Презентация на тему "метеорологические приборы". Метеорологические приборы Современные метеорологические приборы используемые в быту презентация

Прогноз погоды делается как на основании показаний судовых приборов, так и информации, передаваемой береговыми метеорологическими службами.

Основной элемент при прогнозировании погоды - атмосферное давление. Нормальное атмосферное давление - это масса ртутного столба высотой 760 мм на площади 1 см 2 . Для измерения давления в судовых условиях применяют барометр-анероид и барограф (рис. 1).

Прибор, ведущий непрерывную запись атмосферного давления на специальной бумажной ленте-барограмме. Это позволяет судить об изменении атмосферного давления во времени и делать соответствующие прогнозы.

Рис. 1 Приборы для измерения атмосферного давления: барометр-анероид и барограф

Для измерения скорости и направления истинного ветра служат анемометр, секундомер и круг СМО (рис. 2).


Рис. 2 Приборы для определения скорости и направления ветра: 1 - круг СМО, анемометр и секундомер 2 - автоматическая метеостанция

Служит для измерения средней скорости ветра за определен-ный промежуток времени. Счетчик анемометра имеет три циферблата: большой, разделенный на сто частей, дающий единицы и десятки делений, и два малых — для счета сотен и тысяч делений. Перед определением скорости ветра необходи-мо записать отсчет шкал. Затем встать на верхнем мостике с наветренного борта в таком месте, где ветровой поток не искажается судовыми конструкциями. Держа анемометр в вытянутой руке, одновременно включить его с секундоме-ром. По истечении 100 секунд анемометр выключить и записать новый отсчет. Найти разность отсчетов и разделить на 100. Полученный результат — скорость ветра, измеренная в метрах в секунду (м/с).

Если судно на ходу, то измеряется кажущее (наблюдаемое) направление и скорость ветра, т. е. результирующая скоростей истинного ветра и судна. При определении кажущегося направ-ления ветра следует помнить, что ветер всегда «дует в компас».

Для определения истинного направления и скорости ветра на движущемся судне применяется круг СМО (Севастопольская морская обсерватория). Порядок расчета приведен на обратной стороне круга.

На современных судах устанавливаются автоматические метеостанции. На верхнем мостике крепится измерительная аппаратура, на мостик выведены ин-дикаторы, показывающие направление и скорость истинного ветра в данный момент.

Для измерения влажности на судах применяют аспирационный психро-метр (рис. 3), состоящий из двух термометров, вставленных в металлическую никелированную оправу, сверху которой навинчен аспиратор (вентилятор). При заведенном аспираторе воздух всасывается снизу через двойные трубки, кото-рыми защищены резервуары термометров. Обтекая резервуары термометров, воздух сообщает им свою температуру. Правый резервуар обертывают батистом, который при помощи пипетки смачивают за 4 минуты до пуска вентилятора. Измерения производят на крыле мостика с наветренной стороны. Отсчеты сни-мают сначала с сухого термометра, потом с мокрого.

Влажность воздуха характеризуется содержанием водяного пара в возду-хе. Количество водяного пара в граммах, приходящееся на один кубический метр влажного воздуха, называется абсолютной влажностью.

Относительная влажность — отношение количества водяного пара, со-держащегося в воздухе, к количеству пара, необходимого для насыщения возду-ха при данной температуре, выражается в процентах. При понижении темпера-туры относительная влажность увеличивается, при повышении — уменьшается.

При охлаждении воздуха содержащего водяной пар, до некоторой темпе-ратуры он окажется настолько насыщенным водяным паром, что дальнейшее охлаждение вызовет конденсацию, т. е. образование влаги, или сублимацию — непосредственное образование кристаллов льда из водяного пара. Температура, при которой содержащийся в воздухе водяной пар достигает насыщения, назы-вается точкой росы.

Для измерения температуры атмосферного воздуха применяется термометр (рис. 4).


Рис. 3 Аспирационный психрометр Рис. 4 Прибор для измерения температуры воздуха

Чтение факсимильных карт

Сведения о погоде и состоянии моря, необходимые для решения вопроса о выборе курса следования или производстве работ в море, могут быть получены в виде факсимиль-ных передач различных карт. Этот вид гидро-метеорологической информации является наиболее информативным. Он характеризует-ся большим разнообразием, оперативность и наглядностью.

В настоящее время региональные гидрометеорологические центры состав-ляют и передают в эфир большое количество самых разнообразных карт. Ниже приводится список карт, наиболее используемых для нужд мореплавания:

  • приземный анализ погоды. Карта составляется на основе приземных метео-рологических наблюдений в основные сроки;
  • приземный прогноз погоды. Показывает ожидаемую погоду в указанном рай-оне через 12, 24, 36 и 48 часов;
  • приземный прогноз малой заблаговременности. Приводится ожидаемое поло-жение барической системы (циклонов, антициклонов, фронтов) в приземном слое на следующие 3-5 дней;
  • анализ поля волнения. Эта карта дает характеристику поля волнения по райо-ну — направление распространения волн, их высоту и период;
  • прогноз поля волнения. Показывает прогнозируемое поле волнения на 24 и 48 часов — направление волнения и высоту преобладающих волн;
  • карта ледовых условий. Показана ледовая обстановка в данном районе (спло-ченность, кромка льда, полыньи и другие характеристики) и положение айс-бергов.

Карты приземного анализа содержат данные о фактической погоде в ниж-них слоях атмосферы. Барическое поле на этих картах представлено изобарами на уровне моря. Основные приземные карты составляют на 00:00, 06:00, 12:00 и 5:00 часов среднего гринвического времени.

Прогностические карты — это карты ожидающейся синоптической обста-новки (12, 24, 36, 48, 72 часов). На приземных прогностических картах, указыва-ются предполагаемые положения центров циклонов и антициклонов, фронталь-ных разделов, барических полей.

При чтении факсимильных гидрометеорологических карт первоначаль-ную информацию штурман получает из заголовка карты. Заголовок карты со-держит следующую информацию:

  • тип карты;
  • географический район, охватываемый картой;
  • позывные гидрометеостанции;
  • дата и время издания;
  • дополнительные сведения.

Тип и район карты характеризуется первыми четырьмя символами, при-чем первые два характеризуют тип, а последующие два — район карты. Напри-мер:

  • ASAS — приземный анализ (AS — analysis surface) для азиатской части (AS — Asia);
  • FWPN — прогноз волнения (FW — forecast wave) для северной части Тихого океана (PN — Pacific North).

Часто встречаемые сокращения приведены ниже:

  • Карты анализа гидрометеообстановки.
    • AS — приземный анализ (Surface Analysis);
    • AU — высотный анализ (Upper Analysis) для различных высот (давлений);
    • AW — анализ волнения/ветра (Wave/Wind Analysis);
  • Прогностические карты (на 12, 24, 48 и 72 часа).
    • FS — приземный прогноз (Surface Forecast)
    • FU — высотный прогноз (Upper Forecast) для различных высот (давлений).
    • FW — прогноз ветра/волнения (Wave/Wind Forecast).
  • Специальные карты.
    • ST — ледовый прогноз (Sea Ice Condition);
    • WT — прогноз тропических циклонов (Tropical Cyclone Forecast);
    • CO — карта температуры поверхности воды (Sea Surface Water Temperature);
    • SO — карта поверхностных течений (Sea Surface Current).
  • Для обозначения района, охватываемого картой, обычно используются следующие сокращения:
    • AS — Азия (Asia);
    • AE — юго-восточная Азия
    • PN — северная часть Тихого океана (Pacific North);
    • JP — Япония (Japan);
    • WX — экваториальный пояс (Equator zone) и т. д.

Четыре буквенных символа могут сопровождаться 1-2 цифровыми симво-лами, уточняющими тип карты, например FSAS24 — приземный анализ на 24 ча-са или AUAS70 — надземный анализ для давления 700 гПа.

За типом и районом карты следуют позывные радиостанции, передающей карту (например, JMH — Japan Meteorological and Hydrographic Agency). Во вто-рой строке заголовка указывается дата и время составления карты. Дата и время приведены к Гринвичскому или Всемирному координированному времени. Для обозначения приведенного времени используются сокращения Z (ZULU) и UTC (Universal Coordinated Time) соответственно, например, 240600Z JUN 2007 — 24.06.07 г., 06.00 по Гринвичу.

В третьей и четвертой строках заголовка расшифровывается тип карты и дается дополнительная информация (рис. 5).

Барический рельеф на факсимильных картах представлен изобарами — ли-ниями постоянного давления. На японских картах погоды изобары проведены через 4 гектопаскаля для давлений, кратных 4 (например, 988, 992, 996 гПа). Каждая пятая изобара, т. е. кратная 20 гПа, проведена жирной линией (980, 1000, 1020 гПа). На таких изобарах обычно (но не всегда) подписано давление. В слу-чае необходимости, проводятся также промежуточные изобары через 2 гекто-паскаля. Такие изобары проводятся пунктирной линией.

Барические образования на картах погоды Японии представлены цикло-нами и антициклонами. Циклоны обозначаются буквой L (Low), антициклоны — буквой H (High). Центр барического образования обозначен знаком «х». Рядом указано давление в центре. Стрелка возле барического образования указывает направление и скорость его перемещения.


Рис. 5 Карта приземного анализа погоды для азиатского района

Существуют следующие способы обозначения скорости передвижения барических образований:

  • ALMOST STNR — практически неподвижный (almost stationary) — скорость барического образования менее 5 узлов;
  • SLW — медленно (slowly) — скорость барического образования от 5 до 10 узлов;
  • 10 kT — скорость барического образования в узлах с точностью до 5 узлов; К наиболее глубоким циклонам даются текстовые комментарии, в кото-рых дается характеристика циклона, давление в центре, координаты центра, направление и скорость перемещения, максимальная скорость ветра, а также зо-на ветров со скоростями, превышающими 30 и 50 узлов.

Пример комментария к циклону:

  • DEVELOPING LOW 992 hPa 56.2N 142.6E NNE 06 KT MAX WINDS 55 KT NEAR CENTER OVER 50 KT WITHIN 360 NM OVER 30 KT WITHIN 800 NM SE-SEMICIRCULAR 550 NM ELSEWHERE.
  • DEVELOPING LOW — развивающийся циклон. Может также быть DE-VELOPED LOW — развитой циклон;
    • давление в центре циклона — 992 гПа;
    • координаты центра циклона: широта — 56.2° N, долгота — 142.6° E;
    • циклон движется на NNE со скоростью 6 узлов;
    • максимальная скорость ветра вблизи центра циклона — 55 узлов.

В развитии тропический циклон проходит 4 основные стадии:

  • TD — тропическая депрессия (Tropical Depression) — область понижен-ного давления (циклон) со скоростью ветра до 17 м/с (33 уз., 7 баллов по шка ле Бофорта) с ярко выраженным центром;
  • TS — тропический шторм (Tropical Storm) — тропический циклон со скоростью ветра 17-23 м/с (34-47 уз., 8-9 баллов по шкале Бофорта);
  • STS — сильный (жестокий) тропический шторм (Severe Tropical Storm) — тропический циклон со скоростью ветра 24-32 м/с (48-63 уз., 10-11 баллов по шкале Бофорта);
  • T — тайфун (Typhoon) — тропический циклон со скоростью ветра более 32,7 м/с (64 уз., 12 баллов по шкале Бофорта).

Направление и скорость перемещения тропического циклона указывается в виде вероятного сектора движения и кругов вероятного положения через 12 и 24 часа. Начиная со стадии TS (тропический шторм), на картах погоды дается текстовый комментарий к тропическому циклону, а, начиная со стадии STS (сильный тропический шторм), тропическому циклону присваивается номер и имя.

Пример комментария к тропическому циклону:

  • T 0408 TINGTING (0408) 942 hPa 26.2N 142.6E PSN GOOD NORTH 13 KT MAX WINDS 75 KT NEAR CENTER EXPECTED MAX WINDS 85 KT NEAR CENTER FOR NEXT 24 HOUR OVER 50 KT WITHIN 80 NM OVER 30 KT WITHIN 180 NM NE-SEMICIRCULAR 270 NM ELSEWHERE.

T (тайфун) — стадия развития тропического циклона;

  • 0408 — национальный номер;
  • имя тайфуна — TINGTING;
  • (0408) — международный номер (восьмой циклон 2004 года);
  • давление в центре 942 гПа;
  • координаты центра циклона 56.2° N 6° E. Координаты определены с точностью до 30 морских миль (PSN GOOD).

Для указания точности определении координат центра циклона использу-ются следующие обозначения:

  • PSN GOOD — точность до 30 морских миль;
  • PSN FAIR — точность 30-60 морских миль;
  • PSN POOR — точность ниже 60 морских миль;
  • движется на NORTH со скоростью 13 узлов;
  • максимальная скорость ветра 75 узлов вблизи центра;
  • ожидаемая максимальная скорость ветра 85 узл на следующие 24 часа.

На картах погоды также указываются опасные для навигации явления в виде гидрометеорологических предупреждений. Виды гидрометеорологических предупреждений:

  • [W] — предупреждение о ветре (Warning) со скоростью до 17 м/с (33 узлов, 7 баллов по шкале Бофорта);
  • — предупреждение о сильном ветре (Gale Warning) со скоростью 17-23 м/с (34-47 узлов, 8-9 баллов по шкале Бофорта);
  • — предупреждение о штормовом ветре (Storm Warning) скоростью 24-32 м/с (48-63 узлов, 10-11 баллов по шкале Бофорта);
  • — предупреждение об ураганном ветре (Typhoon Warning) со ско-ростью более 32 м/с (более 63 узлов, 12 баллов по шкале Бофорта).
  • FOG [W] — предупреждение о сильном тумане (FOG Warning) с види-мостью менее 4 мили. Границы района предупреждения обозначаются волнистой линией. Если район предупреждения невелик, границы его не указываются. В этом случае считается, что район занимает прямо-угольник, описанный вокруг надписи предупреждения.

Нанесение гидрометеорологических данных на карты погоды производит-ся по определенной схеме, условными знаками и цифрами, вокруг кружка, обо-значающего местоположение гидрометеостанции или судна.

Пример информации от гидрометеостанции на карте погоды:


Информация от гидрометеостанции

В центре находится круг, изображающий гидрометеостанцию. Штриховка круга показывает общее количество облаков (N):

  • dd — направление ветра, обозначается стрелкой, идущей к центру кружка станции со стороны, откуда дует ветер.

Знаки и значение облаков

ff — скорость ветра, изображается в виде оперения стрелки следующими символами:

  • малое перо соответствует скорости ветра 2,5 м/с;
  • большое перо соответствует скорости ветра 5 м/с;
  • треугольник соответствует скорости ветра 25 м/с.
Скорость ветра

При отсутствии ветра (штиль) символ станции изображается двойным кружком.

VV- горизонтальная видимость, показываемая цифрой кода по следующей таблице:

Горизонтальная видимость
Код VV, км Код VV, км Код VV, км Код VV, км Код VV, км
90 <0,05 92 0,2 94 1 96 4 98 20
91 0,05 93 0,5 95 2 97 10 99 >50
  • PPP - атмосферное давление в десятых долях гектопаскаля. Цифры тысяч и сотен гектопаскалей опускаются. Например, давление 987,4 гПа наносится на карту как 874, а 1018,7 гПа как 187. Знак “ххх” указывает, что давление не измерялось.
  • ТТ - температура воздуха в градусах. Знак “хх” указывает, что температура не измерялась.
  • Nh — количество облаков нижнего яруса (CL), а при их отсутствии количество облаков среднего яруса (CM), в баллах.
  • CL, CM, CH — форма облаков нижнего (Low), среднего (Middle) и верхнего (High) ярусов, соответственно.
  • pp — величина барической тенденции за последние 3 часа, выражается в десятых долях гектопаскаля, знак “+” или “-” перед pp означает соответственно повышение или понижение давления за последние 3 часа.
  • a — характеристика барической тенденции за последние 3 часа, обозначается символами, характеризующими ход изменения давления.
  • w — погода между сроками наблюдений.
  • ww — погода в срок наблюдения.

Предлагается к прочтению:

МЕТЕОРОЛОГИЧЕСКИЕ ПРИБОРЫ - приборы и установки для измерения и регистрации физических характеристик земной атмосферы (температуры, давления и влажности воздуха, скорости и направления ветра, облачности, осадков, прозрачности атмосферы), а также температуры воды и почвы, интенсивности солнечной радиации и т. д. С помощью М. п. обнаруживают и оценивают физ. процессы, к-рые не могут быть восприняты непосредственно, а также проводят научные исследования. М. п. применяются в различных областях науки и техники, во многих отраслях народного хозяйства.

В мед.-биол, практике М. п. используются для исследования и оценки климата отдельных районов, а также микроклимата жилых и производственных зданий.

Первый М. п. был создан в Индии более 2 тыс. лет назад для измерения количества выпадающих осадков, однако регулярно М. п. стали применять только в 17 в. после изобретения термометра и барометра. В России систематические климатол. инструментальные наблюдения проводятся с 1724 г.

В зависимости от способа регистрации данных М. п. разделяются на показывающие и самопишущие. С помощью показывающих М. п. получают визуальные данные, к-рые через имеющиеся в этих приборах отсчетные устройства позволяют определять значения измеряемых величин. К показывающим М. п. относятся термометры, барометры, анемометры, гигрометры, психрометры и др. Самопишущие М. п. (термографы, барографы, гигрографы и др.) автоматически записывают показания на движущейся бумажной ленте.

Температура воздуха, воды, почвы измеряется термометрами: жидкостными - ртутными и спиртовыми, биметаллическими, а также электротермометрами, в к-рых первичное восприятие температуры осуществляется посредством датчиков (см.) - термоэлектрических, терморезистивных, транзисторных и других преобразователей (см. Термометрия). Регистрация температуры производится при помощи термографов, а также посредством термоэлектрических преобразователей, соединенных (в т. ч. и дистанционно) с регистрирующими приборами. Влажность воздуха измеряется психрометрами (см.) и гигрометрами (см.) различного типа, а для регистрации изменения влажности во времени используют гигрографы.

Измерение и регистрацию скорости и направления ветра проводят с помощью анемометров, анемографов, анеморумбометров, флюгеров и т. д. (см. Анемометр). Количество выпадающих осадков измеряют осадкомерами и дождемерами (см. Дождемер), а регистрируют плювиографами. Атмосферное давление измеряют ртутными барометрами, анероидами, гипсотермометрами, а регистрируют барографами (см. Барометр). Интенсивность солнечной радиации, излучение земной поверхности и атмосферы измеряют пиргелиометрами, пир-геометрами, актинометрами, альбедо-метрами, а регистрируют пиранографами (см. Актинометрия).

Все большее значение приобретают дистанционные и автоматические М. п.

Библиография: Метеорологические приборы и автоматизация метеорологических измерений, под ред. Л. П. Афиногенова и М. С. Стернзата, Л., 1966; Рейфер А. Б. и др. Справочник по гидрометеорологическим приборам и установкам, Л., 1976.

В. П. Падалкин.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Метеорологические приборы

План

Введение

1. Метеоплощадка

1.1 Метеорологические показатели, измеряющиеся на метеостанциях, и приборы, с помощью которых измеряются данные показатели

1.2 Экологические показатели

1.3 Метеорологическая площадка - требования к размещению. Устройство и оборудование метеоплощадок

1.4 Организация метеорологических наблюдений

2. Метеорологические приборы

2.1 Для измерения давления воздуха используются

2.2 Для измерения температуры воздуха используют

2.3 Для определения влажности используют

2.4 Для определения скорости и направления ветра используют

2.5 Для определения количества осадков используют

Заключение

Литература

Введение

Метеорология - наука об атмосфере, ее составе, строении, свойствах, физических и химических процессах, протекающих в атмосфере. Эти процессы оказывают большое влияние на жизнь человека.

Человеку необходимо иметь представление о погодных условиях, которые были, есть и, что особенно важно, будут сопровождать его существование на Земле. Без знания метеоусловий невозможно правильно вести сельскохозяйственные работы, строить и эксплуатировать промышленные предприятия, обеспечивать нормальное функционирование транспорта, особенно авиационного и водного.

В настоящее время, когда на Земле сложилась неблагоприятная экологическая обстановка, без знания законов метеорологии немыслимо прогнозирование загрязнения природной среды, а неучёт метеоусловий может привести к еще большему ее загрязнению. Современная урбанизация (стремление населения жить в крупных городах) приводит к возникновению новых, в том числе метеорологических, проблем: например, проветриваемость городов и местное повышение температуры воздуха в них. В свою очередь, учет метеоусловий позволяет снизить вредное воздействие загрязненного воздуха (а следовательно, воды и почвы, на которые эти вещества осаждаются из атмосферы) на организм человека.

Задачами метеорологии являются описание состояния атмосферы в данный момент времени, прогноз ее состояния на будущее, разработка экологических рекомендаций и, в конечном счете, обеспечение условий безопасного и комфортного существования человека.

Метеорологические наблюдения - это измерения метеорологических величин, а также регистрация атмосферных явлений. К метеорологическим величинам относятся: температура и влажность воздуха, атмосферное давление, скорость и направление ветра, количество и высота облаков, количество осадков, потоки тепла и др. К ним присоединяются величины, непосредственно не отражающие свойств атмосферы или атмосферных процессов, но тесно связанные с ними. Таковы температура почвы и поверхностного слоя воды, испарение, высота и состояние снежного покрова, продолжительность солнечного сияния и т.п. На некоторых станциях производятся наблюдения над солнечным и земным излучением и над атмосферным электричеством.

К атмосферным явлениям относятся: гроза, метель, пыльная буря, туман, ряд оптических явлений, таких как голубой цвет неба, радуга, венцы и т.д.

Метеорологические наблюдения над состоянием атмосферы вне приземного слоя и до высот около 40 км носят название аэрологических наблюдений. Наблюдения над состоянием высоких слоев атмосферы можно назвать аэрономическими. Они отличаются от аэрологических наблюдений как по методике, так и по наблюдаемым параметрам.

Наиболее полные и точные наблюдения производятся в метеорологических и аэрологических обсерваториях. Число таких обсерваторий, однако, невелико. Кроме того, даже самые точные наблюдения, но производимые в небольшом числе пунктов, не могут дать исчерпывающего представления о состоянии всей атмосферы, поскольку атмосферные процессы протекают в разной географической обстановке по-разному. Поэтому кроме метеорологических обсерваторий наблюдения над основными метеорологическими величинами ведутся еще примерно на 3500 метеорологических и 750 аэрологических станциях, размещенных по всему земному шару. погода метеоплощадка атмосфера

1. Метеоплощадка

Метеорологические наблюдения тогда и только тогда являются сравнимыми, точными, отвечающими задачам метеослужбы, когда при установках приборов выполняются требования, наставления и инструкции, а при производстве наблюдений и обработке материалов работниками метеостанций строго придерживаются указаний перечисленных руководств. погодный метеорологический прибор атмосфера

Метеорологическая станция (метеостанция) - учреждение, в котором круглосуточно проводятся регулярные наблюдения за состоянием атмосферы и атмосферными процессами, в том числе отслеживаются изменения отдельных метеорологических элементов (температуры, давления, влажности воздуха, скорости и направления ветра, облачности и осадков и т.д.). На станции имеются метеорологическая площадка, где расположены основные метеорологические приборы, и закрытое помещение для обработки наблюдений. Метеорологические станции страны, области, района составляют метеорологическую сеть.

Кроме метеостанций, в метеосеть входят метеопосты, на которых проводятся наблюдения только за осадками и снежным покровом.

Каждая метеостанция является научной единицей обширной сети станций. Результаты наблюдений каждой станции, уже использованные в текущей оперативной работе, имеют ценность и как дневник метеорологических процессов, который может подвергнуться дальнейшей научной обработке. Наблюдения на каждой станции должны проводиться со всей тщательностью и точностью. Приборы должны быть отрегулированы, проверены. Метеостанция должна иметь необходимые для работы бланки, книжки, таблицы, инструкции.

1. 1 Метеорологические показатели, измеряющиеся на метеостанциях, и приборы, с помощью которых измеряются данные показ а тели

· Температура воздуха (текущая, минимальная и максимальная), °С, - стандартный, минимальный и максимальный термометры.

· Температура воды (текущая), °С, - стандартный термометр.

· Температура почвы (текущая), °С, - угловой термометр.

· Давление атмосферы, Па, мм рт. ст., - барометр (в том числе барометр-анероид).

· Влажность воздуха: относительная влажность, %, - гигрометр и психрометр; парциальное давление водяного пара, мВ; точка росы, °С.

· Ветер: скорость ветра (мгновенная, средняя и максимальная), м/с, - анемометр; направление ветра - в градусах дуги и румбах - флюгеры.

· Осадки: количество (толщина слоя выпавшей воды на горизонтальную поверхность), мм, - осадкомер Третьякова, плювиограф; вид (твердые, жидкие); интенсивность, мм/мин; продолжительность (начало, конец), ч и мин.

· Снежный покров: плотность, г/см 3 ; запас воды (толщина слоя воды, образующаяся при полном таянии снега), мм, - снегометр; высота, см.

· Облачность: количество - в баллах; высота нижней и верхней границ, м, - индикатор высоты облачности; форма - по Атласу облаков.

· Видимость: прозрачность атмосферы, %; метеорологическая дальность видимости (экспертная оценка), м или км.

· Солнечная радиация: продолжительность солнечного сияния, ч и мин; энергетическая освещенность, Вт/м 2 ; доза облучения, Дж/см 2 .

1.2 Экологические показатели

· Радиоактивность: воздуха - в кюри или в микрорентген в час; воды - в кюри на кубический метр; поверхности почвы - в кюри на квадратный метр; снежного покрова - в рентгенах; осадков - в рентген в секунду - радиометры и дозиметры.

· Загрязнение атмосферы: чаще всего оценивается в миллиграммах на кубический метр воздуха - хроматографы.

1.3 Метеорологическая площадка - требования к размещению. Устройство и оборуд о вание метеоплощадок

Метеорологическая площадка должна находиться на открытой местности на значительном расстоянии от леса и жилой застройки, особенно многоэтажной. Размещение приборов вдали от здания позволяет исключить ошибки измерений, связанные с переизлучением зданий или высоких предметов, правильно измерять скорость и направление ветра и обеспечить нормальный сбор осадков.

Требования к стандартной метеорологической площадке таковы:

· размер - 26x26 метров (площадки, на которых производятся в том числе и актинометрические наблюдения (измерение солнечной радиации), имеют размер 26x36 м)

· ориентация сторон площадки - чётко на север, юг, запад, восток (если площадка прямоугольная, то ориентация длинной стороны - с севера на юг)

· место для площадки должно быть типичным для окружающей местности радиусом 20-30 км

· расстояние до невысоких строений, отдельно стоящих деревьев должно быть не менее 10-кратной их высоты, а расстояние от сплошного леса или городской застройки - не менее 20-кратной

· расстояние до оврагов, обрывов, уреза воды - не менее 100 м

· во избежание нарушения естественного покрова на метеоплощадке разрешается ходить только по дорожкам

· все приборы на метеорологической площадке размещаются по единой схеме, которая предусматривает одинаковую ориентацию к сторонам света, определённую высоту над поверхностью земли и другие параметры

· ограда площадки и всё вспомогательное оборудование (подставки, будки, лестницы, столбы, мачты и т.п.) окрашиваются в белый цвет для предотвращения их чрезмерного нагревания солнечными лучами, что может повлиять на точность измерений

· На метеорологических станциях помимо измерений с помощью приборов (температура воздуха и земли, направление и скорость ветра, атмосферное давление, количество осадков), производятся визуальные наблюдения за облаками, дальностью видимости.

Если травяной покров на площадке летом сильно разрастается, то траву нужно скашивать или подстригать, оставляя не более 30-40 см. Скошенную траву обязательно убирать с площадки тотчас же. Снежный покров на площадке не следует трогать, весной же нужно удалять снег или ускорять его таяние путем разбрасывания или увоза снега с площадки. С крыш будок и из защитной воронки осадкомера снег счищается. Приборы на площадке должны быть так размещены, чтобы они не затеняли друг друга. Термометры должны находиться в 2 м от земли. Дверца будки должна быть обращена на север. Лестница не должна соприкасаться с будкой.

На метеоплощадках основного типа используются следующие приборы:

· термометры для измерения температуры воздуха (в том числе горизонтальные минимальные и горизонтальные максимальные) и почвы (они имеют наклон для удобства считывания показаний);

· барометры различного типа (чаще всего - барометры-анероиды для измерения давления воздуха). Они могут размещаться в помещении, а не на открытой площадке, так как давление воздуха одинаково и в помещении, и снаружи;

· психрометры и гигрометры для определения влажности атмосферы;

· анемометры для определения скорости ветра;

· флюгеры для определения направления ветра (иногда применяют анеморумбографы, совмещающие функции измерения и записи скорости и направления ветра);

· индикаторы высоты облаков (например, ИВО-1М); самопишущие приборы (термограф, гигрограф, плювиограф).

· осадкомеры и снегомеры; на метеостанциях чаще всего применяют осадкомеры Третьякова.

Кроме перечисленных показателей, на метеостанциях регистрируются облачность (степень покрытия неба облаками, тип облаков); наличие и интенсивность различных осадков (росы, инея, гололеда), а также тумана; горизонтальная видимость; продолжительность солнечного сияния; состояние поверхности почвы; высота и плотность снежного покрова. На метеостанции регистрируются также метели, шквалы, смерчи, мгла, бури, грозы, радуги.

1.4 Организация метеорологических наблюдений

Все наблюдения вписываются простым карандашом в установленные книжки или бланки сразу же после отсчета того или иного прибора. Недопустимы записи по памяти. Все исправления вносятся зачеркиванием исправляемых цифр (так, чтобы их все же можно было прочесть) и подписыванием новых сверху; подчистка цифр и текста не допускается. Особенно важна четкая запись, облегчающая как первичную обработку наблюдений на станции, так и использование их Гидрометцентрами.

При пропуске наблюдений соответствующая графа книжки должна оставаться незаполненной. Совершенно недопустимо в таких случаях вписывание каких либо вычисленных результатов с целью "восстановления" наблюдений, так как предположительные данные легко могут оказаться ошибочными и принести больший вред, чем пропуск отсчетов по приборам. О всех случаях перерывов делается пометка на странице наблюдений. Необходимо заметить, что пробелы в наблюдениях обесценивают всю работу станции, а потому непрерывность наблюдений должна явиться основным правилом для каждой метеостанции.

Отсчеты, произведенные неточно в срок, также в значительной степени обесцениваются. В таких случаях в графе, где отмечается срок наблюдений, пишется время отсчета сухого термометра в психрометрической будке.

Время, затрачиваемое на наблюдения, зависит от оборудования станции. Во всяком случае, отсчеты должны производиться достаточно быстро, но, конечно, не в ущерб точности.

За 10-15 мин, а зимой - за полчаса до срока осуществляется предварительный обход всех установок. Необходимо убедиться, исправны ли они, и подготовить некоторые приборы к предстоящим отсчетам, чтобы гарантировать точность наблюдений, убедиться, что психрометр исправен, и батист достаточно напитывается водой, что перья самописцев пишут правильно и чернил достаточно.

Кроме отсчетов по приборам и глазомерного определения видимости и облачности, записываемых в отдельные графы книжки, наблюдатель отмечает в графе "атмосферные явления" начало и конец, вид и интенсивность таких явлений, как осадки, туман, роса, иней, изморозь, гололед и другие. Для этого необходимо внимательно и непрерывно наблюдать за погодой и в промежутках между срочными наблюдениями.

Метеонаблюдения должны быть длительными и непрерывными и проводиться строго. В соответствии с международными стандартами. Измерения метеопараметров для сравнимости во всем мире проводятся одновременно (т. е. синхронно): в 00, 03, 06,09, 12, 15, 18 и 21 ч по Гринвичскому времени (времени нулевого, Гринвичского, меридиана). Это так называемые синоптические сроки. Результаты измерений немедленно передаются в службу погоды по компьютерной связи, телефону, телеграфу или радио. Там составляются синоптические карты и разрабатываются метеопрогнозы.

Некоторые метеорологические измерения проводятся в собственные сроки: количество осадков измеряется четыре раза в сутки, высота снежного покрова - один раз в сутки, плотность снега - один раз в пять-десять дней.

Станции, несущие службу погоды, после обработки наблюдений шифруют метеоданные для посылки синоптических телеграмм в Гидрометцентр. Цель шифровки - значительно сократить объем телеграммы при максимально количестве посылаемых сведений. Очевидно, что для этой цели наиболее пригодна цифровая зашифровка. В 1929 г. Международная метеорологическая конференция выработала метеокод, с помощью которого можно было описать состояние атмосферы со всеми подробностями. Этот код применялся в течение почти 20 лет, подвергаясь лишь небольшим изменениям. С 1 января 1950 года введен в действие новый международный код, значительно отличающийся от старого.

2 . Метеорологические приборы

Набор измерительных средств, использующихся для наблюдения за состоянием атмосферы и для ее исследования, необычайно широк: от простейших термометров и до зондирующих лазерных установок и специальных метеорологических спутников. Метеорологическими приборами обычно называют такие приборы, которые используются для проведения измерений на метеорологических станциях. Эти приборы сравнительно просты, они удовлетворяют требованию однотипности, позволяющему сравнивать наблюдения разных станций.

Метеорологические приборы устанавливаются на площадке станции под открытым небом. Только приборы для измерения давления (барометры) устанавливаются в помещении станции, поскольку разница между давлением воздуха под открытым небом и внутри помещения практически отсутствует.

Приборы для измерения температуры и влажности воздуха должны быть защищены от действия солнечной радиации, осадков и порывов ветра. Поэтому их помещают в будках особой конструкции, так называемых метеорологических будках. На станциях устанавливаются самопишущие приборы, дающие непрерывную регистрацию важнейших метеорологических величин (температуры и влажности воздуха, атмосферного давления и ветра). Самопишущие приборы нередко сконструированы так, что их датчики находятся на площадке или крыше здания на открытом воздухе, а регистрирующие части, связанные, с датчиками электрической передачей, внутри здания.

Теперь рассмотрим приборы, предназначенные для измерения отдельных метеорологических элементов.

2.1 Для измерения давления воздуха и с пользуются

Барометр (рис. 1) - (от греч. baros - тяжесть, вес и metreo - измеряю), прибор для измерения атмосферного давления.

Рисунок 1 - Типы ртутных барометров

Барометр (рис. 1) - (от греч. baros - тяжесть, вес и metreo - измеряю), прибор для измерения атмосферного давления. Наиболее распространены: жидкостные барометры, основанные на уравновешивании атмосферного давления весом столба жидкости; деформационные барометры, принцип действия которых основан на упругих деформациях мембранной коробки; гипсотермометры, основанные на использовании зависимости точки кипения некоторых жидкостей, например воды, от внешнего давления.

Наиболее точными стандартными приборами являются ртутные барометры: ртуть благодаря большой плотности позволяет получить в барометры сравнительно небольшой столб жидкости, удобный для измерения. Ртутные барометры представляют собой два сообщающихся сосуда, наполненных ртутью; одним из них служит запаянная сверху стеклянная трубка длиной около 90 см, не содержащая воздуха. За меру атмосферного давления принимается давление столба ртути, выраженное в мм рт. ст. или в мб.

Для определения атмосферного давления в показания ртутного барометра вводят поправки: 1) инструментальную, исключающую погрешности изготовления; 2) поправку для приведения показания барометра к 0°С, т.к. показания барометра зависят от температуры (с изменением температуры меняется плотность ртути и линейные размеры деталей барометра); 3) поправку для приведения показаний барометра к нормальному ускорению свободного падения (gn = 9,80665 м/сек 2), она обусловлена тем, что показания ртутных барометров зависят от географической широты и высоты над уровнем моря места наблюдений.

В зависимости от формы сообщающихся сосудов ртутные барометры подразделяют на 3 основных типа: чашечные, сифонные и сифонно-чашечные. Практически применяют чашечные и сифонно-чашечные барометры. На метеорологических станциях пользуются станционным чашечным барометром. Он состоит из барометрической стеклянной трубки, опущенной свободным концом в чашу С. Вся барометрическая трубка заключена в латунную оправу, в верхней части которой сделана вертикальная прорезь; на краю прорези нанесена шкала для отсчёта положения мениска ртутного столба. Для точной наводки на вершину мениска и отсчёта десятых долей применяется особый визир n, снабженный нониусом и перемещаемый винтом b. Отсчёт высоты ртутного столба производят по положению ртути в стеклянной трубке, а изменение положения уровня ртути в чашке учитывается применением компенсированной шкалы так, что отсчёт по шкале получается непосредственно в миллибарах. При каждом барометре имеется небольшой ртутный термометр T для введения температурной поправки. Чашечные барометры выпускаются с пределами измерения 810--1070 мб и 680--1070 мб; точность отсчёта 0,1 мб.

В качестве контрольного применяется сифонно-чашечный барометр. Он состоит из двух трубок, опущенных в барометрическую чашу. Одна из трубок закрыта, а другая сообщается с атмосферой. При измерении давления винтом поднимают дно чашки, подводя мениск в открытом колене к нулю шкалы, а затем отсчитывают положение мениска в закрытом колене. Давление определяют по разности уровней ртути в обоих коленах. Предел измерения этого барометра 880--1090 мб, точность отсчёта 0,05 мб.

Все ртутные барометры - абсолютные приборы, т.к. по их показаниям непосредственно измеряют атмосферное давление.

Анероид (рис. 2) - (от греч. а - отрицательная частица, nerys - вода, т. е. действующий без помощи жидкости), барометр-анероид, прибор для измерения атмосферного давления. Приёмной частью анероида служит круглая металлическая коробка А с гофрированными основаниями, внутри которой создано сильное разрежение

Рисунок 2 - Анероид

При повышении атмосферного давления коробка сжимается и тянет прикрепленную к ней пружину; при понижении давления пружина разгибается и верхнее основание коробки поднимается. Перемещение конца пружины передаётся стрелке В, перемещающейся по шкале С. (В последних конструкциях вместо пружины применяют более упругие коробки.) К шкале анероида прикреплен дугообразный термометр, который служит для внесения поправки в показания анероида на температуру. Для получения истинного значения давления, показания анероида нуждаются в поправках, которые определяются сравнением с ртутным барометром. Поправок к анероиду три: на шкалу - зависит от того, что анероид неодинаково реагирует на изменение давления в различных участках шкалы; на температуру - обусловлена зависимостью упругих свойств анероидной коробки и пружины от температуры; добавочная, обусловленная изменением упругих свойств коробки и пружины со временем. Погрешность измерений анероида составляет 1-2 мб. Вследствие своей портативности анероиды широко применяются в экспедициях, а также как высотомеры. В последнем случае шкалу анероида градуируют в метрах.

2.2 Для измерения температуры воздуха используют

Термометры метеорологические - группа термометров жидкостных специальной конструкции, предназначенных для метеорологических измерений главным образом на метеорологических станциях. Различные термометры в зависимости от назначения отличаются размерами, устройством, пределами измерений и ценой деления шкалы.

Для определения температуры и влажности воздуха пользуются ртутными психрометрическими термометрами в стационарном и аспирационном психрометре. Цена их деления 0,2°С; нижний предел измерения -35°С, верхний 40°С (или соответственно -25°С и 50°С). При температурах ниже -35°С (вблизи точки замерзания ртути) показания ртутного термометра становятся ненадёжными; поэтому для измерения более низких температур пользуются низкоградусным спиртовым термометром, устройство которого аналогично психрометрическому, цена деления его шкалы 0,5°С, а пределы измерений варьируют: нижний -75, -65, -60°С, а верхний 20, 25°С.

Рисунок 3 - Термометр

Для измерения максимальной температуры за некоторый промежуток времени применяется ртутный максимальный термометр (рис. 3). Цена деления его шкалы 0,5°С; пределы измерения от -35 до 50°С (или от -20 до 70°С), рабочее положение почти горизонтальное (резервуар слегка опущен). Показания максимальных значений температуры сохраняются благодаря наличию в резервуаре 1 штифта 2 и вакуума в капилляре 3 над ртутью. При повышении температуры избыток ртути из резервуара вытесняется в капилляр через узкое кольцеобразное отверстие между штифтом и стенками капилляра и остается там и при понижении температуры (так как в капилляре вакуум). Таким образом, положение конца столбика ртути относительно шкалы соответствует значению максимальной температуры. Приведение показаний термометра в соответствие с температурой в данный момент производят его встряхиванием. Для измерения минимальной температуры за некоторый промежуток времени используются спиртовые минимальные термометры. Цена деления шкалы 0,5°С; нижний предел измерений варьирует от -75 до -41°С, верхний от 21 до 41°С. Рабочее положение термометра - горизонтальное. Сохранение минимальных значений обеспечивается находящимся в капилляре 1 внутри спирта штифтом - указателем 2. Утолщения штифта меньше внутреннего диаметра капилляра; поэтому при повышении температуры спирт, поступающий из резервуара в капилляр, обтекает штифт, не смещая его. При понижении температуры штифт после соприкосновения с мениском столбика спирта перемещается вместе с ним к резервуару (так как силы поверхностного натяжения плёнки спирта больше сил трения) и остаётся в ближайшем к резервуару положении. Положение конца штифта, ближайшего к мениску спирта, указывает минимальную температуру, а мениск - температуру в настоящий момент. До установки в рабочее положение минимальный термометр приподнимают резервуаром кверху и держат, пока штифт не опустится до мениска спирта. Для определения температуры поверхности почвы пользуются ртутным термометром. Деления его шкалы 0,5°С; пределы измерения варьируются: нижний от -35 до -10°С, верхний от 60 до 85°С. Измерения температуры почвы на глубинах 5, 10, 15 и 20 см производят ртутным коленчатым термометром (Савинова). Цена деления его шкалы 0,5°С; пределы измерения от -10 до 50°С. Вблизи резервуара термометр изогнут под углом 135°, а капилляр от резервуара до начала шкалы теплоизолирован, что уменьшает влияние на показания Т. слоя почвы, лежащего над его резервуаром. Измерения температуры почвы на глубинах до нескольких м осуществляются ртутными почвенно-глубинными термометрами, помещенными в специальных установках. Цена деления его шкалы 0,2 °С; пределы измерения варьируют: нижний -20, -10°С, а верхний 30, 40°С. Менее распространены ртутно-талиевые психрометрические термометры с пределами от -50 до 35°С и некоторые др.

Кроме термометра метеорологического, в метеорологии применяются термометры сопротивления, термоэлектрические, транзисторные, биметаллические, радиационные и др. Термометры сопротивления широко используются в дистанционных и автоматических метеорологических станциях (металлические резисторы - медные или платиновые) и в радиозондах (полупроводниковые резисторы); термоэлектрические применяются для измерения градиентов температуры; транзисторные термометры (термотранзисторы) - в агрометеорологии, для измерения температуры пахотного слоя почвы; биметаллические термометры (термопреобразователи) применяются в термографах для регистрации температуры, радиационные термометры - в наземных, самолётных и спутниковых установках для измерения температуры различных участков поверхности Земли и облачных образований.

2.3 Для о пределения влажности используют

Рисунок 4 - Психрометр

Психрометр (рис. 4) - (от греч. psychros - холодный и... метр), прибор для измерения влажности воздуха и его температуры. Состоит из двух термометров - сухого и смоченного. Сухой термометр показывает температуру воздуха, а смоченный, теплоприёмник которого обвязан влажным батистом, - его собственную температуру, зависящую от интенсивности испарения, происходящего с поверхности его резервуара. Вследствие расхода теплоты на испарение показания смоченного термометра тем ниже, чем суше воздух, влажность которого измеряется.

По показаниям сухого и смоченного термометров с помощью психрометрической таблицы, номограмм или счётных линеек, рассчитанных по психрометрической формуле, определяется упругость водяного пара или относительная влажность. При отрицательных температурах ниже - 5°С, когда содержание в воздухе водяных паров очень мало, психрометр даёт ненадёжные результаты, поэтому в этом случае пользуются волосным гигрометром.

Рисунок 5 - Типы гигрометров

Существует несколько типов психрометров: станционные, аспирационные и дистанционные. В станционных психрометрах термометры укрепляются на специальном штативе в метеорологической будке. Основной недостаток станционных психрометров - зависимость показаний смоченного термометра от скорости воздушного потока в будке. В аспирационном психрометре термометры укреплены в специальной оправе, защищающей их от повреждений и теплового воздействия прямых солнечных лучей, и обдуваются с помощью аспиратора (вентилятора) потоком исследуемого воздуха с постоянной скоростью около 2 м/сек. При положительной температуре воздуха аспирационный психрометр - наиболее надёжный прибор для измерения влажности и температуры воздуха. В дистанционных психрометрах используются термометры сопротивления, термисторы, термопары.

Гигрометр (рис. 5) - (от гигро и метр), прибор для измерения влажности воздуха. Существует несколько типов гигрометров, действие которых основано на различных принципах: весовой, волосной, плёночный и др. Весовой (абсолютный) гигрометр состоит из системы U-образных трубок, наполненных гигроскопическим веществом, способным поглощать влагу из воздуха. Через эту систему насосом протягивают некоторое количество воздуха, влажность которого определяют. Зная массу системы до и после измерения, а также объём пропущенного воздуха, находят абсолютную влажность.

Действие волосного гигрометра основано на свойстве обезжиренного человеческого волоса изменять свою длину при изменении влажности воздуха, что позволяет измерять относительную влажность от 30 до 100%. Волос 1 натянут на металлическую рамку 2. Изменение длины волоса передаётся стрелке 3, перемещающейся вдоль шкалы. Плёночный гигрометр имеет чувствительный элемент из органической плёнки, которая растягивается при повышении влажности и сжимается при понижении. Изменение положения центра плёночной мембраны 1 передаётся стрелке 2. Волосной и плёночный гигрометры в зимнее время являются основными приборами для измерения влажности воздуха. Показания волосного и плёночного гигрометра периодически сравниваются с показаниями более точного прибора - психрометра, который также применяется для измерения влажности воздуха.

В электролитическом гигрометре пластинку из электроизоляционного материала (стекло, полистирол) покрывают гигроскопическим слоем электролита - хлористого лития - со связующим материалом. При изменении влажности воздуха меняется концентрация электролита, а следовательно, и его сопротивление; недостаток этого гигрометра - зависимость показаний от температуры.

Действие керамического гигрометра основано на зависимости электрического сопротивления твёрдой и пористой керамической массы (смесь глины, кремния, каолина и некоторых окислов металла) от влажности воздуха. Конденсационный гигрометр определяет точку росы по температуре охлаждаемого металлического зеркальца в момент появления на нём следов воды (или льда), конденсирующейся из окружающего воздуха. Конденсационный гигрометр состоит из устройства для охлаждения зеркальца, оптического или электрического устройства, фиксирующего момент конденсации, и термометра, измеряющего температуру зеркальца. В современных конденсационных гигрометрах для охлаждения зеркальца пользуются полупроводниковым элементом, принцип действия которого основан на Плетье эффекте, а температура зеркальца измеряется вмонтированным в него проволочным сопротивлением или полупроводниковым микротермометром. Всё большее распространение находят электролитические гигрометры с подогревом, действие которых основано на принципе измерения точки росы над насыщенным соляным раствором (обычно хлористым литием), которая для данной соли находится в известной зависимости от влажности. Чувствительный элемент состоит из термометра сопротивления, на корпус которого надет чулок из стекловолокна, пропитанный раствором хлористого лития, и двух электродов из платиновой проволоки, намотанных поверх чулка, на которые подаётся переменное напряжение.

2.4 Для определения скорости и направления ветра используют

Рисунок 6 - Анемометр

Анемометр (рис. 6) - (от анемо... и...метр), прибор для измерений скорости ветра и газовых потоков. Наиболее распространён ручной чашечный анемометр, измеряющий среднюю скорость ветра. Горизонтальная крестовина с 4 полыми полушариями (чашками), обращенными выпуклостью в одну сторону, вращается под действием ветра, т. к. давление на вогнутое полушарие больше, чем на выпуклое. Это вращение передаётся стрелкам счётчика оборотов. Число оборотов за данный отрезок времени соответствует определенной средней скорости ветра за это время. При небольшой завихренности потока средняя скорость ветра за 100 сек определяется с погрешностью до 0,1 м/сек. Для определения средней скорости потока воздуха в трубах и каналах вентиляционных систем применяют крыльчатые анемометры, приёмной частью которых служит многолопастная мельничная вертушка. Погрешность этих анемометров - до 0,05 м/сек. Мгновенные значения скорости ветра определяются другими типами анемометров, в частности анемометрами, основанными на манометрическом способе измерений, а также термоанемометрами.

Рисунок 7 - Флюгер

Флюгер (рис. 7) - (от нем. Flugel или голл. vieugel - крыло), прибор для определения направления и измерения скорости ветра. Направление ветра (см. рис.) определяется по положению двухлопастной флюгарки, состоящей из 2 пластин 1, расположенных углом, и противовеса 2. Флюгарка, будучи укреплена на металлической трубке 3, свободно вращается на стальном стержне. Под действием ветра она устанавливается по направлению ветра так, что противовес направлен навстречу ему. На стержень надета муфта 4 со штифтами, ориентированными соответственно основным румбам. По положению противовеса относительно этих штифтов и определяют направление ветра.

Скорость ветра измеряется при помощи отвесно подвешенной на горизонтальной оси 5 металлической пластины (доски) 6. Доска вращается вокруг вертикальной оси вместе с флюгаркой и под действием ветра всегда устанавливается перпендикулярно потоку воздуха. В зависимости от скорости ветра доска флюгера отклоняется от отвесного положения на тот или иной угол, отсчитываемый по дуге 7. Флюгер ставят на мачте на высоте 10-12 м от поверхности земли.

2.5 Для определени я количества осадков используют

Осадкомер - прибор для измерения атмосферных жидких и твёрдых осадков. Осадкомер конструкции В.Д. Третьякова состоит из сосуда (ведра) с приёмной площадью 200 см 2 и высотой 40 см, куда собираются осадки, и специальные защиты, предотвращающей выдувание из него осадков. Устанавливается О. так, чтобы приёмная поверхность ведра находилась на высоте 2 м над почвой. Измерение количества осадков в мм слоя воды производится измерительным стаканом с нанесёнными на нём делениями; количество твёрдых осадков измеряют после того как они растают.

Рисунок 8 - Плювиограф

Плювиограф - прибор для непрерывной регистрации количества, продолжительности и интенсивности выпадающих жидких осадков. Он состоит из приемника и регистрирующей части, заключенной в металлический шкаф высотой 1,3 м.

Приемный сосуд сечением 500 кв. см, находящийся в верхней части шкафа, имеет конусообразное дно с несколькими отверстиями для стока воды. Осадки через воронку 1 и сливную трубку 2 попадают в цилиндрическую камеру 3, в которой помещен полый металлический поплавок 4. На верхней части вертикального стержня 5, соединенного с поплавком, укреплена стрелка 6 с насаженным на ее конце пером. Для регистрации осадков рядом с поплавковой камерой на стержне устанавливается барабан 7 с суточным оборотом. На барабан надевается лента, разграфленная таким образом, что промежутки между вертикальными линиями соответствуют 10 мин времени, а между горизонтальными - 0,1 мм осадков. Сбоку поплавковой камеры имеется отверстие с трубкой 8, в которую вставляется стеклянный сифон 9 с металлическим наконечником, плотно соединенным с трубкой специальной муфтой 10. При выпадении осадков вода через сливные отверстия, воронку и сливную трубку попадает в поплавковую камеру и поднимает поплавок. Вместе с поплавком поднимается и стержень со стрелкой. При этом перо чертит на ленте кривую (так как одновременно происходит вращение барабана), крутизна которой тем больше, чем больше интенсивность осадков. Когда сумма осадков достигнет 10 мм, уровень воды в сифонной трубке и поплавковой камере становится одинаковым, и происходит самопроизвольный слив воды из камеры через сифон в ведро, стоящее на дне шкафа. При этом перо должно прочертить на ленте вертикальную прямую линию сверху вниз до нулевой отметки ленты. При отсутствии осадков перо чертит горизонтальную линию.

Снегомер - плотномер, прибор для измерения плотности снежного покрова. Основная часть снегомера - полый цилиндр определённого сечения с пилообразным краем, который при измерении погружают отвесно в снег до соприкосновения с подстилающей поверхностью, а затем вырезанный столбик снега вынимают вместе с цилиндром. Если взятую пробу снега взвешивают, то снегомер называют весовым, если растапливают и определяют объём образовавшейся воды, то - объёмным. Плотность снежного покрова находят, вычисляя отношение массы взятой пробы к её объёму. Начинают применять гамма-снегомеры, основанные на измерении ослабления снегом гамма-излучения от источника, помещенного на некоторой глубине в снежный покров.

Заключение

Принципы работы ряда метеорологических приборов были предложены еще в XVII--XIX вв. Конец XIX и начало XX в. характеризуются унификацией основных метеорологических приборов и созданием национальных и международной метеорологических сетей станций. С середины 40-х гг. XX в. в метеорологическом приборостроении наблюдается быстрый прогресс. Конструируются новые приборы с использованием достижений современной физики и техники: термо- и фотоэлементов, полупроводников, радиосвязи и радиолокации, лазеров, различных химических реакций, звуковой локации. Особенно нужно отметить применение в метеорологических целях радиолокации, радиометрической и спектрометрической аппаратуры, установленной на метеорологических искусственных спутниках Земли (МИСЗ), а также развитие лазерных методов зондирования атмосферы. На экране радиолокатора (радара) можно обнаружить скопления облаков, области осадков, грозы, атмосферные вихри в тропиках (ураганы и тайфуны) в значительном отдалении от наблюдателя и прослеживать их перемещение и эволюцию. Аппаратура, устанавливаемая на МИСЗ, позволяет видеть облака и облачные системы сверху днем и ночью, прослеживать изменение температуры с высотой, измерять ветер над океанами и т.п. Применение лазеров позволяет с большой точностью определять малые примеси естественного и антропогенного происхождения, оптические свойства безоблачной атмосферы и облаков, скорость их движения и др. Широкое использование электроники (и, в частности, персональных компьютеров) существенным образом автоматизирует обработку измерений, упрощает и ускоряет получение конечных результатов. Успешно осуществляется создание полуавтоматических и полностью автоматических метеорологических станций, передающих свои наблюдения в течение более или менее длительного времени без вмешательства человека.

Литература

1. Моргунов В.К. Основы метеорологии, климатологии. Метеорологические приборы и методы наблюдений. Новосибирск, 2005.

2. Стернзат М.С. Метеорологические приборы и наблюдения. Санкт-Петербург, 1968.

3. Хромов С.П. Метеорология и климатология. Москва, 2004.

4. www.pogoda.ru.net

5. www.ecoera.ucoz.ru

6. www.meteoclubsgu.ucoz.ru

7. www.propogodu.ru

Размещено на Allbest.ru

...

Подобные документы

    Метеорологические и гидрологические условия, система течений моря Лаптевых, данные об особенностях плавания в районе запланированных работ. Состав работ и применяемое оборудование для данных навигационно-геодезического обеспечения района исследования.

    дипломная работа , добавлен 11.09.2011

    Приборы для измерение расхода открытых потоков. Интеграционные измерения с движущегося судна. Измерение расходов воды с использованием физических эффектов. Градуирование вертушек в полевых условиях. Измерение расхода воды гидрометрической вертушкой.

    курсовая работа , добавлен 16.09.2015

    Топографическая съёмка в условиях городской застройки участка в Санкт-Петербурге. Инженерные изыскания для проектирования методом крупномасштабной съёмки с использованием геодезических приборов и программных продуктов; требования нормативных документов.

    дипломная работа , добавлен 17.12.2011

    Комплексы оборудования для проведения восстающих. Функциональные особенности комплекса оборудования для проходки стволов буровзрывным и комбайновым способом. Оборудование для проведения стволов бурением, его устройство и предъявляемые требования.

    реферат , добавлен 25.08.2013

    Обоснование требований к аэрофотосъемке. Выбор метода фототопографической съемки. Технические характеристики фотограмметрических приборов, используемых при выполнении фототопографических камеральных работ. Основные требования к выполнению полевых работ.

    курсовая работа , добавлен 19.08.2014

    Создание новых методов и средств контроля метрологических характеристик оптико-электронных приборов. Основные требования к техническим и метрологическим характеристикам стендов для поверки и калибровки геодезических приборов. Погрешности измерения.

    Назначение, схемы и устройство. Эксплуатация талевых систем. Буровые лебедки. Назначение, устройство и конструктивные схемы. Конструкции роторов и их элементов. Буровые насосы и оборудование циркуляционной системы. Вертлюги и буровые рукава. Трансмиссии.

    курсовая работа , добавлен 11.10.2005

    Причины создания части геодезических приборов – компенсаторов, их современное применение в приборах, устройство и принцип работы. Необходимость применения компенсаторов угла наклона и основные элементы жидкостного уровня. Поверки и исследования нивелиров.

    курсовая работа , добавлен 26.03.2011

    Операции в скважинах. Методы электрического и радиоактивного каротажа. Измерение тепловых свойств стенок скважины. Измерительная аппаратура и спуско-подъемное оборудование. Устройства для регулировки, контроля и стабилизации питания скважинных приборов.

    презентация , добавлен 10.02.2013

    Состав комплекта аэрофотосъемочного оборудования. Устройство фоторегистратора АРФА-7. Работа с гиростабилизирующей установкой. Техническая характеристика АФА-ТЭ, интерференционный метод получения изображения. Оптическая система аэрофотоаппарата.

Метеорологические приборы - приборы и установки для измерения и регистрации значений метеорологических элементов. Для сравнения результатов измерений, производимых на различных метеостанциях, метеорологические приборы делают однотипными и устанавливают так, чтобы их показания не зависели от случайных местных условий.метеорологических элементов


Метеорологические приборы предназначены для работы в естественных условиях в любых климатических зонах. Поэтому они должны безотказно работать, сохраняя стабильность показаний в большом диапазоне температур, при большой влажности, выпадении осадков, и не должны бояться больших ветровых нагрузок, пыли.


Метеорологические элементы, характеристики состояния атмосферы: температура, давление и влажность воздуха, скорость и направление ветра, облачность, осадки, видимость (прозрачность атмосферы), а также температура почвы и поверхности воды, солнечная радиация, длинноволновое излучение Земли и атмосферы. К Метеорологическим элементам относят также различные явления погоды: грозы, метели и т. п. Изменения Метеорологических элементов являются результатом атмосферных процессов и определяют погоду и климат.


Термометр От греч.Therme - тепло + Metreo - измеряю Термометр - прибор для измерения температуры воздуха, почвы, воды и т.д. при тепловом контакте между объектом измерений и чувствительным элементом термометра. Термометры применяются в метеорологии, гидрологии и других науках и отраслях хозяйства. На метеостанциях, где измерения температур проводятся в определенные сроки, для фиксации максимальных температур между сроками наблюдения служит максимальный термометр (ртутный); наименьшую температуру между сроками фиксирует минимальный термометр (спиртовой).






Осадкомер Дождемер; Плювиометр Осадкомер - прибор для сбора и измерения количества выпавших атмосферных осадков. Осадкомер представляет собой цилиндрическое ведро строго определенного сечения, устанавливаемое на метеоплощадке. Количество осадков определяется путем сливания попавших в ведро осадков в специальный дождемерный стакан, площадь сечения которого также известна. Твердые осадки (снег, крупа, град) предварительно растапливаются. Конструкция осадкомера предусматривает защиту от быстрого испарения осадков и от выдувания попавшего в ведро осадкомера снега.






Гелиограф От греч. Helios - Солнце + Grapho - пишу Гелиограф - прибор-самописец, регистрирующий продолжительность солнечного сияния. Основная часть прибора - хрустальный шар диаметром около 90 мм, работающий как собирающая линза при освещении с любой стороны, причем фокусное расстояние во всех направлениях одинаково. На фокусном расстоянии параллельно поверхности шара располагается картонная лента с делениями. Солнце, передвигаясь в течение дня по небу, прожигает в этой ленте полоску. В те часы, когда Солнце закрыто облаками, прожог отсутствует. Время, когда Солнце светило и когда оно было скрыто, читается по делениям на ленте.




Облакомер Облакомер - прибор для определения высоты нижней и верхней границы облаков, поднимаемый на шаре-зонде. Действие облакомера основано: - либо на изменении сопротивления фотоэлемента, реагирующего на изменении освещенности при входе в облака и выходе из них; - либо на изменении сопротивления проводника с гигроскопичным покрытием при попадании на его поверхность облачных капель.


Анемометр От греч.Anemos - ветер + Metreo - измеряю Анемометр - прибор для измерения скорости ветра и газовых потоков по числу оборотов вращающейся под действием ветра вертушки. Существуют анемометры разных типов: ручные и постоянно закрепленные на мачтах и др. Отличают регистрирующие анемометры (анемографы).






Радиозонд Радиозонд - прибор для метеорологических исследований в атмосфере до высоты км. Радиозонд поднимается на выпущенном в свободный полет воздушном шаре и автоматически передает на землю радиосигналы, соответствующие значениям давления, температуры, влажности воздуха. На большой высоте шар лопается, а приборы спускаются на парашюте и могут быть использованы вновь.






Метеорологическая ракета Метеорологическая ракета - ракетный аппарат, запускаемый в атмосферу для исследования ее верхних слоев, главным образом мезосферы и ионосферы. Приборы исследуют атмосферное давление, магнитное поле Земли, космическое излучение, спектры солнечного и земного излучений, состав воздуха и т.д. Показания приборов передаются в виде радиосигналов.


Метеорологический спутник Метеорологический спутник - искусственный спутник Земли, регистрирующий и передающий на Землю различные метеорологические данные. Метеорологический спутник предназначен для наблюдения за распределением облачного, снегового и ледового покровов, измерения теплового излучения земной поверхности и атмосферы и отраженной солнечной радиации с целью получения метеорологических данных для прогноза погоды.