Особые физические свойства кристаллов. Еще нет комментариев. Оставить комментарий

Современное человечество только в XVII веке заново открыло для себя кристаллы. Датой рождения кристаллографии - науки, занимающейся изучением кристаллов, принято считать 1669 г.
Хотя научная кристаллография зародилась в XVII веке, теоретические основы о строении кристаллов и способах их исследования были заложены лишь в XIX веке. В XX веке эти открытия нашли практическую реализацию в самых разных областях человеческой жизни. Кристаллы стали широко применяться в самых разных областях науки и техники. Будущее - тоже за ними.
Кристаллы окружают нас со всех сторон. Они - основа физического мира. Из них состоят почти все минералы, в том числе базальт, гранит, известняк и мрамор. Из них состоят все металлы и большинство неметаллов: каучук, кости, волосы, целлюлоза и многое другое.
Мы живем в мире кристаллов. Дома, пароходы, автобусы, самолеты, ракеты, ножи и вилки... - все состоит из них.
Даже в пищу потребляем кристаллические вещества: соль, сахар, не говоря уже о лекарствах в таблетках и порошках, которые мы принимаем во время болезни.
Нет на Земле такого места, где не было бы кристаллов. Да и во Вселенной они широко распространены, так как служат ее материальной основой.
В 1669 году датский врач Н. Стенон сделал важное открытие, он установил, что в кристаллах, образованных одним и тем же веществом, углы между соседними гранями всегда одинаковы, независимо от формы и размеров кристалла.
Это значит, что каждый кристалл имеет присущий только ему угол между гранями.
Это открытие вошло в кристаллографию как закон постоянства углов. Таким образом, если известен угол между гранями, то можно определить вещество кристалла, не прибегая к химическому или физическому анализу. Достаточно только сравнить их с углами известных кристаллов.
Кроме того, тот же Стенон впервые предложил замечательную версию, что кристаллы растут не изнутри, как это наблюдается у растений, а снаружи, путем наложения на внешние плоскости новых частиц.
Кристаллы состоят из атомов, ионов и молекул. Эти частицы располагаются в строго определенном порядке, образуя пространственную решетку. Атомы и ионы удерживаются в них силами притяжения и отталкивания. Они не стоят на месте, а непрерывно колеблются.
Каждый кристалл имеет свою характерную форму, зависящую не только от среды, в которой он вырос, но и от строения пространственной решетки. Форма решетки определяет и свойства самого кристалла. В этом отношении наиболее показателен пример алмаза и графита, пространственные решетки, которых образованы атомами одного и того же элемента - углерода.
Графит - минерал черного цвета, мягкий и пластичный, проводит электрический ток и устойчив к огню. И все потому, что решетка его состоит как бы из слоев, связь между которыми не такая прочная, как между отдельными атомами внутри этого слоя. Такие слои легко сдвинуть один относительно другого при легком нажиме, что мы и наблюдаем, когда пишем карандашом. Он, как мы уже догадались, и является графитом.
А вот алмаз - полная противоположность графиту. Он прозрачен, по прочности превосходит другие кристаллы, но не проводит ток и легко сгорает в струе кислорода. Он почти вдвое тяжелее графита. "Виновата" во всем этом его пространственная решетка. Она трехмерна, а каждый атом в ней крепко связан с четырьмя другими.
Кристаллы бывают твердыми телами и могут быть жидкими, если их молекулы обладают способностью ориентироваться в одном направлении "все вдруг" или группами-слоями или другими способами.
Наконец, "кристаллы" могут быть чисто энергетическими, невидимыми, но наука кристаллография такими "призраками" пока не занимается.
В кристалле грани пересекаются по ребрам, а ребра пересекаются в вершинах. Грани, ребра и вершины - обязательные элементы гранения.
Основные особенности кристаллов - однородность и плоскогранность. Таким образом, если кристаллы имеют плоские грани, то значит, состав их однороден. И наоборот: если вещество кристалла однородно, то оно имеет плоские грани.
Кристаллы могут издавать звуки, например, поющие пески. Это явление привлекает внимание путешественника, оказавшегося среди песчаных барханов пустыни Каракум или других пустынь.
Вдруг неведомо откуда раздаются невнятные звуки пения, но никого нет вокруг, только пески. Они издают звуки, когда при слабом ветре начинает сползать песчаный откос.
Поющие пески есть не только в пустынях. Гармоничные мелодии часто возникают, когда идешь по влажному песку на пляже.
Русский путешественник А. Елисеев оставил свои впечатления о Сахаре:
"...в раскаленном воздухе послышались какие-то чарующие звуки, довольно высокие, певучие, не лишенные гармонии, с сильным металлическим оттенком. Они слышались отовсюду, словно их производили невидимые духи пустыни...
Пустыня была безмолвна, но звуки летели и таяли в раскаленной атмосфере, возникая откуда-то сверху и пропадая будто бы в земле... То веселые, то жалостливые, то резкие и крикливые, то нежные и мелодические, они казались говором живых существ, но не звуками мертвой пустыни...
Никакие нимфы древних не могли придумать чего-либо более поразительного и чудесного, чем эти таинственные песни песков".
Всех, кто слышал песни песков, удивляет это явление, и многие пытались объяснить его. Например, древние египтяне считали, что такие звуки являются порождением духов пустыни, и были правы.
Современные ученные считают, что причина возникновения звуков может скрываться в самой структуре песчинки. В ней, как известно, много кварца и других кремнеземов.
Кварц - это окись кремния, наиболее распространенная в земной коре. Его кристаллы обладают рядом выдающихся свойств. Они богаты простыми, то есть замкнутыми, закрытыми формами. Здесь можно найти пирамиды, призмы, ромбоэдры, - более пятисот простых форм. Для кварца характерны образования двойников - симметричных сростков кристаллов.
Но не только многообразием внешних форм удивляет кварц. Его кристалл не имеет центра симметрии, а это верный признак, что он обладает пьезоэлектрическими свойствами.
Поэтому, если сжать кристалл, то на его гранях, перпендикулярных направлению сжатия, возникают разноименные электрические заряды: положительный - на одной грани, отрицательный - на другой.
Так механическая энергия с помощью кристалла кварца превращается в электрическую энергию. Если же снять механическую нагрузку с кристалла и начать его растягивать, то полярность зарядов на гранях меняется на противоположные заряды. И это происходит в кристалле кварца, который сам по себе является изолятором!
Это явление в кварцевых кристаллах было открыто в 1817 году французским кристаллографом Р. Гаюи, и повторно - в 1880 г. французскими учеными братьями Жаном и Пьером Кюри и названо пьезоэлектричеством. Позднее они же обнаружили и обратимость этого эффекта.
Оказалось, что кристалл кварца мог сжиматься или растягиваться, если на его гранях создаются разноименные электрические заряды. При этом электрическая энергия превращалась в механическую энергию.
Именно это свойство кристалла дает основание полагать, что пение песков пустыни связано с пребыванием духов. Так как духи пустыни являются демоническими сущностями, которые представляют собой хаотическое движение электронов.
В демонических сущностях отсутствует ядро и магнетизм. Они представляют собой пустоту, которая окружена, хаотично движущими электронами. Таким образом, демонические сущности являются носителями электрического заряда, который вызывает напряжение на поверхности молекул кристаллов.
В результате этого воздействия кристаллы песка сжимаются и разжимаются, вызывая колебание воздуха, которое проявляется в виде звуков.
Пение песков сильно воздействует на психику человека, вызывая инстинктивный страх. Причину этого страха можно объяснить тем, что человеческая душа в пении песков улавливает "дыхание" смерти, носителем которой является демоническая сущность.
Человек, животное и растение, как живые организмы, не могут подобно демонической сущности переносить напряжение и влиять на кристаллы, не могут вызывать пение песков. Так как атомарная система живых клеток органических тел производит вибрации другой частоты и электромагнитную индукцию, что делает систему организма закрытой в смысле электрического воздействия. То есть электрическая энергия организма захвачена собственным магнитным полем, которое ею и управляет.
И только в том случае, когда духовность человека падает, что снижает потенциал магнитного поля его организма, может образовываться избыток электрической энергии и дополнительное напряжение. Именно это напряжение демоническая сила улавливает и переносит. Этот избыток электричества негативно влияет в первую очередь на кристаллические структуры самого человеческого организма, а затем на кристаллические тела, которые его окружают. Например, на ювелирные украшения, которые носит человек. Поэтому в древности по состоянию камней-амулетов прогнозировали состояние здоровья человека и даже его будущее. Обращали внимание на молоко, которое чутко реагирует на присутствие в доме нечистой силы.
В результате исследований было установлено, что кварц в виде пластинки, вырезанной из тела кристалла, обладает такой большой упругостью, что может колебаться с очень высокой частотой, последовательно сжимаясь и растягиваясь при смене полярности электрического поля.
Кварц может вибрировать в широком диапазоне частот, создавая акустические и электрические волны, то есть петь. Когда с бархана сползает песчаная лавина или обрушивается песчаный массив, нижележащие слои песка испытывают переменное давление от движущегося слоя. Они сжимаются под давлением и "распрямляются" после уменьшения давления. Кварцевые кристаллы, имеющиеся в песчинках, начинают колебаться, вибрировать, генерируя акустические волны. Аналогичные процессы возникают и при ходьбе по мокрому песку.
Механические колебания кристалликов кварца в песчинках приводят к образованию электрических зарядов на их гранях, полярность которых меняется синхронно с механическими колебаниями кристаллов. Возникают не только акустические волны, но и переменное электрическое поле определенного спектра частот.
Каждая песчинка, каждый кристаллик поет свою песню на своей частоте. Их голоса складываются. И вот уже звучит многоголосое пение, достаточно громко, диапазон частот широк. Его-то и слышит человеческое ухо. Но только низкие частоты. Высокие частоты наше ухо не воспринимает. Когда движение песка замирает, возбужденные механические и электрические колебания кристаллов кварца в песчинках затухают, звучание прекращается.
В 1957 г. советский ученый К. Баранский установил, что акустические волны можно возбудить непосредственно на поверхности кристалла, что еще выше расширяло диапазон генерируемых частот. Затем американские ученые увеличили потолок частот еще на порядок.
Если поют пески, когда подвергаются механическим и электрическим воздействиям, то по аналогичной причине поет и сама Земля. Пульсирующее огненное сердце планеты, влияние других планет и Солнца вызывают подвижку и вибрацию пород земной коры, заставляя звучать Землю. Ее песня, не воспринимаемая человеческим ухом, далеко разносится в космосе.
Земная кора находится в постоянном напряжении. То тут, то там происходят землетрясения и вулканические извержения, освобождающие опасные зоны от перегрузок на них демонических сущностей - бездуховных пустот.
Количество землетрясений на Земле достигает до ста тысяч в год. Из общего числа землетрясений сильных землетрясений происходит до тысячи в год.
Из очагов деформации земной коры колебания передаются на большие расстояния. Скорость распространения волн очень высока. В гранитных породах для продольных волн она составляет более 5000 метров в секунду, для поперечных - около 2509 метров в секунду.
На своем пути земные волны то сжимают породы, то растягивают их, вызывая образование мощных электрических зарядов разной полярности. Особенно они велики в эпицентре сжатия или растягивания, где земные породы испытывают очень сильные, вплоть до разрыва, деформации.
Электрические разряды в виде сильнейших подземных молний стремительно распространяются по зонам наименьшего сопротивления и часто прорываются из глубин на поверхность Земли, оставляя оплавленные твердые породы или странные круглые отверстия.
В том, что Земля звучит, нет ничего странного. Ее твердые породы, базальта, граниты, песчаники и другие имеют кристаллическую структуру. В них много кварцевых образований. При деформации кристаллов возникают не только акустические и электрические волны, но протекают попутно и другие физические и химические процессы.
Грозный рокот глубинных бурь "слышат" многие животные, птицы, насекомые. Они даже могут быть "оповещателями", приближающегося подземного удара. И только человек, как правило, оказывается застигнутым врасплох. Так как перестал воспринимать себя частью природы и следить за происходящими процессами в природе.
Кроме "пения" кристаллы вибрируют в определенном диапазоне светового спектра, поэтому приобретают свой цвет, например, ювелирные камни. Камни прозрачные и с сильным блеском способны пропускать и модифицировать лучистую энергию. Цветность минералов связывается с включением в их кристаллическую решетку ионов металлов, легко меняющих свою валентность, способных при минимальной подаче энергии отдавать свои электроны.
Часть этих электронов "бродит" среди атомов кристаллической решетки, взаимодействуя с ними, обмениваясь с ними энергией. В результате в кристалле возникают и непрерывно меняют свой узор местные нарушения кристаллической решетки. Таким образом, кристалл интенсивно живет своей "внутренней жизнью", внешние проявления которой и составляют наборы "магических" свойств камней-амулетов.
К таким металлам, примеси соединений, которых заметно изменяют энергетический силуэт кристалла, относятся железо, медь, марганец, хром, редкоземельные элементы.

Кристаллы веществ обладают уникальными физическими свойствами:
1. Анизотропия – зависимость физических свойств от направления, в котором эти свойства определяются. Особенность только монокристаллов.

Это объясняется тем, что кристаллы имеют кристаллическую решетку, форма которой обуславливает различную степень взаимодействия в разных направлениях.

Благодаря этому свойству:

А. Слюда расслаивается на пластинки только в одном направлении.

Б. Графит легко разрывается на слои, но один единственный слой невероятно прочен.

В. Гипс неодинаково проводит тепло по разным направлениям.

Г. Луч света, попадающий под различными углами на кристалл турмалина, окрашивает его в разные цвета.

Строго говоря, именно анизотропия обуславливает образование кристаллом формы, специфичной для данного вещества. Дело в том, что из-за строения кристаллической решетки рост кристалла происходит неравномерно - в одном месте быстрее, в другом гораздо медленнее. В результате кристалл и принимает форму. Без этого свойства кристаллы росли бы шарообразными или вообще совершенно любой формы.

Также этим и объясняется неправильная форма поликристаллов - они анизотропией не обладают, так как являются сростком кристаллов.

2. Изотропия – свойство поликристаллов, обратное анизотропии. Ей обладают только поликристаллы.

Так как объем монокристалликов значительно меньше объема всего поликристалла, то все направления в нем равноправны.

Например, металлы одинаково проводят тепло и электрический ток во всех направлениях, так как являются поликристаллами.

Не будь этого свойства, мы не смогли бы ничего построить. Большинство строительных материалов являются поликристаллами, поэтому какой стороной их не поверни, они выдержат все. Монокристаллы же могут быть сверхтвердыми при одном положении, и очень хрупкими в другом.

3.Полиморфизм – свойство одинаковых атомов (ионов, молекул) образовывать различные кристаллические решетки. За счет разных кристаллических решеток, такие кристаллы могут обладать совершенно разными свойствами.

Это свойство обуславливает образование некоторых аллотропных модификаций простых веществ, например углерода – это алмаз и графит.

Свойства алмаза:

· Высокая твердость.

· Не проводит электричество.

· Сгорает в струе кислорода.

Свойства графита:

· Мягкий минерал.

· Проводит электричество.

· Из него делают огнеупорную глину.

Рассматривая различные кристаллы мы видим, что все они разные по форме, но любой из них представляет симметричное тело. И действительно, симметричность - это одно из основных свойств кристаллов. Симметричными мы называем тела, которые состоят из равных одинаковых частей.

Все кристаллы симметричны. Это значит, что в каждом кристаллическом многограннике можно найти плоскости симметрии, оси симметрии, центры симметрии и другие элементы симметрии так, чтобы совместились друг с другом одинаковые части многогранника. Введем еще одно понятие относящиеся к симметрии - полярность.

Каждый кристаллический многогранник обладает определенным набором элементов симметрии. Полный набор всех элементов симметрии, присущих данному кристаллу называется классом симметрии. Их количество ограничено. Математическим путем было доказано, что в кристаллах существует 32 вида симметрии.

Рассмотрим более подробно виды симметрии в кристалле. Прежде всего, в кристаллах могут быть оси симметрии только 1, 2, 3, 4 и 6 порядков. Очевидно, оси симметрии 5, 7-го и выше порядков не возможны, потому что при такой структуре атомные ряды и сетки не заполнят пространство непрерывно, возникнут пустоты, промежутки между положениями равновесия атомов. Атомы окажутся не в самых устойчивых положениях и кристаллическая структура разрушится.

В кристаллическом многограннике можно найти разные сочетания элементов симметрии - у одних мало, у других много. По симметрии, прежде всего по осям симметрии, кристаллы делятся на три категории.

К высшей категории относятся самые симметричные кристаллы, у них может быть несколько осей симметрии порядков 2, 3 и 4, нет осей 6-го порядка, могут быть плоскости и центры симметрии. К таким формам относятся куб, октаэдр, тетраэдр и др. Им всем присуща общая черта: они примерно одинаковы во все стороны.

У кристаллов средней категории могут быть оси 3, 4 и 6 порядков, но только по одной. Осей 2 порядка может быть несколько, возможны плоскости симметрии и центры симметрии. Формы этих кристаллов: призмы, пирамиды и др. Общая черта: резкое различие вдоль и поперек главной оси симметрии.

Из кристаллов к высшей категории относятся: алмаз, кварцы, гранаты германий, кремний, медь, алюминий, золото, серебро, серое олово вольфрам, железо; к средней категории - графит, рубин, кварц, цинк, магний, белое олово, турмалин, берилл; к низшей - гипс, слюда, медный купорос, сегнетовая соль и др. Конечно в этом списке не были перечислены все существующие кристаллы, а только наиболее известные из них.

Категории в свою очередь разделяются на семь сингоний. В переводе с греческого «сингония» означает «сходноугольство». В сингонию объединяются кристаллы с одинаковыми осями симметрии, а значит, со сходными углами поворотов в структуре.

Сначала стоит упомянуть два основных свойства кристаллов. Одним из них является анизотропия. Под этим термином подразумевается изменение свойств в зависимости от направления. Вместе с тем кристаллы являются телами однородными. Однородность кристаллического вещества состоит в том, что два его участка одинаковой формы и одинаковой ориентировки одинаковы по свойствам.

Поговорим сначала об электрических свойствах. В принципе электрические свойства кристаллов можно рассматривать на примере металлов, так как металлы, в одном из состояний, могут представлять собой кристаллические агрегаты. Электроны, свободно передвигаясь в металле, не могут выйти наружу, для этого нужно затратить энергию. Если при этом затрачивается лучистая энергия, то эффект отрыва электрона вызывает так называемый фотоэлектрический эффект. Аналогичный эффект наблюдается и в монокристаллах. Вырванный из молекулярной орбиты электрон, оставаясь внутри кристалла, обуславливает у последнего металлическую проводимость (внутренний фотоэлектрический эффект). В нормальных же условиях (без облучения) такие соединения не являются проводниками электрического тока.

Поведением световых волн в кристаллах занимался Э. Бертолин, который первый заметил, что волны ведут себя нестандартно при прохождении через кристалл. Однажды Берталин зарисовывал двугранные углы исландского шпата, затем он положил кристалл на чертежи, тогда ученый в первый раз увидел, что каждая линия раздваивается. Он несколько раз убедился, что все кристаллы шпата раздваивают свет, лишь тогда Берталин написал трактат «Опыты с двупреломляющим исландским кристаллом, которые привели к открытию чудесного и необыкновенного преломления» (1669г.). Ученый разослал результаты своих опытов в несколько стран отдельным ученым и академиям. Работы были приняты с полным недоверием. Английская Академия наук выделила группу ученых на проверку данного закона (Ньютон, Бойль, Гук и др.). Эта авторитетная комиссия признала явление случайным, а закон несуществующим. О результатах опытов Берталина было забыто.

Лишь через 20 лет Христиан Гюйгенс подтвердил правильность открытие Берталина и сам открыл двупреломление в кварце. Многие ученые, в последствии занимавшиеся этим свойством подтвердили, что не только исландский шпат, но и многие другие кристаллы раздваивают свет.

Не раздваивают свет кристаллы высшей категории такие как алмаз, каменная соль, квасцы, гранаты, флюорит. У них вообще анизотропия многих свойств проявляется слабее, чем в остальных кристаллах а некоторые свойства изотропны. Во всех кристаллах низшей и средней категорий, если они прозрачны, наблюдается двойное преломление света.

Преломление возникает из-за различия скорости света в разных средах. Так в стекле скорость света в 1,5 раза меньше, чем в воздухе, следовательно, коэффициент преломления равен 1,5.

Причиной двупреломления является анизотропия скорости света в кристаллах. В изотропной среде волны расходятся во все стороны одинаково, как бы по радиусам шара. В кристаллах же световые и звуковые волны расходятся не кругами, и скорость этих волн, а значит и показатели преломления, в разных направлениях различны.

Представим, что в кристалле луч света раздваивается, один ведет себя как «обыкновенный», т.е. идет во все стороны по радиусам шара, другой - «необыкновенный» - идет по радиусам эллипсоида. В таком кристалле существует одно-единственное направление, в котором двупреломления нет. Обыкновенный и необыкновенный лучи идут вместе, луч света не раздваивается. Оно называется оптической осью. Так ведут себя по отношению к свету кристаллы средней категории, поэтому их называют оптически одноосными. В кристаллах низшей категории свет тоже испытывает двойное преломление, но уже оба луча ведут себя как необыкновенные, у обоих показатели преломления во всех направлениях разные и оба распространяются по радиусам эллипсоида. Кристаллы низшей категории называются оптически двуосными. Кристаллы высшей категории, где свет расходится по радиусам шара во все стороны одинаково, называются оптически изотропны.

Проходя через двупреломляющий кристалл, волна света не только раздваивается, но каждый из образованных лучей еще и поляризуется, раскладываются на две плоскости перпендикулярных друг другу. Волна ведет себя подобным образом, т.к. она должна пройти сквозь атомную решетку, ряды которой лежат перед ней. Поэтому она распадается в кристалле на две волны, у которых плоскости колебаний взаимно перпендикулярные.

Такие свойства твёрдых тел как упругость, прочность, поверхностное натяжения определяются силами взаимодействия между атомами и строением кристаллов. Изучая силы межатомного взаимодействия, можно, например, определить величину модуля упругости, предела прочности материала, энергии связи кристалла и коэффициента поверхностного натяжение.

Таким образом, оцениваются характеристики любых твёрдых тел, но проще всего это сделать для идеальных ионных кристаллов. В решетке таких кристаллов периодически чередуются положительные и отрицательные ионы. Для оценки, прежде всего, необходимо выяснить величину силу единичной межатомной связи, которая в ионных кристаллах определяется силой взаимодействия между двумя ионами.

Зависимость сил межатомного взаимодействия от расстояния между центрами атомов в твёрдых телах заключается в следующем:

1) Между атомами одновременно действуют силы притяжения и силы отталкивания. Результирующая сила межатомного взаимодействия - сумма этих двух сил.

2) При уменьшении расстояния между атомами силы отталкивания нарастают значительно быстрее, чем силы притяжения, поэтому существует некоторое расстояние, при котором силы притяжения и силы отталкивания уравновешиваются и результирующая сила становится равной нулю. В кристалле, предоставленном самому себе, ионы располагаются именно на расстоянии r0 друг от друга. Если расстояние между атомами меньше равновесного (r меньше r0), то преобладают силы отталкивания, если (r больше r0), то преобладают силы притяжения.

Эти свойства межатомных сил позволяют условно рассматривать частицы, образующие кристалл как твердые упругие шары, взаимодействующие друг с другом. Деформация растяжения кристалла приводит к увеличению расстояния между центрами соседних шаров и преобладанию сил притяжения, а деформация сжатия - к уменьшению этого расстояния и преобладанию сил отталкивания.

Пределом прочности обычно называют наибольшее напряжение, которое может выдержать материал, не разрушаясь. При растяжении образца предел прочности определяется максимальной величиной результирующей силы межатомного притяжения, приходящейся на единицу площади сечения, перпендикулярного направлению растяжения.

Результирующая сила межатомного взаимодействия достигает максимального значения, когда центры атомов находятся на расстоянии r1 друг от друга. Когда растяжение ещё более увеличивается, силы взаимодействия становятся настолько малыми, что связи между атомами разрываются.

Лицей современных технологий управления

Реферат по физике

Кристаллы и их свойства

Выполнил:

Проверил:

Введение

Кристаллические тела являются одой из разновидностей минералов.

Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.

Семейство кристаллических тел состоит из двух групп - монокристаллов и поликристаллов. Первые иногда обладают геометрически правильной внешней формой, а вторые, подобно аморфным телам, не имеют присущей данному веществу определенной формы. Но в отличие от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов. Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

Строение кристаллов

Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же - 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах - кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала. Простейшим прибором для измерения углов кристаллов является прикладной гониометр. Применение прикладного гониометра возможно только для исследования крупных кристаллов, невелика и точность измерений, выполненных с его помощью. Различить, например, кристаллы кальцита и селитры, сход­ные по форме и имеющие углы между соответственными гранями, равные 101° 55" первого и 102°41,5" у второго, с помощью прикладного гониометра очень трудно. Поэтому в лабораторных условиях измерений углов между гранями кристалла обычно выполняют с помощью более сложных и точных приборов.

Кристаллы правильной геометрической формы встречаются в природе редко. Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Существует несколько способов, позволяющих узнать, является ли твердое тело кристаллом. Самый простой из них, но очень малопригодный для использования, был открыт в результате случайного наблюдения в конце XVIII в. Французский ученый Ренне Гаюи нечаянно уронил один из кристаллов своей коллекции. Рассмотрев осколки кристалла, он заметил, что многие из них представляют собой уменьшенные копии исходного образца.

Замечательное свойство многих кристаллов давать при дроблении осколки, подобные по форме исходному кристаллу, позволило Гаюи высказать гипотезу, что все кристаллы состоят из плотно уложенных рядами маленьких, невидимых в микроскоп, частиц, имеющих присущую данному веществу правильную геометрическую форму. Многообразие геометрических форм Гаюи объяснил не только различной формой «кирпичиков», из которых они состоят, но и различными способами их укладки.

Гипотеза Гаюи правильно отразила сущность явления - упорядоченное и плотное расположение структурных элементов кристаллов, но она не ответила на целый ряд важнейших вопросов. Существует ли предел сохранению формы? Если существует, то что представляет собой самый маленький «кирпичик»? Имеют ли атомы и молекулы вещества форму многогранников?

Еще в XVIII в. английский ученый Роберт Гук и голландский ученый Христиан Гюйгенс обратили внимание на возможность построения правильных многогранников из плотно укладываемых шаров. Они предположили, что кристаллы построены из шарообразных частиц - атомов или молекул. Внешние формы кристаллов согласно этой гипотезе являются следствием особенностей плотной упаковки атомов или молекул. Независимо от них к такому же выводу пришел в 1748 г. великий русский ученый М. В. Ломоносов.

При плотнейшей укладке шаров в один плоский слой каждый шар оказывается окруженным шестью другими шарами, центры которых образуют правильный шестиугольник. Если укладку второго слоя вести по лункам между шарами первого слоя, то второй слой окажется таким же, как и первый, только смещенным относительно него в пространстве.

Укладка третьего слоя шаров может быть осуществлена двумя способами (рис.1). В первом способе шары третьего слоя укладываются в лунки, находящиеся точно над шарами первого слоя, и третий слой оказывается точной копией первого. При последующем повторении укладки слоев этим способом получается структура, называемая гексагональной плотноупакованной структурой. Во втором способе шары третьего слоя укладываются в лунки, не находящиеся точно над шарами первого слоя. При этом способе упаковки получается структура, называемая кубической плотноупакованной структурой. Обе упаковки дают степень заполнения объема 74%. Никакой другой способ расположения шаров в пространстве при отсутствии их деформации большей степени заполнения объема не дает.

При укладке шаров ряд за рядом способом гексагональной плотной упаковки можно получить правильную шестигранную призму, второй способ упаковки ведет к возможности построения куба из шаров.

Если при построении кристаллов из атомов или молекул действует принцип плотной упаковки, то, казалось бы, в природе должны встречаться кристаллы только в виде шестигранных призм и кубов. Кристаллы такой формы действительно очень распространены. Гексагональный плотной упаковке атомов соответствует, например, форма кристаллов цинка, магния, кадмия. Кубической плотной упаковке соответствует форма кристаллов меди, алюминия, серебра, золота и ряда других металлов.

Но этими двумя формами многообразие мира кристаллов вовсе не ограничивается.

Существование форм кристаллов, не соответствующих принципу плотнейшей упаковки равновеликих шаров, может иметь разные причины.

Во-первых, кристалл может быть построен с соблюдением принципа плотной упаковки, но из атомов разных размеров или из молекул, имеющих форму, сильно отличающуюся от шарообразной (рис.2). Атомы кислорода и водорода имеют шарообразную форму. При соединении одного атома кислорода и двух атомов водорода происходит взаимное проникновение их электронных оболочек. Поэтому молекула воды имеет форму, значительно отличающуюся от шарообразной. При затвердевании воды плотная упаковка ее молекул не может осуществляться тем же способом, что и упаковка равновеликих шаров.

Во - вторых, отличие упаковки атомов или молекул от плотнейшей может быть объяснено существованием более сильных связей между ними по определенным направлениям. В случае атомных кристаллов направленность связей определяется структурой внешних электронных оболочек атомов, в молекулярных кристаллах - строением молекул.

Разобраться в устройстве кристаллов, пользуясь только объемными моделями их строения, довольно трудно. В связи с этим часто применяется способ изображения строения кристаллов с помощью пространственной кристаллической решетки. Она представляет собой пространственную сетку, узлы которой совпадают с положением центров атомов (молекул) в кристалле. Такие модели просматриваются насквозь, но по ним нельзя ничего узнать о форме и размерах частиц, слагающих кристаллы.

В основе кристаллической решетки лежит элементарная ячейка - фигура наименьшего размера, последовательным переносом которой можно построить весь кристалл. Для однозначной характеристики ячейки нужно задать размеры ее ребер а, в и с и величину углов a, b и g между ними. Длину одного из ребер называют постоянной кристаллической решетки, а всю совокупность шести величин, задающих ячейку, - параметрами ячейки.

На рисунке 3 показано, как можно застроить все пространство путем сложения элементарных ячеек.

Важно обратить внимание на то, что большинство атомов, а для многих типов кристаллической решетки и каждый атом принадлежит не одной элементарной ячейке, а входит одновременно в состав нескольких соседних элементарных ячеек. Рассмотрим, к примеру, элементарную ячейку кристалла каменной соли.

За элементарную ячейку кристалла каменной соли, из которой, переносом в пространстве можно построить весь кристалл, должна быть принята часть кристалла, представленная на рисунке. При этом нужно учесть, что от ионов, находящихся в вершинах ячейки, ей принадлежит лишь одна восьмая каждого из них; от ионов, лежащих на ребрах ячейки, ей принадлежит по одной четвертой каждого; от ионов, лежащих на гранях, на долю каждой из двух соседних элементарных ячеек приходится по половине иона.

Подсчитаем число ионов натрия и число ионов хлора, входящих в состав одной элементарной ячейки каменной соли. Ячейке целиком принадлежит один ион хлора, расположенный в центре ячейки, и по одной четверти каждого из 12 ионов, расположенных на ребрах ячейки. Всего ионов хлора в одной ячейке 1+12*1/4=4. Ионов натрия в элементарной ячейке-шесть половинок на гра­нях и восемь восьмушек в вершинах, всего 6*1/2+8*1/8=4.

Теория решётчатого строения кристаллов была создана в середине 19 века французским кристаллографом О. Бравэ, а затем русский кристаллограф академик Е. С. Фёдоров и немецкий учёный А. Шенфлис завершили математическую разработку этой теории. При создании и разработке теории решетчатого строения кристаллов Бравэ, Фёдоров и др. кристаллографы основывались исключительно на некоторых важных свойствах кристаллического вещества.

Основными свойствами кристаллов являются их однородность, анизотропность, способность самоограняться и симметричность.

Однородным обычно называют тело, которое обнаруживает одинаковые свойства во всех своих частях. Кристаллическое тело однородно, т. к. различные участки его имеют одинаковое строение, т. е. одинаковую ориентировку слагающих частиц, принадлежащих одной и той же пространственной решётке. Однородность кристалла следует отличать от однородности жидкости или газа, которая имеет статистический характер.

Анизотропным называется такое однородное тело, которое обладает неодинаковыми свойствами по непараллельным направлениям. Кристаллическое тело анизотропно, т. к. строение пространственной решётки, а значит и самого кристалла, в общем случае неодинаково по непараллельным направлениям. По параллельным же направлениям частицы слагающие кристалл, как и узлы его пространственной решётки, расположены строго одинаковым образом, поэтому и свойства кристалла по таким направлениям должны быть одними и теми же.

Характерный пример резко выраженной анизотропности представляет слюда, кристаллы которой легко расщепляются лишь по одному определённому направлению. В качестве другого яркого примера анизотропности можно привести минерал дистен (AlOAl), у кристаллов которого боковые грани имеют сильно различающиеся значения твердости в продольном и поперечном направлениях. Если из кристалла каменной соли, имеющего форму куба, вырезать стерженьки по разным направлениям, то для разрыва этих стерженьков потребуются разные усилия. Стерженёк, перпендикулярный граням куба, разорвётся при усилии около 570 Г/мм 2 ; для стерженька, параллельного гранным диагоналям, разрывающее усилие составит 1150 Г/мм 2 , а разрыв стерженька, параллельного телесной диагонали куба, произойдет при усилии 2150 Г/мм 2 .

Приведенные примеры, конечно, исключительны по своей характерности. Однако точными исследованиями установлено, что абсолютно все кристаллы в том или ином отношении обладают анизотропностью.

Однородностью и в некоторой степени анизотропностью могут обладать также и аморфные тела. Но ни при каких условиях аморфные вещества не могут сами по себе принимать форму многогранников. Образовываться в виде плоскостных многогранников могут лишь кристаллические тела. В способности самоограняться , т. е. принимать многогранную форму, проявляется наиболее характерный внешний признак кристаллического вещества.

Правильная геометрическая форма кристаллов с давних пор привлекала внимание человека, и её загадочность вызывала в прошлом у людей различные суеверия. Кристаллы таких веществ, как алмаз, изумруд, рубин, сапфир, аметист, топаз, бирюза, гранат и др., ещё в 18 в. считались носителями сверхъестественных сил и использовались не только как драгоценные украшения, но и как талисманы или средство от многих болезней и укусов ядовитых змей.

На самом же деле способность самоограняться, как и первые два свойства, является следствием правильного внутреннего строения кристаллического вещества. Внешние границы кристаллов как бы отражают эту правильность их внутреннего строения, ибо каждый кристалл можно рассматривать как часть его пространственной решётки, ограниченной плоскостями (гранями).

Необходимо вместе с тем отметить, что способность кристаллического вещества самоограняться проявляется не всегда, а только при особо-благоприятных условиях, когда внешняя окружающая среда не мешает образованию и свободному росту кристаллов. При отсутствии таких условий получаются или совершенно неправильные или частично деформированные кристаллы. Несмотря на это они сохраняют все свои внутренние свойства, в том числе и причины, заставляющие кристаллы принимать форму многогранника. Поэтому, если кристаллическое зерно неправильной формы поместить в определённые условия, в которых кристалл сможет свободно расти, то оно примет через некоторое время форму плоскостного многогранника, присущую данному веществу.

Симметрия кристаллов также является отражением их закономерного внутреннего строения. Все кристаллы в той или иной степени симметричны, т. е. состоят из закономерно повторяющихся равных частей, так как их строение выражается пространственной решёткой, которая по своей природе всегда симметрична.

Открытие мюнхенским физиком М. Лауэ в 1912 г. явления дифракции рентгеновских лучей при их прохождении через кристалл явилось первым экспериментальным подтверждением правильности теории решетчатого строения кристаллического вещества. С этого момента стало возможным, с одной стороны, посредством кристаллов исследовать рентгеновские лучи, а с другой - с помощью рентгеновских лучей исследовать внутреннее строение кристаллов. Таким путём было доказано, что абсолютно все кристаллы состоят из частиц, расположенных друг относительно друга закономерно, наподобие узлов пространственной решётки.

После опытов Лауэ теория решетчатого строения кристаллов перестала быть только лишь умозрительным построением и приобрела форму закона.