Программа для расчета купольных конструкций. Расчет и конструирование элементов сферического покрытия. Материалы для использования

Теплица на даче давно стала не только подспорьем в выращивании овощей, но еще и возможностью реализовать свои творческие амбиции. Среди всех новаторских решений особого внимания заслуживает геодезический купол – детище современной архитектуры. Интерес к оригинальной конструкции объясняется просто – установить такую теплицу на своем участке под силу даже неопытному мастеру – полусфера легко собирается из простых деталей, а производительность ее грядок не уступает урожаям из стандартных сооружений.

Геодезический купол – красиво, практично и просто

Рост популярности купольных теплиц объясняется несколькими факторами:

  1. Для установки не нужен прочный фундамент, так как ее конструкция значительно легче, чем аналогичные по площади привычные укрытия.
  2. Сооружение легко монтируется и разбирается, при необходимости его несложно перенести на новое место.
  3. Полусферическая форма отличается высокой прочностью и стабильностью. Ячеистый каркас лучше противостоит сильным ветрам, легко выдерживает снегопады и обладает хорошей сейсмоустойчивостью.
  4. По сравнению с традиционными формами укрытий, строительство теплицы-купола обходится дешевле, так как для монтажа не требуется сложное оборудование. В строительстве используются простые доступные материалы – деревянные бруски или пластиковые трубки для каркаса, шурупы, поликарбонат, агроволокно или парниковую пленка для обшивки.
  5. За счет уникальной секционной структуры отпадает необходимость в установке внутренних опор, а это существенно экономит стройматериалы.
  6. В отличие от прямоугольных теплиц в полусфере, не нужно ориентировать грядки относительно сторон света – растения всегда хорошо освещены.

В геокуполе легко обеспечить необходимый микроклимат для выращивания нескольких урожаев огородных культур за год. Грунт всегда хорошо прогревается, а для поддержания стабильности температуры используются экологичные тепловые аккумуляторы – резервуары с водой.

Зимой геокупол способен выдержать даже сильный снегопад

Как самостоятельно построить купольную теплицу

Построить такое сооружение на своем участке несложно. Для этого потребуется рассчитать размеры секций, распечатать схему сборки, подготовить детали каркаса, расчистить место для установки теплицы и можно приступать к монтажу.

Варианты купольных теплиц

Принципы конструирования купольного каркаса

По своей сути все геодезические купола – это многогранники, грани которых образовывают поверхность, максимально приближенную по форме к сфере. Форма граней может быть разной, но треугольник считается самым стабильным и устойчивым. Поэтому в большинстве случаев основным структурным элементом для создания полусферического каркаса является треугольник.

Треугольные секции – основа обтекаемого и устойчивого каркаса

Для строительства каркаса малых купольных строений на дачных участках – теплиц, беседок, гостевых домиков – чаще всего применяют каркасно-щитовую технологию на основе равнобедренных треугольников разного размера. Чем меньше размер секций, тем больше их потребуется для создания сферического парника. Принцип их соединения между собой похож на пошив футбольного мяча – треугольники соединяются в выпуклые шести- и пятиугольники, которые объединены в устойчивую полусферу.

Совет! Если при расчете геокупола не учитывались углы соединения фрагментов, то монтаж лучше проводить при помощи коннекторов с 4, 5 и 6 лопастями.

Формула расчета длины элементов купола

Чтобы не ошибиться в процессе сборки, нужно заранее все высчитать длину всех ребер, правильную последовательность их чередования, углы соединения элементов. Для составления оптимальной схемы необходимо пользоваться специальными формулами. В основу расчета геодезического купола ложатся конкретные размеры:

  • радиус основы сооружения;
  • высота теплицы (выраженная в дробном отношении к диаметру сферы, H);
  • частота разбивки на секции (V).

Деревянные бруски для монтажа

Чем выше числовой индекс V (1, 2, 3…), тем больше типов ребер потребуется подготовить. Купол 1V – это усеченный икосаэдр, все ребра одной длины. Такое сооружение больше похоже на пирамиду с пятью гранями. Для строительства домашней теплицы лучше всего подходят купола 2V (два вида ребер, H= радиусу) и 3V (ребра А, В, С, высота сооружения Н= 5/8, 7/12, 5/12 диаметра).

Длина каждого вида ребер (La, Lв, Lс…) рассчитывается по формуле L=R*K, где R – это радиус основания каркаса, а K – коэффициент по частоте разбивки.

Таблица коэффициентов

Для вычисления необходимого количества материала для обшивки используют формулу расчета площади сферы: S=2π *R*H, где R – радиус основания, а H – вычисленная высота теплицы. Например, при радиусе основания 3V теплицы 4 м и высоте 3/8d, расчет площади будет таким:

S=2*3,14*4*(3/8*8) = 75,36 м2

Подготовка к монтажу каркаса

При строительстве геодезического купола своими руками для каркаса нужно выбирать легкий и прочный материал – деревянные бруски, нетяжелые металлические пруты или пластиковые трубы. Деревянные бруски перед покраской лучше пропитать противогрибковым составом. При подготовке фрагментов крайне важно соблюдать точность разметки – все детали одного типа должны быть взаимозаменяемы.

Совет! Окрашивайте ребра одинаковой длины одним цветом. Например: ребра А – красные, В – синие, С – желтые. Для облегчения работы с цветной схемой сборки маркировка готовых ребер должна совпадать с маркировкой на чертеже.

Количество ребер по типам и коннекторов для монтажа каждого вида купола высчитывается по схемам.

Полевые работы и монтаж основания

Для установки геодезического купола на даче необходимо выбрать открытый незатененный участок. Плодородную почву с площадки можно временно удалить, а саму поверхность засыпать глиной и тщательно выровнять и утрамбовать. Если почва неустойчивая, то под основание придется залить небольшой фундамент или вбить опорные сваи под каждый угол основы (форма фигуры повторяет очертания нижнего ряда схемы – десяти-, восьми- или двенадцатиугольник).

Высота основания зависит от того, как предполагается использовать постройку – для легкого летнего парника хватит 15-20 см, а для зимней теплицы с теплыми грядками лучше поднять стенки на 50-70 см. Основу обычно изготавливают из толстого бруса или деревянных щитов. Невысокое временное сооружение можно установить прямо на кирпичи или камни, уложенные под углы нижнего ряда каркаса.

Монтаж основы купольной теплицы

Сборка и обшивка каркаса

Конструкцию собирать лучше снизу-вверх, соединяя ребра коннекторами или шурупами в соответствии со схемой. Вершину купола удобнее собрать на земле, и только потом прикрепить к каркасу. Заниматься монтажом такого «конструктора для взрослых» лучше с помощником – так удобнее фиксировать детали. Для входа во время сборки вместо нескольких элементов купола вставляется дверная коробка.

Совет! Для вентиляции установите в верхней части купола 2 рамки-форточки, изготовленные по внутренним размерам треугольного элемента.

Следующий этап – обшивка каркаса. Для этих работ выбирается плотный прозрачный материал – парниковая пленка, поликарбонат или стекло. Существует несколько способов укрыть купольную теплицу:

  • готовый каркас обтягивают пленкой поверху;
  • вырезают треугольники из поликарбоната (по размеру каждой ячейки каркаса) и крепятся, как мозаика;
  • в ячейки каркаса вставляют стекло.

После того как купол полностью обшит, нужно проверить его герметичность. При необходимости места соединения реек и обшивки дополнительно герметизируют.

Проект теплицы с грядками

Внутреннее обустройство геотеплицы

Сборка геокупола своими руками завершена, самое время обустроить его внутри. До закладывания грядок необходимо подготовить системы обогрева, полива и вентиляции. Внутри купола по северной стороне необходимо закрепить блестящий материал (фольгу, металлизированную пленку) – так растения и резервуары с водой получат больше света и тепла.

Температура в теплице поддерживается с помощью самодельных аккумуляторов тепла – под светоотражающим щитом устанавливают несколько бочек с водой. Вода за день нагреется, благодаря чему ночью внутри будет поддерживаться необходимая температура. Эту же воду можно использовать для капельного полива.

Примерная схема внутреннего устройства геодезической теплицы

Для обогрева грядок под слоем почвы можно уложить гофрированные трубы, в которые будет подаваться теплый воздух.

Трубы засыпают слоем навоза или компоста. Теплый воздух циркулирует по системе под грядками благодаря вентилятору, подключенному к солнечной батарее. Дополнительно для аккумуляции тепла в центре теплицы можно установить несколько пятилитровых фляг, также заполненных водой. Кроме встроенных форточек, можно установить автоматическую систему вентиляции для проветривания по расписанию.

Грядки в купольной теплице располагают по периметру.

Ширину грядки лучше делать не больше, чем 1,5 м, иначе тяжело ухаживать за растениями. Какую именно грядку обустроить – дело вкуса. Можно построить стандартные – до 40 см в высоту, высокие или теплые, вертикальные или двухъярусные. При большом радиусе основания в центре обычно обустраивают грядку-клумбу, на которой высаживают высокорослые или вьющиеся культуры.

Грядки в два яруса хорошо освещаются под прозрачным сводом

Геодезические теплицы на природном обогреве подходят для выращивания любых культур в период с ранней весны и до ноября. При достаточно большом объеме купола и наличии дополнительного отопления и подсветки такие теплицы пригодны для круглогодичного использования даже в районах с умеренным климатом.

Как видите, самостоятельно построить на участке оригинальную теплицу-купол несложно. И если учесть, что затраты на ее создание и содержание несколько меньше, чем для других укрытий, то можно смело сказать, что популярность таких сооружений будет расти с каждым годом.

Сферические, купольные жилища известны давно — яранги, чумы, вигвамы и т.д. — построены по этому принципу. Отличаются они высокой устойчивостью и простотой возведения, чем и заслужили популярность наших предков. Но купольные дома в чистом виде, как явление современного строительства, появились не так давно — примерно во второй половине прошлого века. Когда американский ученый Фуллер разложил купольную конструкцию на простые фигуры — треугольники, из которых часто и собирается вся конструкция. Именно по этому принципу строятся многие сферические дома и сегодня.

Купольные дома: технологии и их особенности

Купольный или сферический дом — это названия одной строительной технологии. Собственно, название отражает особенность домостроения такого типа — дом не прямоугольный, а выполнен в виде полусферы. Вернее — в виде многогранника, приближающегося по внешнему виду к сфере.

Такая форма лучше выдерживает ветровые и снеговые нагрузки, при равном пятне застройки с прямоугольным, имеет больше полезной площади. Но в таком доме вряд ли найдется хотя-бы одна прямоугольная или квадратная комната. Хоть одна сторона, но будет неровной. Это усложняет планировку, отделку, выбор и установку мебели. Скорее всего, всю или большую часть обстановки, придется делать «под заказ», по собственным размерам и эскизам.

Строятся купольные дома, в основном, по каркасной технологии, так что сооружение получается легким. Каркас собирается из бруса или металлических труб, обшивается листовым строительным материалом (фанера, ОСП). Между стойками каркаса укладывается утеплитель (пенополистирол, минеральная вата, пеностекло, экологические материалы типа джута, высушенных водорослей и т.п.). То есть, кроме необычной формы, никаких новостей, материалы подбираются как для обычного каркасного дома.

Стоят купольные дома и из монолитного железобетона. Но эта технология используется нечасто, особенно в нашей стране, где пиломатериалы, порой, обходятся дешевле. Если учесть еще и необходимость хорошей теплоизоляции бетонного купола, становится понятным его непопулярность.

С каркасами купольных домов не все так просто. Существует две технологии, по которым их собирают: геодезический и стратодезический купол. Они имеют свои особенности, способные оказать влияние на ваш выбор.

Геодезический купол

Купол разделен на треугольники, из которых и собирается многогранник. Особенность этой технологии — в одной точке сходится большое количество балок. Для обеспечения их надежной фиксации используются коннекторы — специальные устройства из стали, позволяющие надежно соединять элементы несущей конструкции. Каждый из коннекторов стоит от 600 до 1500 рублей (10-25$).

Геодезический купол для сферического дома строят на основе треугольников

При том, что количество коннекторов исчисляется десятками или даже сотнями, их наличие сильно влияет на стоимость строительства. Те, кто планируют строить купольный дом своими руками, стараются обойтись без коннекторов или сделать их тоже самостоятельно. Причины понятны, но при недостаточной прочности соединения, здание при нагрузках может разрушится. Так что с экономией на этом узле надо быть очень и очень аккуратными.

Кстати, при использовании деревянных балок есть бесконнекторная технология, но сборка таких узлов требует высокого уровня плотницкого мастерства и точного исполнения. И еще: они не настолько надежны, как соединения с металлическими коннекторами.

Достоинство каркаса этого типа — устойчивая конструкция. При разрушении 35% элементов купол не разрушается. Это проверено в сейсмоактивных регионах, при ураганах. Такая устойчивость позволяет с легкостью убирать некоторое количество перемычек. То есть проем под двери, окна можно делать в любом месте, практически любого размера. Единственное, что требуется учесть — окна будут треугольные. В этой конструкции от этого никуда не деться. Для многих это критический недостаток.

Еще одна особенность — при сборке каркаса, без обшивки он имеет хорошую устойчивость к нагрузкам на скручивание, но не очень хорошо воспринимает горизонтальные нагрузки. Потому каркас сначала собирают полностью и лишь потом его обшивают.

Стратодезический купол

Купольные дома такой конструкции собираются из секций трапециедальной формы. То есть его фрагменты больше похожи на прямоугольники или квадраты. Такое строение позволяет использовать двери и окна стандартной конструкции. Для многих это — большой плюс.

Минус статодезиеского купола в том, что убирать элементы конструкции можно только после тщательного расчета и усиления прилегающих конструкций. Так что перенос двери или окна, изменение размеров возможны только после того, как будет просчитано изменение несущей способности этого участка или даже купола в целом.

Есть у этой технологии и своя особенность сборки. Каркас должен обшиваться по мере установки стоек. То есть, второй ряд стоек собирается только после того, как обшит первый, третий ряд — после того, как второй зашит листовым материалом и т.д. Это связано с тем, что в неоконченном виде — без обшивки — каркас имеет высокую несущую способность по вертикальным нагрузкам и не очень устойчив к нагрузкам на скручивание. Как только грани обшиваются, он становится очень устойчивым и надежным.

В отличие от геодезического купола, для сборки стратодезического коннектора не требуются. Вертикальные детали каркаса соединяются при помощи замков специальной формы. Горизонтальные перемычки крепятся при помощи пластины, которая фиксируется болтами, под которые укладывается металлическая накладка.

Есть еще один нюанс, который влияет на стоимость купольного дома. При раскрое листового материала для стратодезического купола остается больше обрезков, чем при устройстве геодезического. Это в некоторой степени увеличивает затраты на материалы. Но они компенсируются тем, что окна и двери используются стандартной конструкции, в они стоят дешевле, чем треугольные. В результате стоимость купола разных технологий мало чем отличается.

Преимущества и недостатки

С тем, что купольные дома выглядит необычно, спорить никто не будет. Если вы хотите иметь дом или дачу «не как у всех» и не имеете ничего против каркасного домостроения, присмотритесь к этой технологии. Решение действительно нестандартное. К тому же, говорят, экономичное. Стоимость квадратного метра начинается от 200$. Но как понимаете, это минимальная цена. Такой себе эконом вариант.

Плюсы купольных домов

Кроме необычного внешнего вида плюсы у сферических домов следующие:


По совокупности характеристик купольные дома выглядят очень привлекательны. К тому же многие говорят о том, что на постройку требуется намного меньше средств — за счет меньшей поверхности стен, идет экономия материала. По математическим выкладкам площадь стен меньше почти на треть. Но экономия если и будет, то не такой большой — стройка специфическая, с использованием специфических компонентов, которые удорожают строительство. По факту стоимость квадратного метра получается примерно такой же как при обычной формы.

Минусы

Недостатки тоже есть и они тоже довольно серьезные. Во всяком случае, стоит о них знать и принимать во внимание.


Есть еще необычная планировка, но однозначно ее отнести к недостаткам не получится. Нравятся купольные дома именно своей неординарностью. Так что нестандартная форма помещений — это, скорее, особенность, которую надо учитывать при подборе/заказе мебели и выборе отделочных материалов.

Проекты и особенности планировки

Круглое здание далеко нелегко распланировать так, чтобы было рационально, красиво, да еще и удобно. Есть несколько основных приемов, которых придерживаются большинство. Первое, что бросается в глаза, в таком доме просто не может быть коридоров. Им просто некуда вести. Это неплохо, но планировка дома становится от этого сложнее. Начнем с простого — как оформить вход в дом.

Входная группа

Для нашего климата желательно чтобы входные двери выходили в небольшое помещение, а не в большую комнату. Спасает в этом случае небольшой тамбур. О может быть выделенным из общей площади или пристроенным. Примерно те же задачи выполняет крытая веранда. Это более «цивильный» способ решить проблему.

Не всем подобный подход нравится. Сегодня в мире другие тенденции — из входной двери попадают в большой просторный холл/гостиную. Такая планировка тоже возможна, но необходимы дополнительные меры по отсечению холодного воздуха — тепловая завеса возле входа. Ее делают при помощи встраиваемых в пол конвекторов или установив возле двери несколько мощных радиаторов. Первый способ эффективнее, второй проще в исполнении. Все эти нюансы характерны и для купольных домов. С той лишь разницей, что придется поломать голову, как вписать встроенный тамбур. Два остальных способа решаются проще.

Давайте рассмотрим варианты устройства входной группы на примерах. На картинке вверху, правый проект, входные двери выходят в гостиную/столовую. Такое решение характерно для Европы и Америки. У нас постепенно приобретает популярность, но в связи с более суровым климатом часто приносит неудобства — каждое открывание дверей в зимний период приносит значительную порцию холодного воздуха, что снижает комфорт.

Вариант слева — с пристроенным тамбуром. Из тамбура два выхода — один в зимний сад, другой — в кухню/столовую. Решение не менее современное, но решена проблема поступления холодного воздуха в жилые помещения. Так что подобную идею стоит взять на вооружение.

Если тамбур решено делать встроенным, очевидно, придется выделить какую-то площадь дома. Минимально — это три квадрата (на левом проекте). Логично, если дальше будет располагаться гостиная/столовая.

Еще дин способ — выделить большую площадь и использовать ее как прихожую. Разместить тут гардероб, вешалку для вещей «на сейчас» (проект права). Если позволит площадь, можно будет установить небольшой диванчик. Для частого дома наличие прихожей — практически необходимость. Грязь и песок меньше таскаются в дом. И это — еще один довод в пользу выделенной входной группы. Пристроенной или отгороженной — это уже ваш выбор. Но помещение для входа — это удобно. Во всяком случае, в наших реалиях.

Организация пространства

Чаще всего центральная часть пространства купольного дома выделяется под помещение общего пользования. Из этой центральной зоны можно попасть во все другие комнаты, которые расположены по кругу. Вообще, центральное помещение получается неудобным, так как оно «очень проходное».

В нем не удастся расслабиться, если это гостиная, в нем не очень удобно готовить, если придет идея использовать это помещение как кухню, как столовая оно тоже не самый лучший вариант. Проекты, которые именно так используют это пространство, представлены выше. На картинке выглядит замечательно, а вот в жизни рассчитывать на камерную обстановку тут не получится. Так что проходные комнаты — не самые обитаемые.

Не самый плохой способ использования этой проходной зоны — установка лестницы. Ведь большая часть купольных домов имеет два этажа, а сюда просто просится винтовая . Только надо учесть, что если ее просто закручивать вокруг столба, пользоваться будет неудобно — слишком крутые повороты получаются. Если же конструировать лестницу по типу «колодца», ее трудно построить самостоятельно. Так что эту часть придется кому-то передоверить.

В остальном купольные дома планируются также, как и обычные. Основное правило, которое надо запомнить: чтобы инженерные системы были не очень дорогими, все «мокрые» помещения размещаются недалеко друг от друга. Расположение спален, кабинетов и других «сухих» помещений — на ваш вкус.

Видео по теме

Как бы подробно не описывали технологию, ее плюсы и минусы, точное представление получить так сложно. Значительную часть информации и впечатлений мы получаем визуально. Картинки и фото помогают лишь частично дать общее представление. Намного лучше все увидеть своими глазами в видео отзывах.

(19 оценок, среднее: 4,37 из 5)

Определяясь с проектом для дачного строительства, прежде всего, оценивается не только комфортность, но и внешний вид будущей постройки. Частный дом принято считать местом для отдыха, поэтому его стоит сделать красивым и комфортным. Если есть желание построить на приусадебном участке уникальную оранжерею, домик или беседку, то стоит попробовать подумать над возведением геодезического купола. С виду это довольно сложная конструкция, но построить ее способен даже не очень опытный строитель, а материальные затраты будут небольшими. В этой статье будет описано, как построить купол своими руками.

Определение геодезического купола

Специалисты считают, что большинство людей не имеют представления о такой конструкции здания, потому что она встречается очень редко. Именно поэтому стоит подробно описать все особенности и технические характеристики геодезического купола . Разработал постройки с несущей сетчатой оболочкой изобретатель Ричард Фуллер. Сначала он взял очень прочную конструкцию в виде сферы и разделил ее на небольшие треугольники, чьи стороны расположены на правильных геодезических линиях. Расчеты Ричарда Фуллера смогли сделать строительство купола простым и доступным любому человеку.

Изобретатель полагал, что подобная уникальная конструкция строения обязана была решить проблему быстрой постройки дешевого и комфортного дома. Эту разработку не оценили специалисты, и она не применяется в массовом строительстве . Однако для постройки уникального кафе или красивого летнего домика геодезический купол Фуллера является оптимальным вариантом.

Разработка Ричарда Фуллера является довольно устойчивой конструкцией. Геодезический купол равномерно распределяет всю массу, может выдержать огромные нагрузки и уменьшает финансовые вложения при строительстве фундамента. Уникальная сферическая форма способна противостоять самым мощным порывам ветра. Экономия при строительстве таких домов обусловлена сокращением общей площади боковой поверхности. В самом куполе круглые стены помогают качественной циркуляции воздуха, создавая комфортный микроклимат.

Главным недостатком можно считать очень сложные, по сравнению с простыми домами, математические расчеты. Так как конструкция состоит из огромного числа деталей , то необходимо утеплить довольно много стыков. Других существенных недостатков у геодезического купола нет.

Измерения и расчеты

При наличии желания построить геокупол своими руками сначала необходимо провести все математические расчеты. Главная задача расчета геодезического купола состоит в том, чтобы имея определенный радиус, получить такие данные:

Необходимо заострить внимание на таком узле для постройки геокупола, как специальный коннектор. Эта деталь представляет собой узел, соединяющий между собой все стропильные части. Так как коннектор является главным элементом для закрепления всей конструкции, то он изготавливается из прочного материала высокого качества.

В зависимости от конструкции геодезического купола и места расположения в нем, соединительный коннектор должен иметь разное количество лепестков. Все крепления для постройки купольного дома можно приобрести или изготовить своими руками. Хорошим примером может быть коннектор из обычной перфорированной ленты . Подобный коннектор обладает очень ценным качеством, потому что на нем довольно просто регулируется угол наклона. Геодезические купола с маленьким диаметром можно построить безконнекторным методом. Однако при строительстве большого дома применять для крепежа ребер коннектор из металла необходимо.

Для того чтобы произвести расчеты, нужно знать габариты строения. Необходимо запомнить, что общая площадь изготовленного геодезического купола будет немного меньше площади окружности, потому что в основании располагается многогранник, который вписан в круг. Высоту постройки можно определить по общей длине диаметра. Стоит заметить, что чем больше высота купола, тем конструкция будет больше похожа на сферу.

Чтобы рассчитать нужные детали будущей конструкции, стоит применить специальный онлайн-калькулятор. Нужно ввести данные о высоте и радиусе постройки , а калькулятор сделает расчеты геокупола и предоставит длину и число ребер, вид и количество соединительных коннекторов.

Строительство своими руками

Самыми подходящими для купольного строительства конструкциями можно считать небольшие теплицы, уютные беседки или дачные домики. Сначала необходимо выбрать место для постройки. Если это будет теплица, то нужно найти хорошо освещенный участок. Для домика или беседки подойдет немного затененная площадка . Участок под любое из этих строений выравнивается, а потом убирается на нем весь мусор и корни деревьев.

Теплица

Построить купольную теплицу легче всего. Чтобы ее собрать, не нужен фундамент, а материалом для основания могут быть обычные доски, бруски или металлические трубы. На предварительно подготовленной поверхности необходимо начать сборку основания теплицы-купола. В первую очередь собираются треугольники и скрепляются между собой. Для того чтобы не перепутать грани, их необходимо подписывать и сверяться с чертежом. Если теплица маленьких размеров, то при сборке соединительный коннектор стоит заменить простой монтажной лентой и крепежными материалами.

Изготовленный геодезический купол стоит накрыть простой пленкой. Намного лучше будет выглядеть купольная теплица, которая покрыта листами поликарбоната . Вырезанные из поликарбоната треугольники необходимо закрепить на каркасе, а все стыки закрыть декоративными рейками. С улицы геокупол можно украсить при помощи декоративного камня, посадить цветы и установить небольшой забор. Подобная купольная теплица будет уникальным украшением любого загородного дома.

Беседка

В виде геодезического купола можно построить беседку. Для этого необходимо придерживаться таких рекомендаций:

После изготовления конструкции купольной беседки следует не менее важный этап работ. Он заключается в накрытии круглой беседки с куполом. Материал для этого можно использовать самый разный. Если конструкция геодезического купола полностью не накрывается, и оставляется пара секций беседки открытыми, то их можно декорировать красивой тканью. В подобной комфортной беседке можно с удовольствием проводить свободное время с близкими и друзьями.

Дом

Купол способен стать основой уникального дома на дачном участке. Главным отличием от беседки и теплицы является необходимость строительства фундамента. Для того чтобы построить купольный дом, стоит придерживаться следующих рекомендаций:

  • нужен хорошо теплоизолированный фундамент;
  • к основанию фундамента крепятся специальные угловые стойки, которые укрепляются при помощи горизонтальных распорок;
  • собирается конструкция купольного дома;
  • снаружи дом необходимо обшить листами из фанеры.

Установив дверные и оконные рамы, стоит начать отделку геодезического дома изнутри. Во все проемы закладывается хороший утеплитель, который зашивается листами фанеры. Для того чтобы соорудить купольный дом, необходимо не более трех месяцев работы. Форма геодезического купола поможет сэкономить на количестве материалов .

При проживании в таком доме можно оценить основные преимущества этой конструкции.

Данная страница — инструкция к калькулятору для расчёта купольных конструкций, в том числе купольных крыш и купольных домов.

По умолчанию выставлен русский язык интерфейса. Вы его можете сменить на удобный для Вас, выбрав нужный в выпадающем списке «Язык».

Инструкция к калькулятору

Область «Исходные данные» предназначена для задания геометрии каркаса. Можно изменять параметры в следующих полях:

«Многогранник » — многогранник на основание которого строится вся конструкция. Возможны два варианта: икосаэдр и октаэдр.

«Частота, V » — количество разбиений вершин. При увеличении частоты, увеличивается количество вершин и ребер соответственно. Чем больше это значение, тем больше форма каркаса приближается к сфере и тем меньше длина рёбер.


Икосаэдр — многогранник, у которого значение частоты разбиения V равно 1.
Октаэдр — многогранник, у которого значение частоты разбиения V равно 1.

Значение частоты разбиения равное единице соответствует конструкции в виде икосаэдра или октаэдра в зависимости от того какой многогранник задан в графе «многогранник». При увеличении частоты происходит разбиение рёбер многогранника на части. Количество рёбер, составляющих разбитое ребро, равно частоте разбиения.


Частота разбиения икосаэдра.

«Класс разбиения » — этот пункт отвечает за выбор способа разбиения, а следовательно и формы конечной конструкции.

При частоте разбиения равной двум и более возможны различные варианты каждого разбиения. Эти варианты делятся на классы. Если спроецировать разбиение на грань икосаэдра, то все возможные классы разбиения икосаэдра можно представить в виде схемы.


Классы разбиения купольных конструкций.

В калькуляторе римскими цифрами обозначены основные классы, всего их три. Арабскими цифрами обозначены вариации основных классов.

Аналогично способы разбиения задаются для октаэдра.

«Метод разбиения » — позволяет сделать выбор между «Равные хорды», «Равные дуги» и «Мексиканец».

«Осевая симметрия » — выбор оси симметрии, которая учитывается при отсечении части купола от сферы и выстраивании купола по вертикали. Возможные варианты:

  • Pentad — ось симметрии проходит через вершину, в которой сходится 5 рёбер.
  • Cross — ось симметрии проходит через вершину, в которой сходится 6 рёбер.
  • Triad — ось симметрии проходит через грань.

«Фулерен » — выбор формы купола в виде фулерена, который вписывается («вписанный») в сферу, или описывает её («описанный»). Поле «Фулерен» не доступно при выборе варианта соединения «Joint».


«Выравнивание основания » — позволяет выравнивать основание относительно плоскости основания за счет изменения длин рёбер у основания купола. Поле «Выравнивание основания» не доступно при выборе способа соединения «Cone» или выборе формы фулерена.

Функция «выравнивание основания» изменят длину рёбер у основания купола таким образом, что вершины купола на внешней его поверхности располагаются в плоскости основания. Вершины купола на внутренней поверхности купола в общем случае не располагаются в плоскости основания, а строятся по общему принципу — к центру купола от его внешней поверхности.

При включении «выравнивания основания» рёбра своей широкой стороной лежат в плоскости горизонта в случае, когда в поле «часть сферы» выбрано 1/2. В остальных случаях, они не лежат в плоскости горизонта.

«Часть сферы » — выбор части сферы, из которой будет состоять купол. Для куполов разной частоты возможны различные пропорции отсечения.

Размеры и способ соединения

Поле «размеры и способы соединения» позволяет задать размеры сферы и выбрать способ соединения ребер купола. Параметры поля:

«Радиус сферы, м » — задается радиус сферы в метрах.

В выпадающем списке можно выбрать следующие варианты соединений:

  • «Piped» — способ соединения с использованием коннекторов. При выборе данного способа соединений появляется дополнительное поле, в котором можно задать диаметр трубы, составляющей коннектор.
  • «GoodKarma» — безконнекторный способ соединения, при котором каждое ребро составляют два бруса. При выборе данного способа соединения появляется дополнительное поле, в котором можно задать способ соединения рёбер по часовой стрелке или против часовой стрелки.
  • «Semikone» — безконнекторный способ соединения, при котором каждое ребро составляют два бруса.
  • «Cone» — безконнекторный способ соединения, при котором каждое ребро состоит из одного бруса.
  • «Joint» — безконнекторный способ соединения, при котором каждое ребро состоит из одного бруса. При выборе данного способа соединения появляется дополнительное поле, в котором можно задать способ соединения рёбер по часовой стрелке или против часовой стрелки. Способ «Joint» не доступен для купола в форме фулерена.
  • «Nose» — безконнекторный способ соединения, при котором каждое ребро состоит из одного бруса. Возможность выбора данного способа соединения предусмотрена только для купола в форме фулерена. Чтобы данный способ соединения появился в списке вариантов соединения, нужно предварительно задать форму купола в виде фулерена в поле «Фулерен» в разделе «Исходные данные». Для этого в поле «Фулерен» нужно выбрать один из вариантов: «Вписанный» или «Описанный». При выборе данного способа соединения появляется дополнительное поле, в котором можно задать способ соединения рёбер по часовой стрелке или против часовой стрелки.

Для всех способов соединения рёбра у основания купола состоят из одного бруса.

Для многогранников в виде октаэдра в текущей версии калькулятора не реализован расчет соединения «Cone». Вместо него калькулятор рассчитывает значения, как для типа соединения «Piped» с нулевым диаметром трубы.

Размеры рёбер

В этом поле задаются ширина и толщина рёбер в миллиметрах.

Схема купола

В правой части калькулятора отображается схема заданного купола. Купол можно вращать мышкой и приближать и отдалять его колесом мыши.

В калькуляторе можно посмотреть: каркас, кровлю, схему и план, нажав соответствующую кнопку. Их также можно вращать, увеличивать и уменьшать.

Схема


Кровля


Схема на вкладке «Кровля» позволяет исключать из расчёта отдельные грани и рёбра конструкции. Для исключения грани, нужно щёлкнуть по ней мышкой. Для исключения ребра нужно исключить примыкающие к нему с обеих сторон грани.

При исключении из расчёта граней и рёбер во вкладке «Кровля» значения в других вкладах и разделах калькулятора пересчитываются автоматически.

Данная функция может быть полезна для анализа возможных проёмов в конструкции, например для дверей и окон. А также для расчёта таких конструкций как беседки, навесы, козырьки и другие.

План


Во вкладке «План» можно увидеть проекцию нижних рёбер конструкции на плоскость в основании. А также размеры от центра сферы до концов проекций и высоту концов рёбер.

Выделив мышкой отдельные рёбра, можно увидеть аналогичную информацию для любого ребра купола.

Повторный щелчок мыши снимает выделение.

Если во вкладке «Кровля» исключена грань купола, то при переходе на вкладку «План» автоматически подсветятся рёбра этих граней.

Чтобы увидеть план основания полностью, вращайте схему курсором.

Результаты измерений

Содержимое блока «результаты измерений» становится видимым при щелчке по заголовку этого блока «результаты измерений».

Название каждого поля отвечает само за себя.

В блоке «Размеры» указано количество размеров и количество самих элементов:

«Граней» — первое число указывает количество размеров, второе число показывает количество граней. На схеме грани одного размера показаны одним цветом.

«Ребер» — первое число указывает количество размеров, второе число показывает количество рёбер. На схеме рёбра одного размера показаны одним цветом и обозначены одинаковыми буквами.

«Вершин» — первое число указывает количество вершин к которым подводятся разные рёбра без учета того, что к вершинам у снования подводится меньше рёбер. Второе число показывает количество вершин.

Рёбра

В блоке рёбра показаны вид, размеры и количество всех рёбер рассчитанного купола.

На схеме используются следующие обозначения:


  1. Индекс ребра и его цвет на схеме. В качестве индекса используются латинские буквы.
  2. Количество рёбер данного типа (индекса).
  3. Значение двугранного угла между плоскостью ребра и прилегающей к нему гранью купола.
  4. Числовое обозначение вершины, в которую ребро упирается данным концом.
  5. Значение двугранного угла между внешней плоскостью ребра и плоскостью отреза.

Если правая сторона рёбер выводится не корректно, то увеличьте ширину окна браузера, в котором открыт калькулятор. Рекомендуемая ширина 1920 пикселей.

При распиле рёбер торцовочной пилой иногда удобно ориентировать ребро широкой стороной вниз. Тогда углы поворота пилы будут отличаться от полученных здесь. Для их пересчёта можно воспользоваться отдельным .

Грани

В блоке грани показаны вид, размеры и количество всех граней рассчитанного купола.

Вершины

В блоке вершины показаны вид, размеры и количество всех вершины рассчитанного купола. Вершины приведены без учета отсечения части сферы от купола. Так если одно или несколько рёбер имеет обозначение «undefined», то это значит что в усеченном куполе такие вершины есть у основания и граней с обозначением «undefined» у них нет. Для того чтобы увидеть все грани, в поле «часть сферы» следует выбрать всю сферу «1/1».

Результаты конструирования

Скачать модель получившейся конструкции в формате.obj можно с помощью кнопки «выгрузить». Она расположена после результатов вычислений в нижней части страницы в блоке полезных ссылок.

Назначаю стрелку подъема вычисляют радиус сферы купола (рис. 6).Стрелка подъема куполаf:

Радиус сферы:

Центральный угол сферы определяется:

Длина дуги купола в вертикальной плоскости:

Половину длин дуги следует разделить на целое число ярусов щитов покрытия и выделить радиус верхнего центрального кольца. Принимаю длину щита по дуге окружности
при этом радиус центрального кольца согласно рис. 6.:

- уплотняют после расчета радиальных ребер. Определяю число щитов в одном ярусе, исходя из ширины щита по опорному кольцу
Количество щитов в одном ярусе:

принимаем

Рис. 6. Схема ребриста – кольцевого купола.

Купол собирается из трех типов трапециевидных щитов, изготовленных на заводе. Расчетными элементами купола являются:

Радиальные ребра;

Промежуточные кольца;

Опорное кольцо;

Ширина щитов:

    1. Сбор нагрузок на купол.

Нагрузки вертикального направления определяются по формуле:

Направленные вниз;

Направленные вверх;

где
- нормативное значение средней составляющей ветровой нагрузке по высоте:

По интрополяции для местности типа В коэффициент, учитывающий изменение ветрового давления по высоте, имеет величину К=0,770.

где
- дляIII района;
(п. 6)

- знак «-» учтен направлением ветровой нагрузки на покрытие.

Нагрузки горизонтального направления на верхнюю часть резервуара (0,4Н) учитывают:

Нагрузки, вызывающие сжатие опорного кольца купола в виде активного давления ветра и вакуума, определяют по формуле:

где
. Коэффициент К находится на высоте

Нагрузки, вызывающие растяжение опорного кольца;

ветровой откос и избыточное давление по формуле:

Вертикальная сосредоточенная нагрузка на узел пересечения радиального ребра с кольцом определяется по формуле:

Для 1-го кольца, при

Направленная вверх:

Направленная вниз:

Для 2-го кольца, при

Направленная вниз:

Направленная вверх:

    1. Расчет радиального ребра купола.

Наиболее напряженным будет радиальное ребро между опорным и вторым кольцами. Расчетная схема радиального ребра изображена на рисунке 7.

Найдем углы наклона касательной с осью Х в уровнях опорного кольца (
) и
2-го кольцапо формуле:

;

Рис. 7. Расчетные схемы радиального ребра купола на нагрузки:

а – горизонтальную; б – вертикальную; в – местную.

;
.

.

Вычислим в уровне первого кольца при

.

Для опорного радиального ребра средний угол наклона касательных:

;

то же для ребра между вторым и первым кольцами:

.

Определенная вертикальная нагрузка на опорное радиальное ребро находится:

;

.

Продольные сжимающие усилия в опорном ребре:

;

;

, где

Суммарное продольное сжимающее усилие в опорном ребре определяется по формуле:

Найдем наибольшее значение изгибающего момента в опорном радиальном ребре от распределенной нагрузки (рисунок 8):

Левая опорная реакция:

Рис. 8. Схема загружения опорного ребра распределенной нагрузкой.

Найдем положение сечения с наибольшим изгибающим моментом по формуле:

где

.

Максимальное значение изгибающего момента:

Радиальные ребра конструирую из двух прокатных швеллеров (рисунок 9), из стали марки ВСт3пс6-1 (
). Ребро работает на сжатие с изгибом, т.е. на внецентренное сжатие.

Рис. 9. Сечение радиального ребра. Швеллер № 30.

Считаю, что настил приваривается к радиальным и поперечным ребрам щитов, тем самым обеспечивается устойчивость ребра. Поэтому радиальное ребро буду рассчитывать только на прочность. Задаюсь швеллером №30 () и проверим радиальное ребро на прочность по формуле:
;

Проверяю принятое сечение радиального ребра на другую комбинацию нагрузок (и), вызывающих растяжение.

Продольные растягивающие усилия в ребре:

;

.

Распределенные нагрузки:

;

Поскольку интенсивность распределенной нагрузки, направленной вверх, меньше интенсивности, направленной вниз, то проверку на прочность ребра по растягивающим усилиям проводить не следует.

Уточню радиус центрального кольца
из условия закрепления в нем радиальных ребер щитов из двух швеллеров № 30 (
). Учитывая, что ширина двух полок швеллера
; толщина промежуточного ребра
; зазор 5мм; ширина опирания ребра составит., тогда радиус центрального кольца:
.

Длина щита верхнего яруса купола составит:

.

Радиальные ребра радиусов щитов испытывают меньшие нагрузки: и др. Поэтому можно оставить сечение радиальных ребер постоянным из двух швеллеров № 30.