическая калибровка через каждые семь дней. Выход в рабочий режим происходит только после самодиагностики и запуска термостата.

Тип сенсорного устройства – инфракрасный нерассеянный (NDIR) измерительный элемент.

Виды датчиков углекислого газа FuehlerSysteme:

Наружные

Канальные

Комнатные

Датчики CO2 и температуры

Также разработана линейка датчиков углекислого газа, дополнительной опцией которых является возможность замера температуры в диапазоне от 0 до +50°C. Датчики CO2 и температуры представлены в трех конфигурациях - канальные, комнатные, наружные.

Они позволяют выполнять запуск аварийной сигнализации, вентиляции, отопления или термостата в автоматическом режиме во всех типах помещений. Итоговый сигнал может подаваться по двум критериям, что актуально для производств, где необходимо не только отслеживать концентрацию углекислоты, но и строго соблюдать температурный режим.

Представленное оборудование соответствует европейским нормам: CE, EAC, RoHS.

Датчики углекислого газа способны улучшить качество жизни людей и создать комфортные условия труда, предотвратив влияние вредных концентраций углекислого газа на организм. Они незаменимы и на производстве, когда выполняется контроль отработанного воздуха. Датчики CO2 могут быть интегированы в систему кондиционирования или подлючены к иному виду термостата, если оснащены дополнительной опцией замера температуры. Это позволит выполнять более строгий контроль за производственными процессами. Кроме того, датчики углекислого газа позволяют существенно снизить расходы на обслуживание принудительной системы вентиляции, уменьшив количество потребляемой ей электроэнергии. Это делает этот прибор незаменимой составляющей в современных автоматизированных системах инженерных коммуникаций.