Преобразование выражений. Подробная теория (2019)

Начальный уровень

Преобразование выражений. Подробная теория (2019)

Преобразование выражений

Часто мы слышим эту неприятную фразу: «упростите выражение». Обычно при этом перед нами какое-то страшилище типа этого:

«Да куда уж проще» - говорим мы, но такой ответ обычно не прокатывает.

Сейчас я научу тебя не бояться никаких подобных задач. Более того, в конце занятия ты сам упростишь этот пример до (всего лишь!) обычного числа (да-да, к черту эти буквы).

Но прежде чем приступить к этому занятию, тебе необходимо уметь обращаться с дробями и раскладывать многочлены на множители. Поэтому сперва, если ты этого не сделал раньше, обязательно освой темы « » и « ».

Прочитал? Если да, то теперь ты готов.

Базовые операции упрощения

Сейчас разберем основные приемы, которые используются при упрощении выражений.

Самый простой из них - это

1. Приведение подобных

Что такое подобные? Ты проходил это в 7 классе, как только впервые в математике появились буквы вместо чисел. Подобные - это слагаемые (одночлены) с одинаковой буквенной частью. Например, в сумме подобные слагаемые - это и.

Вспомнил?

Привести подобные - значит сложить несколько подобных слагаемых друг с другом и получить одно слагаемое.

А как же нам сложить друг с другом буквы? - спросишь ты.

Это очень легко понять, если представить, что буквы - это какие-то предметы. Например, буква - это стул. Тогда чему равно выражение? Два стула плюс три стула, сколько будет? Правильно, стульев: .

А теперь попробуй такое выражение: .

Чтобы не запутаться, пусть разные буквы обозначают разны предметы. Например, - это (как обычно) стул, а - это стол. Тогда:

стула стола стул столов стульев стульев столов

Числа, на которые умножаются буквы в таких слагаемых называются коэффициентами . Например, в одночлене коэффициент равен. А в он равен.

Итак, правило приведения подобных:

Примеры:

Приведите подобные:

Ответы:

2. (и подобны, так как, следовательно у этих слагаемых одинаковая буквенная часть).

2. Разложение на множители

Это обычно самая важная часть в упрощении выражений. После того как ты привел подобные, чаще всего полученное выражение нужно разложить на множители, то есть представить в виде произведения. Особенно это важно в дробях: ведь чтобы можно было сократить дробь, числитель и знаменатель должны быть представлены в виде произведения.

Подробно способы разложения выражений на множители ты проходил в теме « », поэтому здесь тебе остается только вспомнить выученное. Для этого реши несколько примеров (нужно разложить на множители):

Решения:

3. Сокращение дроби.

Ну что может быть приятнее, чем зачеркнуть часть числителя и знаменателя, и выбросить их из своей жизни?

В этом вся прелесть сокращения.

Все просто:

Если числитель и знаменатель содержат одинаковые множители, их можно сократить, то есть убрать из дроби.

Это правило вытекает из основного свойства дроби:

То есть суть операции сокращения в том, что числитель и знаменатель дроби делим на одно и то же число (или на одно и то же выражение).

Чтобы сократить дробь, нужно:

1) числитель и знаменатель разложить на множители

2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

Принцип, я думаю, понятен?

Хочу обратить внимание на одну типичную ошибку при сокращении. Хоть эта тема и простая, но очень многие делают все неправильно, не понимая, что сократить - это значит поделить числитель и знаменатель на одно и то же число.

Никаких сокращений, если в числителе или знаменателе сумма.

Например: надо упростить.

Некоторые делают так: , что абсолютно неверно.

Еще пример: сократить.

«Самые умные» сделают так: .

Скажи мне, что здесь неверно? Казалось бы: - это множитель, значит можно сокращать.

Но нет: - это множитель только одного слагаемого в числителе, но сам числитель в целом на множители не разложен.

Вот другой пример: .

Это выражение разложено на множители, значит, можно сократить, то есть поделить числитель и знаменатель на, а потом и на:

Можно и сразу поделить на:

Чтобы не допускать подобных ошибок, запомни легкий способ, как определить, разложено ли выражение на множители:

Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным». То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители). Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

Для закрепления реши самостоятельно несколько примеров :

Ответы:

1. Надеюсь, ты не бросился сразу же сокращать и? Еще не хватало «сократить» единицы типа такого:

Первым действием должно быть разложение на множители:

4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители. Давай вспомним:

Ответы:

1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

2. Здесь общий знаменатель равен:

3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

Совсем другое дело, если дроби содержат буквы, например:

Начнем с простого:

a) Знаменатели не содержат букв

Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

Попробуй сам:

b) Знаменатели содержат буквы

Давай вспомним принцип нахождения общего знаменателя без букв:

· в первую очередь мы определяем общие множители;

· затем выписываем все общие множители по одному разу;

· и домножаем их на все остальные множители, не общие.

Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

Подчеркнем общие множители:

Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

Это и есть общий знаменатель.

Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

· раскладываем знаменатели на множители;

· определяем общие (одинаковые) множители;

· выписываем все общие множители по одному разу;

· домножаем их на все остальные множители, не общие.

Итак, по порядку:

1) раскладываем знаменатели на множители:

2) определяем общие (одинаковые) множители:

3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

Кстати, есть одна хитрость:

Например: .

Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

в степени

в степени

в степени

в степени.

Усложним задание:

Как сделать у дробей одинаковый знаменатель?

Давай вспомним основное свойство дроби:

Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

Итак, очередное незыблемое правило:

Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

Но на что же надо домножить, чтобы получить?

Вот на и домножай. А домножай на:

Выражения, которые невозможно разложить на множители будем называть «элементарными множителями». Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

Что скажешь насчет выражения? Оно элементарное?

Нет, поскольку его можно разложить на множители:

(о разложении на множители ты уже читал в теме « »).

Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

Еще пример:

Решение:

Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

Отлично! Тогда:

Еще пример:

Решение:

Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

Так и напишем:

То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

Теперь приводим к общему знаменателю:

Усвоил? Сейчас проверим.

Задачи для самостоятельного решения:

Ответы:

Тут надо вспомнить еще одну - разность кубов:

Обрати внимание, что в знаменателе второй дроби не формула «квадрат суммы»! Квадрат суммы выглядел бы так: .

А - это так называемый неполный квадрат суммы: второе слагаемое в нем - это произведение первого и последнего, а не удвоенное их произведение. Неполный квадрат суммы - это один из множителей в разложени разности кубов:

Что делать, если дробей аж три штуки?

Да то же самое! В первую очередь сделаем так, чтобы максимальное количество множителей в знаменателях было одинаковым:

Обрати внимание: если поменять знаки внутри одной скобки, знак перед дробью меняется на противоположный. Когда меняем знаки во второй скобке, знак перед дробью снова меняется на противоположный. В результате он (знак перед дробью) не изменился.

В общий знаменатель выписавыем полностью первый знаменатель, а потом дописываем к нему все множители, которые еще не написаны, из второго, а потом из третьего (и так далее, если дробей больше). То есть получается вот так:

Хм… С дробями-то понятно что делать. Но вот как быть с двойкой?

Все просто: ты ведь умеешь складывать дроби? Значит, надо сделать так, чтобы двойка стала дробью! Вспоминаем: дробь - это операция деления (числитель делится на знаменатель, если ты вдруг забыл). И нет ничего проще, чем разделить число на. При этом само число не изменится, но превратится в дробь:

То, что нужно!

5. Умножение и деление дробей.

Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

Порядок действий

Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

Посчитал?

Должно получиться.

Итак, напоминаю.

Первым делом вычисляется степень.

Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

Но: выражение в скобках вычисляется вне очереди!

Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

Хорошо, это все просто.

Но это ведь не то же самое, что выражение с буквами?

Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

Обычно наша цель - представить выражение в виде произведения или частного.

Например:

Упростим выражение.

1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

2) Получаем:

Умножение дробей: что может быть проще.

3) Теперь можно и сократить:

Ну вот и все. Ничего сложного, правда?

Еще пример:

Упрости выражение.

Сначала попробуй решить сам, и уж только потом посмотри решение.

Перво-наперво определим порядок действий. Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна. Потом выполним деление дробей. Ну и результат сложим с последней дробью. Схематически пронумерую действия:

Теперь покажу весть процесс, подкрашивая текущее действие красным:

Напоследок дам тебе два полезных совета:

1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

Вот тебе задачи для самостоятельного решения:

И обещанная в самом начале:

Решения (краткие):

Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

Теперь вперед к обучению!

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Базовые операции упрощения:

  • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
  • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
  • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
    1) числитель и знаменатель разложить на множители
    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    ВАЖНО: сокращать можно только множители!

  • Сложение и вычитание дробей:
    ;
  • Умножение и деление дробей:
    ;

ТЕМА 2 : ЧИСЛОВЫЕ И БУКВЕННЫЕ ВЫРАЖЕНИЯ. ФОРМУЛЫ. УРАВНЕНИЯ И ЗАДАЧИ, РЕШАЕМЫЕ С ПОМОЩЬЮ УРАВНЕНИЙ. КОМБИНАТОРИКА.

Раздел 1: Числовые выражения

Запись, составленную из чисел, знаков арифметических действий и скобок, называют числовым выражением Например : 36:4 – 25; 84 + (67 – 37) * 4 . а) Что значит найти значение числового выражения? Это значит необходимо выполнить все действия над числами, придерживаясь общепринятых правил порядка их выполнения. Например : (327 -123) : + 86 = 137 Порядок выполнения действий: 1) 327-123 = 204; 2) = 2 * 2 = 4; 3) 204: 4 = 51 ; 4) 51 + 86 = 137 б) «Чтение» числовых выражений Числовые выражения необходимо уметь «читать», используя названия действий. Например : 5+67 сумма чисел 5 и 67 ; 81 – 9 - разность чисел 81 и 9 ; 2 * (5 + 7) - произведение 2 и суммы чисел 5 и 7 ; 21: (7 – 4) - частное от деления 21 и разности 7 и 4 ; (35 + 7) * (35 – 7) – произведение суммы и разности чисел 35 и 7 . Запомни : Числовое выражение имеет только одно значение (правильный ответ). Раздел 2: Буквенные выражения Запись, которая состоит из чисел, букв, знаков арифметических действий и скобок, называется буквенным выражением Например: (3 + а) – 17 ; 6 + 3х; а: 3 + 5 * к. В буквенных выражениях используют те же знаки действий (+ , - , * , :) , как и у числовых,только часто не пишут знак умножить между числом и буквой. 3* х = 3х. а) Что значит найти значение буквенного выражения ? Для этого необходимо вместо буквы подставить соответствующее числовое значение и выполнить все действия в полученном числовом выражении: Пример 1 : Найти значение выражения 3х + 5 , если х = 15 Решение: если х = 15 , то 3х + 5 = 3 * 15 + 5 = 45 + 5 = 50 Пример 2 : В первом ящике лежало а яблок, а груши положили в в ящиков по 25 кг. Сколько всего яблок и груш? Вычислите значение полученного выражения при а = 30 , в = 3 . Решение: Если груши положили в в ящиков по 25 кг в каждый, то всего груш было 25в (кг) . Следовательно, всего яблок и груш было а + 25в (кг). Если а = 30 , в + 3 ,то а + 25В = 30 + 25 * 3 = 30 + 75 = 105 (кг). Запомни: Буквенное выражение имеет бесконечно много значений, которые зависят от значений букв.Изменяя значение буквы, мы получаем каждый раз новое значение буквенного выражения. Раздел 3: Формулы Иногда буквенное выражение обозначают одной буквой. Например периметр квадрата обозначили буквой Р. Тогда пишут Р = 4а. Эту запись называют формулой вычисления периметра квадрата. Известные нам формулы:

п/п

Раздел 4: Уравнения Уравнением, называется равенство, содержащее неизвестное, значение которого нужно найти. Корнем уравнения называется значение буквы, при котором уравнение становится верным числовым равенством. Решить уравнение – значит найти все его корни или убедиться,что их вообще нет. Пример1 : 0 * х = 12 . Это уравнение не имеет корней , т.к. при умножении нуля на число получают нуль, и число 12 никогда не получат. Пример 2 : 0 * х = 0 . Это уравнение имеет бесконечное множество корней, т.к. при умножении нуля на любое число мы всегда получаем нуль. а) простейшие уравнения: Чтобы найти вычитаемое , нужно из уменьшаемого вычесть разность. 346 – х = 259 х = 346 – 259 х = 87 Ответ: х = 87 чтобы найти уменьшаемое , нужно к разности прибавить вычитаемое. х – 250 = 52 х = 250 + 52 х = 302 Ответ: х = 302 Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель. 5*х = 500 х = 500: 5 х = 100 Ответ: х = 100 Чтобы найти неизвестное слагаемое , нужно от суммы вычесть известное слагаемое. 64 + х = 146 х = 146 – 64 х = 82 ответ: х = 82

Чтобы найти делитель , нужно делимое разделить на частное .240: х = 20 х = 240: 20 х = 12 Ответ: х = 12

Чтобы найти делимое , нужно частное умножить на делитель. х: 18 = 6 х = 6 * 18 х = 108 Ответ: х = 108

б) Примеры решения сложных уравнений: (х – 50) + 41 = 95 , где х -50 –слагаемоех -50 = 95 – 41х – 50 = 54 , где х - уменьшаемоех = 54 + 50х = 104Ответ: х = 104 77: (х + 10) = 7 , где х + 10 – делительх + 10 = 77: 7х + 10 = 11 , где х – слагаемоех = 11 – 10х = 1Ответ: х = 1 83 – (х – 42) = 12 , где х – 42 –вычитаемоех – 42 = 83 – 12х – 42 = 71 , где х – уменьшаемоех = 71 + 42х = 113Ответ: х = 113 (13 + х) – 58 = 126 , где 13+х -уменьшаемое13 + х = 126 + 5813 + х = 184 , где х - слагаемоех = 184 – 13х = 171ответ: х = 171

95 – (99 – х) = 8 , где 99 – х – вычитаемое99 – х = 95 – 899 – х = 87 , где х – вычитаемоех = 99 – 87х = 12ответ: х = 12

8 * (х – 14) = 56 , где х – 14 – множительх – 14 = 56: 8х – 14 = 7 , где х – уменьшаемоех = 7 + 14х = 21Ответ: х = 21

х: 8 – 6 = 49 , где х: 8 – уменьшаемоех: 8 = 49 + 6х: 8 = 55 ,где х – делимоех = 55 * 8х = 440Ответ: х = 440 52 + 72: х = 56 , где 72: х – слагаемое72: х = 56 – 5272: х = 4 , где х – делительх = 72: 4х = 18Ответ: х = 18

Раздел 5: Решение задач с помощью уравнений Типы задач: 1) Задачи с одной переменной На полке стояли книги. После того, как с полки взяли 12 книг, а поставили – 9 , на полке стало 39 книг. Сколько книг стояло на полке сначала?

Было

Решение: Пусть было Х книг, тогда (Х – 12) + 9 = 39 Х – 12 = 39 – 9 х – 12 = 30 х = 30 + 12 х = 42 (книг) – было Ответ: 42 книги. 2) Задачи с двумя одноименными величинами На двух полках стояло 72 книги. На второй полке стояло в 2 раза больше, чем на первой. Сколько книг стояло на каждой полке?

Первая полка

Решение: Пусть на первой полке стояло Х книг, тогда на второй стояло (2х) книг. Всего на полках стояло 72 книги. Составим уравнение: х + 2х = 72 х (1 + 2) = 72 3х = 72 х = 72: 3 х = 24 (книг) – на 1 – й полке 2) 24 * 2 = 48 (кн.) – на 2-й полке Ответ: 24 книги, 48 книг. 3) Задачи с тремя зависимыми величинами а) За 2 кг яблок и 3 кг груш заплатили 31 руб. Сколько стоит килограмм яблок и килограмм груш, если груши дороже яблок на 2 руб.

Фрукты

Решение: Пусть 1 кг яблок стоит х (руб.) , тогда 1 кг груш стоит (х + 2) руб. За 2кг яблок заплатили (2х) руб.) , а за 3 кг груш – 3* (х + 2) руб.За всю покупку заплатили 31 грн. Составим уравнение: 2х + 3 (х + 2) = 31 2х + 3х + 6 = 31 5х + 6 = 31 5х = 31 – 6 5х = 25 ; х = 25: 5 ; х = 5 (руб.) – стоит 1 кг яблок 2) 5 + 2 = 7 (руб.) – стоит 1 кг груш Ответ: 5 руб., 7 руб. б) Два велосипедиста одновременно выехали навстречу друг другу из сёл, расстояние между которыми 50 км. Встретились они через 2 часа. Первый ехал со скоростью 12 км/ч. найдите скорость второго велосипедиста.

Велосипедист

Решение: Пусть скорость второго велосипедиста – х км/ч, тогда он поехал (2х) км, а первый проехал – (12 * 2) км. Общее расстояние 50 км. Составим уравнение: 2х + 12 * 2 = 50 ; 2х + 24 = 50 ; 2х = 50 – 24 2х = 26 х = 26: 2 х = 13 (км/ч) – скорость второго велосипедиста. Ответ: 13 км/ч. в) Катер прошел 51 км по течению реки и потратил на это 3 часа. Найдите скорость течения, если собственная скорость катера равна 15 км/ч.

Движение

Решение: Пусть скорость течения – х км/ч, тогда скорость по течению равна (15 + х) км/ч. Расстояние катера по течению реки составляет 3 * (15 + х) км. Составим уравнение: 3 * (15 + х) = 51 15 + х = 51: 3 15 + х = 17 х = 17 – 15 х = 2 (км/ч) – скорость течения реки Ответ: 2 км/ч.

ПАМЯТКА ДЛЯ УЧЕНИКА

Примерное поурочное планирование учебного материала

Пункт учебника Число уроков Дидактические материалы Характеристика основных видов деятельности учащихся
8.1. О математическом языке О-44, П-34 Обсуждать особенности математического языка. Записывать математические выражения с учётом правил синтаксиса математического языка, составлять выражения по условиям задач с буквенными данными. Использовать буквы для записи математических предложений, общих утверждений; осуществлятьперевод с математического языка на естественный язык и наоборот. Иллюстрировать общие утверждения, записанные в буквенном виде, числовыми примерами
8.2. Буквенные выражения и числовые подстановки - Строить речевые конструкции с использованием новой терминологии (буквенное выражение, числовая подстановка, значение буквенного выражения, допустимые значения букв). Вычислятьчисловые значения буквенных выражений при данных значениях букв. Находить допустимые значения букв в выражении. Отвечать на вопросы задач с буквенными данными, составляя соответствующие выражения
8.3. Формулы. Вычисления по формулам О-45, П-35, П-36 Составлятьформулы, выражающие зависимости между величинами, в том числе по условиям, заданным рисунком. Вычислять по формулам, выражать из формулы одну величину через другие
8.4. Формулы длины окружности, площади круга и объёма шара Находить экспериментальным путёмотношение длины окружности к диаметру. Обсуждатьособенности числа π; находитьдополнительнуюинформацию об этом числе. Знакомитьсяс формулами длины окружности, площади круга, объёма шара; вычислять по этим формулам. Вычислять размеры фигур, ограниченных окружностями и их дугами. Округлятьрезультаты вычислений по формулам
8.5. Что такое уравнение О-46, «Проверь себя», П-37 Строить речевые конструкции с использованием слов «уравнение», «корень уравнения». Проверять, является ли указанное число корнем рассматриваемого уравнения. Решатьуравнения на основе зависимостей между компонентами действий. Составлятьматематические модели (уравнения) по условиям текстовых задач
Обзор и контроль

Основные цели : развить представления учащихся об использовании буквенной символики, сформировать элементарные навыки составления буквенных выражений и вычисления их значений, а также работы с формулами, дать первоначальное представление об уравнении с одной переменной.



Обзор главы . Глава включает материал, относящийся к алгебраическому блоку содержания курса математики 5-6 классов. Он группируется вокруг трёх фундаментальных алгебраических понятий: выражение, формула, уравнение. Изложение материала ведётся на основе знакомства с математическим языком, перевода с естественного языка на математический, использования математического языка для описания реальной действительности.

Вначале обсуждается вопрос об использовании букв для обозначения чисел, вводится понятие буквенного выражения и такие связанные с ним понятия, как «числовая подстановка», «значение буквенного выражения», «допустимые значения букв». На элементарном уровне отрабатываются соответствующие практические умения.

Опыт работы с буквенными выражениями является основой для изучения следующего фрагмента, в котором рассматривается вопрос о формулах. Формула для учащихся - это буквенное равенство, которое на символическом языке описывает некоторое правило. Учащиеся записывают в виде формул известные им правила вычисления некоторых величин (периметра и площади прямоугольника и квадрата, объёма прямоугольного параллелепипеда и т. д.) и знакомятся с новыми геометрическими понятиями и соответствующими формулами (длины окружности, площади круга, объёма шара).

Завершается глава обсуждением вопроса об уравнениях. Уравнение появляется как результат перевода условия текстовой задачи на математический язык. Решаются уравнения на этом этапе изучения курса известным из начальной школы приёмом - на основе зависимости между компонентами действий. Подчеркнём, что этот фрагмент по своей дидактической роли служит вводным этапом в тему «Уравнения», изучение которой будет начато в курсе алгебры 7 класса.

Материалы для контроля .

Пособие «Контрольные работы». Зачёт 7. Буквы и формулы.

Пособие «Тематические тесты». Тест 14. Буквы и формулы.

О математическом языке

Методический комментарий

Учащиеся уже имеют опыт использования букв для записи простейших выражений, свойств арифметических действий, для обозначения неизвестного числа. Они также умеют пользоваться такими математическими символами, как знаки арифметических действий, знаки сравнения, скобки. Теперь эти знания и умения служат основой для разговора о математическом языке как специальном языке науки, который создавался и совершенствовался вместе с развитием математики.

Упражнения в пункте направлены на формирование навыков чтения и записи буквенных выражений и буквенных равенств. Вся работа осуществляется как деятельность по переводу с естественного языка на математический и наоборот. К системе упражнений учебника целесообразно добавить задания на содержательную интерпретацию буквенных выражений, например: «Килограмм шоколадных конфет стоит а рублей, килограмм карамели стоит b рублей. Что могло быть куплено, если стоимость покупки (в рублях) равна a + b ? 3b ? 2a ? 2a + b ? Каков смысл выражения a b

Уравнения

Как решать уравнения?

В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение - это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.

Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.

4. Все остальные.)

Всех остальных, разумеется, больше всего, да...) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.

Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.

И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные - третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.

Но для любых (повторяю - для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа - Звучит страшно, но штука очень простая. И очень (очень!) важная.

Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: "Как решать уравнения? " лежит, как раз, в этих преобразованиях. Намёк понятен?)

Тождественные преобразования уравнений.

В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 - 2 = 3 - 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы.

Начнём с первого тождественного преобразования. Перенос влево-вправо.

Пример для младшеньких.)

Допустим, надо решить вот такое уравнение:

3-2х=5-3х

Вспоминаем заклинание: "с иксами - влево, без иксов - вправо!" Это заклинание - инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? ? Ответ неверный! Справа у нас - ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:

3-2х+3х=5

Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ "с никаким" не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:

-2х+3х=5-3

Остались сущие пустяки. Слева - привести подобные, справа - посчитать. Сразу получается ответ:

В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)

Пример для старшеньких.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

  • Равенство с переменной называют уравнением.
  • Решить уравнение – значит найти множество его корней. Уравнение может иметь один, два, несколько, множество корней или не иметь их вовсе.
  • Каждое значение переменной, при котором данное уравнение превращается в верное равенство, называется корнем уравнения.
  • Уравнения, имеющие одни и те же корни, называются равносильными уравнениями.
  • Любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  • Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Примеры. Решить уравнение.

1. 1,5х+4 = 0,3х-2.

1,5х-0,3х = -2-4. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство:

1,2х = -6. Привели подобные слагаемые по правилу:

х = -6 : 1,2. Обе части равенства разделили на коэффициент при переменной, так как

х = -5. Делили по правилу деления десятичной дроби на десятичную дробь:

чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число:

6 : 1,2 = 60 : 12 = 5.

Ответ: 5.

2. 3(2х-9) = 4(х-4).

6х-27 = 4х-16. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: (a-b) c = a c-b c.

6х-4х = -16+27. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

2х = 11. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = 11 : 2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 5,5.

3. 7х- (3+2х)=х-9.

7х-3-2х = х-9. Раскрыли скобки по правилу раскрытия скобок, перед которыми стоит знак «-»: если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.

7х-2х-х = -9+3. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

4х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = -6 : 4. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: -1,5.

3 (х-5) = 7 12 — 4 (2х-11). Умножили обе части равенства на 12 – наименьший общий знаменатель для знаменателей данных дробей.

3х-15 = 84-8х+44. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.

3х+8х = 84+44+15. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

11х = 143. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = 143 : 11. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 13.

5. Решить самостоятельно уравнения:

а) 3-2,6х = 5х+1,48;

б) 1,6 · (х+5) = 4 · (4,5-0,6х);

в) 9х- (6х+2,5) = — (х-5,5);


5а) 0,2; 5б) 2,5; 5в) 2; 5г) -1.

Страница 1 из 1 1