Особенности конструкции турбогенератора. Описание конструкции турбогенератора Максимальное число оборотов турбогенераторов на тэс

Посредством вращающегося магнитного поля ротора в статоре . Поле ротора, которое создается либо установленными на ротор постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. У синхронных турбогенераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу турбогенератора. Турбогенераторы имеют цилиндрический ротор установленный на двух подшипниках скольжения , в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), и многополюсные машины, в зависимости от мест эксплуатации и требований Заказчика. По способам охлаждения обмоток турбогенератора различают: с жидкостным охлаждением через рубашку статора; с жидкостным непосредственным охлаждением обмоток; с воздушным охлаждением; с водородным охлаждением (чаще применяются на АЭС).

История

Один из основателей компании «ABB » Чарльз Браун построил первый турбогенератор в 1901 году . Это был 6-ти полюсный генератор мощностью 100 кВА .

Появление во второй половине XIX века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них - небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И, в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

Типы турбогенераторов

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза . В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Возбуждение ротора генератора

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

Напишите отзыв о статье "Турбогенератор"

Литература

  • Вольдек А. И. Электрические машины. Энергия. Л. 1978
  • Operation and Maintenance of Large Turbo Generators, by Geoff Klempner and Isidor Kerszenbaum, ISBN 0-471-61447-5, 2004

Примечания

Ссылки

Отрывок, характеризующий Турбогенератор

– Мы просто гуляем, – улыбаясь сказала Стелла. – Мы не будем вам мешать.
– А кого вы ищете? – спросила Атенайс.
– Никого, – удивилась малышка. – А почему вы думаете, что мы должны кого-то искать?
– А как же иначе? Вы сейчас там, где все ищут себя. Я тоже искала... – она печально улыбнулась. – Но это было так давно!..
– А как давно? – не выдержала я.
– О, очень давно!... Здесь ведь нет времени, как же мне знать? Всё, что я помню – это было давно.
Атенайс была очень красивой и какой-то необычайно грустной... Она чем-то напоминала гордого белого лебедя, когда тот, падая с высоты, отдавая душу, пел свою последнюю песню – была такой же величественной и трагичной...
Когда она смотрела на нас своими искристыми зелёными глазами, казалось – она старее, чем сама вечность. В них было столько мудрости, и столько невысказанной печали, что у меня по телу побежали мурашки...
– Можем ли мы вам чем-то помочь? – чуточку стесняясь спрашивать у неё подобные вопросы, спросила я.
– Нет, милое дитя, это моя работа... Мой обет... Но я верю, что когда-нибудь она закончится... и я смогу уйти. А теперь, скажите мне, радостные, куда вы хотели бы пойти?
Я пожала плечами:
– Мы не выбирали, мы просто гуляли. Но мы будем счастливы, если вы хотите нам что-нибудь предложить.
Атенайс кивнула:
– Я охраняю это междумирье, я могу пропустить вас туда, – и, ласково посмотрев на Стеллу, добавила. – А тебе, дитя, я помогу найти себя...
Женщина мягко улыбнулась, и взмахнула рукой. Её странное платье колыхнулось, и рука стала похожа на бело-серебристое, мягкое пушистое крыло... от которого протянулась, рассыпаясь золотыми бликами, уже другая, слепящая золотом и почти что плотная, светлая солнечная дорога, которая вела прямо в «пламенеющую» вдали, открытую золотую дверь...
– Ну, что – пойдём? – уже заранее зная ответ, спросила я Стеллу.
– Ой, смотри, а там кто-то есть... – показала пальчиком внутрь той же самой двери, малышка.
Мы легко скользнули внутрь и... как будто в зеркале, увидели вторую Стеллу!.. Да, да, именно Стеллу!.. Точно такую же, как та, которая, совершенно растерянная, стояла в тот момент рядом со мной...
– Но это же я?!.. – глядя на «другую себя» во все глаза, прошептала потрясённая малышка. – Ведь это правда я... Как же так?..
Я пока что никак не могла ответить на её, такой вроде бы простой вопрос, так как сама стояла совершенно опешив, не находя никакого объяснения этому «абсурдному» явлению...
Стелла тихонько протянула ручку к своему близнецу и коснулась протянутых к ней таких же маленьких пальчиков. Я хотела крикнуть, что это может быть опасно, но, увидев её довольную улыбку – промолчала, решив посмотреть, что же будет дальше, но в то же время была настороже, на тот случай, если вдруг что-то пойдёт не так.
– Так это же я... – в восторге прошептала малышка. – Ой, как чудесно! Это же, правда я...
Её тоненькие пальчики начали ярко светиться, и «вторая» Стелла стала медленно таять, плавно перетекая через те же самые пальчики в «настоящую», стоявшую около меня, Стеллу. Её тело стало уплотняться, но не так, как уплотнялось бы физическое, а как будто стало намного плотнее светиться, наполняясь каким-то неземным сиянием.
Вдруг я почувствовала за спиной чьё-то присутствие – это опять была наша знакомая, Атенайс.
– Прости меня, светлое дитя, но ты ещё очень нескоро придёшь за своим «отпечатком»... Тебе ещё очень долго ждать, – она внимательнее посмотрела мне в глаза. – А может, и не придёшь вовсе...
– Как это «не приду»?!.. – испугалась я. – Если приходят все – значит приду и я!
– Не знаю. Твоя судьба почему-то закрыта для меня. Я не могу тебе ничего ответить, прости...
Я очень расстроилась, но, стараясь изо всех сил не показать этого Атенайс, как можно спокойнее спросила:
– А что это за «отпечаток»?
– О, все, когда умирают, возвращаются за ним. Когда твоя душа кончает своё «томление» в очередном земном теле, в тот момент, когда она прощается с ним, она летит в свой настоящий Дом, и как бы «возвещает» о своём возвращении... И вот тогда, она оставляет эту «печать». Но после этого, она должна опять возвратиться обратно на плотную землю, чтобы уже навсегда проститься с тем, кем она была... и через год, сказав «последнее прощай», оттуда уйти... И вот тогда-то, эта свободная душа приходит сюда, чтобы слиться со своей оставленной частичкой и обрести покой, ожидая нового путешествия в «старый мир»...
Я не понимала тогда, о чём говорила Атенайс, просто это звучало очень красиво...
И только теперь, через много, много лет (уже давно впитав своей «изголодавшейся» душой знания моего удивительного мужа, Николая), просматривая сегодня для этой книги своё забавное прошлое, я с улыбкой вспомнила Атенайс, и, конечно же, поняла, что то, что она называла «отпечатком», было просто энергетическим всплеском, который происходит с каждым из нас в момент нашей смерти, и достигает именно того уровня, на который своим развитием сумел попасть умерший человек. А то, что Атенайс называла тогда «прощание» с тем, «кем она была», было ни что иное, как окончательное отделение всех имеющихся «тел» сущности от её мёртвого физического тела, чтобы она имела возможность теперь уже окончательно уйти, и там, на своём «этаже», слиться со своей недостающей частичкой, уровня развития которой она, по той или иной причине, не успела «достичь» живя на земле. И этот уход происходил именно через год.

Введение

1. Технические данные

2. Устройство и работа генератора

3. Указания по технике безопасности

Заключение

Список литературы

Введение

Турбогенераторы (ТГ) представляют собой основной вид генерирующего оборудования, обеспечивающего свыше 80% общего мирового объема выработки электроэнергии. Одновременно ТГ являются и наиболее сложным типом электрических машин, в которых тесно сочетаются проблемы мощности, габаритов, электромагнитных характеристик, нагрева, охлаждения, статической и динамической прочности элементов конструкции. Обеспечение максимальной эксплуатационной надежности и экономичности ТГ является центральной научно-технической проблемой.

В отечественном турбогенераторостроении огромный вклад в развитие теории, разработку вопросов расчета, проектирования и эксплуатации ТГ внесли многие ученые, исследователи, конструкторы, среди которых в первую очередь следует отметить Алексеева А.Е., Лютера Р.А., Костенко М.П., Одинга А.И., Бергера А.Я., Комара Е.Г., Ефремова Д.В., Иванова Н.П., Глебова И.А., Казовского Е.Я., Еремина М.Я., Вольдека А.И., Жерве Г.К., Важнова А.И. Среди зарубежных специалистов следует отметить Видемана Е., Келленбергера В., Шуйского В.П., Готтера Г.

Вместе с тем, несмотря на огромное количество работ, выполненных за прошедшие десятилетия, вопросы дальнейшего развития теории, разработки более совершенных технологий и конструкций ТГ, методов расчета и исследований не теряют своей актуальности.

Турбогенератор - неявнополюсный синхронный генератор, основная функция которого состоит в конвертации механической энергии в работе от паровой или газовой турбины в электрическую при высоких скоростях вращения ротора (3000,1500об/мин). Механическая энергия от турбины конвертируется в электрическую при помощи вращающегося магнитного поля, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, что в свою очередь приводит к возникновению трехфазного переменного тока и напряжения в обмотках статора. В зависимости от систем охлаждения турбогенераторы подразделяются на несколько видов: генераторы с воздушным охлаждением, генераторы с водородным охлаждением и генераторы с водяным охлаждением. Также существуют комбинированные типы, например, генератор с водородно-водяным охлаждением (ТВВ). Турбогенератор ТВВ-320-2 предназначен для выработки электрической энергии на тепловой электростанции при непосредственном соединении с паровой турбиной К-300-240 Ленинградского металлического завода или Т-250-240 Уральского турбомоторного завода.

1. Технические данные

Номинальные параметры генератора при номинальном давлении и температуре охлаждающих сред даны в табл. 1.

Наименование основных параметров

Номинальный режим

Длительно допустимый режим

Полная мощность, квт

Активная мощность, квт

Коэффициент мощности

Напряжение. в

Частота, гц

Скорость вращения, об/мин

Коэффициент полезного действия, %

Не нормируется

Критическая скорость вращения, об/мин

Соединение фаз обмотки статора

Двойная звезда


Число выводов обмотки статора


Основные параметры охлаждающих сред

Водород в корпусе статора


Дистиллят в обмотке статора


Техническая вода в газоохладителях


Техническая вода в теплообменниках обмотки статора

Избыточное давление технической воды должно быть не больше избыточного давления дистиллята в обмотке.


Допустимое отклонение определяется температурой дистиллята.

Наибольшая допустимая температура отдельных узлов генератора и охлаждающих сред. Изоляция обмоток генератора класса "B".

Наибольшая допустимая температура отдельных узлов генератора и охлаждающих сред указана в табл. 2.

Наименование элементов

генератора

Наибольшая температура, измеренная

по сопротивлению

по термометрам сопротивления

По ртутным термометрам

Обмотка статора

Обмотка ротора

Сердечник статора

Горячий дистиллят на выходе из обмотки

Горячий газ в генераторе

*Допускается превышение температуры обмотки ротора над температурой холодного водорода не более чем на 75.

Допустимая температура по температурам сопротивления, заложенным под клинья статорной обмотки, не должна превышать 75 между показаниями наиболее и наименее нагретого термометров сопротивления не должна превышать 20 могут быть уточнены по согласованию с предприятием-изготовителем для каждой конкретной машины после проведения тепловых испытаний.

Дополнительные технические данные

Расход масла на подшипник генератора (без уплотнения вала), л /мин

Избыточное давление масла в опорных подшипниках, кгс/см 2

Расход масла на уплотнения вала с обеих сторон генератора, л/мин

Газовый объем собранного генератора, м 3

Число ходов воды газоохладителя

Масса газоохладителя, кг

Масса ротора генератора, кг

Масса средней части с серьгой для монтажа (без рым-лап), кг

Масса концевой части, кг

Масса статора с рым-лапами, газоохладителями и щитами, кг

Масса подшипника с траверсой и фундаментной плитой, кг

Масса вывода концевого (крайнего), кг

Масса полущита наружного, кг


2. Устройство и работа генератора

Общая функциональная схема работы

Генератор выполнен с непосредственным охлаждением обмотки статора дистиллированной водой (дистиллятом), а обмотки ротора и сердечника статора – водородом, заключенным внутри газонепроницаемого корпуса.

Дистиллят в обмотке статора циркулирует под напором насосов и охлаждается теплообменниками, расположенными вне генератора.

Охлаждающий водород циркулирует в генераторе под действием вентиляторов, установленных на валу ротора, и охлаждается газоохладителями, встроенными в концевые части корпуса генератора.

Циркуляция воды в газоохладителях и теплообменниках осуществляется насосами, расположенными вне генератора.

Маслоснабжение опорных подшипников и уплотнений вала производится от масляной системы турбины.

Для аварийного снабжения маслом опорных подшипников и уплотнений вала на выбеге агрегата предусмотрены резервные баки, установленные вне генератора.

Генератор возбуждается от высокочастотного индукторного генератора через полупроводниковые выпрямители.

Корпус статора и фундаментные плиты

Сварной газонепроницаемый корпус статора состоит из средней части, несущей сердечник с обмоткой, и двух концевых частей.

В концевых частях располагаются лобовые части обмотки и газоохладители.

В концевой части со стороны возбудителя установлены концевые выводы обмотки - вверху нулевые, а внизу линейные.

Механическая прочность корпуса достаточна, чтобы статор мог выдержать без остаточных деформаций внутреннее давление в случае взрыва водорода.

Наружные щиты статора непосредственно объединены с внутренними щитами, к которым прикреплены щиты вентилятора.

Половины щитов вентиляторов изолированы от внутренних щитов и между собой.

Разъемы щитов расположены в горизонтальной плоскости.

В щитах и в бочке ротора предусмотрены специальные каналы, по которым охлаждающий газ попадает в лобовые части обмотки ротора.

Газоплотность соединений соединения плоскостей корпуса и наружных щитов обеспечивается резиновым шнуром, приклеенным по дну канавок, выфрезерованных в наружных щитах.

Чтобы приникнуть внутрь корпуса, не разбирая наружных щитов, в нижней его части предусмотрен люк.

До установки генератора на фундамент статор опирается на транспортные лапы, приваренные к корпусу.

Статор устанавливается на фундамент посредством рым- лап, которые при транспортировании снимаются.

Основанием для генератора и возбудителя служат фундаментные плиты, выполненные из стальных листов. Они устанавливаются во время монтажа на закладные плиты и постоянные подкладки и подливаются бетоном.

Для крепления генератора к фундаменту используются фундаментные шпильки.

Основанием для подшипника генератора является фундаментная плита коробчатого типа.

Газоохладители

Выделяющееся в генераторе тепло отводится четырьмя вертикальными охладителями.

Каждый охладитель состоит из биметаллических, латунно-алюминиевых трубок с прокатанными алюминиевыми ребрами.

Трубки завальцованы с обеих сторон в трубные доски, к которым приболчены камеры, уплотненные резиной и связанные между собою рамами.

Охладители вставляются в статор сверху и верхними трубными досками опираются на концевые части статора.

Нижние камеры по отношению к корпусу статора уплотнены резиной таким образом, что обеспечивается свободное тепловое расширение охладителей в вертикальном направлении.

Съемные крышки водяных камер позволяют производить чистку трубок и контроль за их состоянием, не нарушая герметичности корпуса статора.

Напорные и сливные трубы присоединены к нижним крышкам.

Для выпуска воздуха из верхних камер охладителей предусмотрены контрольные дренажные трубки.

Каждая трубка, пропущенная через одну из охлаждающих трубок и нижнюю камеру, заканчивается фланцем, приваренным к камере.

К фланцам присоединяются отводящие трубки с кранами, которые во время работы генератора должны быть постоянно открыты с минимальным сливом воды в дренаж.

Сердечник статора

Сердечник статора собран на клиньях из сегментов электротехнической стали толщиной 0.5 мм и вдоль оси разделён вентиляционными каналами на пакеты.

Поверхность сегментов покрыта изоляционным лаком.

Клинья сердечника статора приварены к поперечным кольцам корпуса.

Спрессованный сердечник статора стягивается нажимными кольцами из немагнитной стали. Зубцовая зона крайних пакетов уплотнена нажимными пальцами из не магнитной стали, установленными между сердечником и нажимными кольцами.

Для демпфирования электромагнитных потоков рассеяния лобовых частей обмотки статора под нажимными кольцами установлены медные экраны.

Для уменьшения передачи на корпус и фундамент стопериодных колебаний сердечника в клиньях статора выполнены продольные прорези, что создаёт упругую связь сердечника статора с корпусом.

Обмотка статора

Обмотка статора-трехфазная, двухслойная, с укороченным шагом, стержневая, с транспозицией элементарных проводников. Лобовые части обмотки-корзиночного типа. Стержни обмотки сплетены из сплошных и полых элементарных изолированных проводников и в пазах сердечника закрепляются специальными клиньями.

Для охлаждения обмотки по полым проводникам проходит дистиллированная вода.

На концах стержней припаяны наконечники для подвода воды к полым проводникам. Наконечники припаяны к стержням твёрдым припоем типа П Ср. Электрическое соединение стержней осуществляется медным хомутом и клиньями с пайкой мягким припоем типа ПОС.

Начала и концы обмотки выведены наружу через концевые выводы. Обозначение линейных и нулевых концевых выводов указано на монтажном чертеже, входящем в комплект эксплуатационной документации.

Для подвода и слива охлаждающей воды из обмотки статора имеются кольцевые коллекторы, установленные на изоляторах. Соединение коллекторов со стержнями обмотки осуществляется водосоединительными трубками из изоляционного материала. Охлаждающая вода в обмотке проходит по двум стержням, шинам и выводам, соединенным последовательно. Для контроля заполнения коллекторов водой и для выпуска из них воздуха в верхних точках коллекторов установлены дренажные трубки, выведенные из корпуса статора наружу.

В период эксплуатации дренажные трубки должны быть открыты с минимальным сливом для непрерывного удаления воздуха из системы охлаждения обмотки статора. Контроль проходимости дистиллята в стержнях обмотки статора осуществляется измерением температуры термосопротивлениями, заложенными под клинья в каждом пазу сердечника статора.

Ротор изготовлен из цельной поковки специальной стали, обеспечивающей его механическую прочность при всех режимах работы генератора.

Обмотка ротора выполнена из полосовой меди с присадкой серебра. Её охлаждение осуществляется непосредственно водородом по схеме самовентиляции с забором газа из зазора машины.

Дюралюминиевые клинья, удерживающие обмотку в пазах, имеют заборные и выходные отверстия для охлаждающего газа, совпадающие с боковыми каналами, выфрезерованными в катушках.

Пазовая и витковая изоляции катушек выполнены из прессованного стеклополотна на теплостойком лаке. Контактные кольца, насаженные в горячем состоянии на промежуточную, изолированную от них втулку, установлены за подшипником со стороны возбудителя.

Стержни токоподвода, расположенные в центральном отверстии ротора, соединяются с обмоткой и контактными кольцами с помощью изолированных гибких шин и специальных изолированных болтов, которые для обеспечения газоплотности ротора имеют уплотнения сальникового типа.

Роторные бандажи, выполненные из специальной немагнитной стали, имеют горячепрессовую посадку на центрирующую заточку бочки ротора.

От осевых перемещений бандажное кольцо удерживается кольцевой шпонкой и гайкой, навинченной на носик бандажа с наружной стороны.

Лобовые части обмотки ротора изолированы от бандажей и центрирующих колец изоляционными сегментами.

Опорные подшипники

Опорный подшипник генератора, установленный со стороны возбудителя, является подшипником стоякового типа и имеет шаровой самоустанавливающийся вкладыш.

Смазка подшипника-принудительная. Масло подаётся под избыточным давлением из напорного маслопровода турбины.

В конструкции подшипника предусмотрен дистанционный контроль температуры баббита вкладыша и сливного масла с помощью термометров сопротивления. Визуальный контроль слива масла производится через стекло в патрубке.

На удлинённой части основания стояка подшипника установлена щеточная траверса, которая служит для подвода тока возбуждения к контактным кольцам ротора.

Для устранения подшипниковых токов предусмотрена изоляция этого подшипника от фундамента и от всех маслопроводов.

На стойке каркаса траверсы предусмотрена установка изолированной от корпуса щётки, которая используется при измерении сопротивления изоляции обмотки ротора и для введения защиты от двойного замыкания обмотки ротора на корпус.

Опорный подшипник генератора со стороны турбины поставляется турбинным заводом.

Уплотнения вала

Для предотвращения выхода водорода из статора на наружных щитах генератора установлены двухкамерные масляные уплотнения вала торцевого типа. В уплотнениях этого типа вкладыш с баббитовой заливкой постоянно прижимается к упорному кольцу вала ротора давлением прижимного масла и следует за всеми перемещениями ротора вдоль оси.

Уплотняющее масло под давлением, превышающим давление газа в генераторе, подаётся в напорную камеру и оттуда через отверстия во вкладыше поступает в кольцевую канавку, проточенную в баббитовой заливке вкладыша. Затем масло заполняет радиальные канавки и клиновые скосы и растекаясь в обе стороны от кольцевой канавки, образует при вращении сплошную пленку, которая препятствует утечке газа из корпуса генератора.

Камеры уплотняющего и прижимного масла, образованные между корпусом и вкладышем, уплотнены резиновыми шнурами, помещенными в кольцевые канавки на поверхности вкладыша.

Для защиты внутренней полости статора от попадания масла предусмотрены маслоуловители, установленные на наружных щитах между уплотнением вала и внутренней полостью статора, и дополнительные камеры в вентиляторных щитах.

Для устранения подшипниковых токов корпус уплотнения и маслоуловитель со стороны возбудителя изолированы от наружного щита и маслопроводов.

Необходимое давление уплотняющего и прижимного масла обеспечивается регуляторами, входящими в систему маслоснабжения.

Вентиляция

Вентиляция генератора осуществлена по замкнутому циклу. Газ охлаждается газоохладителями, встроенными в корпус статора. Необходимый напор газа создаётся двумя вентиляторами, установленными на валу ротора.

3. Указания по технике безопасности

На электростанциях, оборудованных генераторами с водородным охлаждением, руководствоваться ведомственными правилами по технике безопасности.

При работе генератора с водородным охлаждением в какой-то степени происходить утечка водорода в атмосферу. Образовавшаяся газовая смесь может загореться, а при содержании в ней пяти и более процентов водорода- взорваться.

Чтобы исключить возможность пожаров и взрывов во время монтажа, при подготовке к работе и в эксплуатации, принять меры к тому, чтобы поблизости от генератора не было невентилируемых объемов, куда может проникать водород.

При осуществлении вентиляции этих объёмов исключить возможность попадания водорода на узлы агрегата, работающего с искрением или имеющего высокую температуру.

Допуск обслуживающего персонала в корпус генератора производить после того, как из него полностью вытеснен углекислый газ и проведен химический анализ воздуха.

Заключение

В настоящее время электроэнергия в основном вырабатывается на тепловых, гидравлических и атомных электростанциях. Из них преимущественное развитие получили тепловые электростанции, что объясняется следующим. Стоимость электроэнергии, вырабатываемой гидроэлектростанциями, значительно ниже стоимости электроэнергии, вырабатываемой тепловыми станциями. Однако по размерам капиталовложений гидроэлектростанции в несколько раз дороже тепловых и сооружаются они более длительное время. Поэтому наращивание мощностей для покрытия всё возрастающих потребностей в электроэнергии более целесообразно за счет строительства тепловых электростанций. В этом случае, вместе с более быстрым ростом энерговооружаемости ускоряется рост производительности труда во всех народного хозяйства, что оказывает дополнительное влияние на сокращение сроков окупаемости производимых затрат. генератор котельный циркуляция маслоснабжение

Изложенное подтверждает актуальность установки на котельных турбогенераторов, главным образом, как для покрытия собственных нужд котельных, так и отдачи внешним потребителям электроэнергии.

Список литературы

1. Браймайстер Л.Г., Поздняков Б.И., Теймуразян Ю.В. и др. "Руководство по капитальному ремонту турбогенератора ТВВ-320-2", Москва: СПО ОРГРЭС, 1976 г.

2. Федоров В.А., Смирнов В.М. "Опыт разработки, строительства и ввода в эксплуатацию малых электростанций", Москва: Теплоэнергетика, №1, 2000 г.

3. Кореннов Б.Е. "Замена РОУ противодавленческой турбиной – эффективное энергосберегающее предприятие для котельных и ТЭЦ", Москва: Промышленная энергетика, №7, 1997 г.

4. Бушуев В.В., Громов Б.Н., Доброхотов В.И. и др. "Научно-технические и организационно-экономические проблемы внедрения энергосберегающих технологий", Москва: Теплоэнергетика, №11, 1997 г.

5. Хрилев Л.С. "Основные направления развития теплофикации", Москва: Теплоэнергетика, №4, 1998 г.

6. Доброхотов В.И. "Энергосбережение: проблемы и решения", Москва: Теплоэнергетика, №1, 2000 г.

Электрической энергии, приводимый во вращение паровой или газовой турбиной. Обычно это синхронный генератор, непосредственно соединенный с турбиной тепловой электростанции (ТЭС). Так как турбины, используемые на ТЭС, работающих на органическом топливе, имеют наилучшие технико-экономические показатели при больших частотах вращения, то турбогенераторы, находящиеся на одном валу с турбинами, должны быть быстроходными (частота вращения 1500 или 3000 об/мин).

Турбогенератор является электрической машиной горизонтального исполнения. Ее обмотка возбуждения расположена на роторе с неявно выраженными полюсами, трехфазная рабочая обмотка - на статоре. Ротор, испытывающий сильные механические напряжения, выполняют из целых поковок высококачественных сталей. По условиям прочности линейная скорость точек ротора не должна превышать 170-190 м/с, что ограничивает его диаметр до 1, 2-1, 3 м. Относительно малый диаметр ротора обусловливает его сравнительно большую длину, которая, однако, ограничена допустимым прогибом вала и не превышает 7, 5-8, 5 м. На поверхности ротора профрезерованы продольные пазы, в которые укладывают витки обмотки возбуждения. Обмотку крепят клиньями, закрывающими пазы, и массивными бандажами из немагнитной стали, охватывающими лобовые (торцевые) части обмотки. Питается обмотка от возбудителя электрических машин.

Статор турбогенератора состоит из корпуса и сердечника с пазами для обмотки. Сердечник изготовляют из нескольких пакетов, набираемых из листов электротехнической стали толщиной 0, 35-0, 5 мм, покрытых слоем лака. Между отдельными пакетами оставляют вентиляционные каналы шириной 5-10 мм. В пазах обмотку крепят клиньями, а ее лобовые части укрепляют на специальных кольцах, расположенных в торцевой части статора. Сердечник помещают в стальной сварной корпус, закрываемый с торцов щитами.

Турбогенераторы атомных электростанций обладают особенностями, связанными с тем, что пар, вырабатываемый в ядерном реакторе, имеет относительно низкие параметры. Это позволяет выполнять ротор с диаметром до 1, 8 м. При этом размер поковки ротора ограничивается технологическими возможностями, максимальная масса поковки достигает 140-180 т. Турбогенераторы мощностью до 30 Мвт имеют замкнутую систему воздушного охлаждения; при мощности свыше 30 Мвт воздушную среду заменяют водородной с избыточным давлением около 5 кн/кв.м. Использование водорода в качестве теплоносителя позволяет увеличить съем тепла с охлаждаемых поверхностей, так как теплоемкость водорода в несколько раз превышает теплоемкость воздуха, и повысить мощность турбогенератора. Циркуляция теплоносителя обеспечивается вентиляторами, расположенными на одном валу с турбогенератором. Тепло снимается с поверхностей изолированных проводников и стальных сердечников. Нагревшийся теплоноситель поступает в специальный охладитель. При водородном охлаждении он встраивается в турбогенератор и вся система охлаждения герметизируется. Для интенсификации охлаждения при мощности турбогенератора свыше 150 Мвт давление водорода в системе повышают до 300-500 кн/кв.м, а при мощности свыше 300 Мвт используют внутреннее охлаждение проводников обмотки водородом или дистиллированной водой. При водородном охлаждении проводники обмотки делают с боковыми вырезами-каналами, а при водяном охлаждении применяют полые проводники. В крупных турбогенераторах охлаждение обычно комбинированное: например, обмотки статора и ротора охлаждаются водой, а сердечник статора - водородом. Повышение мощности турбогенератора приводит к снижению удельного расхода материалов и к снижению затрат на его изготовление в расчете на квт мощности.

Лекция 9

Электрическая часть электростанций

Электрическая станция представляет собой промышленное предприятие, на котором производится электрическая, а в некоторых случаях и тепловая энергия на основе преобразования первичных энергоресурсов.
В зависимости от вида природных источников энергии (твердое топливо, жидкое, газообразное, ядерное, водяная энергия) станции подразделяются на тепловые (ТЭС), гидравлические (ГЭС), атомные (АЭС). Станции, на которых одновременно с электрической вырабатывается и тепловая энергия, называют теплоэлектроцентралями (ТЭЦ).

Независимо от типа электростанции ее электрическую часть составляют электрогенераторы – устройства для преобразования первичной энергии (чаще всего механической) в электрическую, а также другие аппараты для преобразования и управления потоком электрической энергии: трансформаторы, выключатели, разъединители.

Электрогенераторы

Для выработки электроэнергии на современных электрических станциях применяют синхронные генераторы трехфазного переменного тока. Различают турбогенераторы (ТГ) (первичный двигатель – паровая или газовая турбина) и гидрогенераторы (первичный двигатель - гидротурбина).

Турбогенераторы предназначены для непосредственного соединения с паровыми или газовыми турбинами и, так как особенностью этих турбин является их быстроходность, имеют высокую частоту вращения. Чем выше частота вращения турбины, тем меньше ее габариты и больше к. п.д., поэтому естественно стремление повысить быстроходность турбогенераторов. Однако эта быстроходность имеет предел, ограниченный номинальной частотой сети f = 50 Гц и минимальным числом пар полюсов генератора р = 1.

Для синхронных генераторов в установившемся режиме существует строгое соответствие между частотой вращения агрегата n , об/мин, и частотой сети f , Гц

где – число пар полюсов обмотки статора генератора.

Паровые и газовые турбины выпускают на большие частоты вращения (3000 и 1500 об/мин), так как при этом турбогенераторы имеют наилучшие технико-экономические показатели. На ТЭС, сжигающих обычное топливо, частота вращения агрегатов составляет, как правило, 3000 об/мин, а синхронные генераторы имеют два полюса.

Таким образом, при частоте сети 50 Гц, принятой в нашей стране и в странах Западной Европы, максимальная частота вращения турбогенераторов равна 3000 об/м, а в США и Японии, где частота сети 60 Гц, наибольшая частота вращения двухполюсных турбогенераторов равна 3600 об/мин.

На АЭС применяют также генераторы с двумя парами полюсов. К турбине они подключаются через редуктор, снижающий частоту вращения до 1500 об/мин.

Высокая частота вращения ТГ определяет и особенности его конструкции. Эти генераторы выполняются с горизонтальным расположением ротора. Ротор ТГ работает при больших механических и тепловых нагрузках. Поэтому он изготовляется из цельной поковки специальной высококачественной стали (хромоникелевой или хромоникельмолибденовой), обладающей высокими магнитными и механическими свойствами.

У турбогенераторов ротор , как правило, выполняется неявнополюсным . Вследствие значительной частоты вращения размеры его ограничены: по длине (во избежание прогибов, приводящий к вибрациям) – 6-6,5 м и по диаметру (для снижения окружных усилий при вращении) – 1,1-1,2 м.

В активной части ротора, по которой проходит основной магнитный поток, фрезеруются пазы, заполняемые катушками обмотки возбуждения. В пазовой части обмотки закрепляются немагнитными легкими, но прочными клиньями из дюралюминия. Лобовая часть обмотки, не лежащая в пазах, предохраняется от смещения под действием центробежных сил с помощью бандажа. Бандажи являются наиболее напряженными в механическом отношении частями ротора и обычно выполняются из немагнитной высокопрочной стали.


Турбогенераторы – применение в энергетике

Турбогенераторы с комбинированным водородно-водяным охлаждением предназначены для работы на атомных электростанциях (АЭС). Асинхронные турбогенераторы используются в составе мощных ТЭЦ и в энергосистемах со значительными колебаниями нагрузки. Асинхронные турбогенераторы также имеют комбинированное водородно-водяное охлаждение. Турбогенераторы с воздушным и масляным охлаждением применяются на тепловых электростанциях (ТЭС) с различной мощностью.

Гидравлические турбины имеют обычно относительно малую частоту вращения (60 – 600 об/мин). Частота вращения тем меньше, чем меньше напор воды и чем больше мощность турбины. Гидрогенераторы поэтому являются тихоходными машинами и имеют большие размеры и массы, а также большое число пар полюсов.

Частота вращения гидрогенератора принимается равной наиболее выгодной частоте вращения турбины, отвечающей при данных напоре (Н) и расходе воды наилучшим гидравлическим характеристикам турбины и её наибольшей экономичности

,

где К б - коэффициент быстроходности, зависящий от типа турбины, об/мин;

Н - напор, м;

Р - мощность турбины, МВт.

Так как напоры и расходы воды на различных гидроэлектростанциях отличаются большим разнообразием, частота вращения гидрогенераторов лежит в широком диапазоне, от 50 до 750 об/мин. Частота вращения тем меньше, чем ниже напор воды и выше мощность гидроагрегата.

Гидроагрегаты поэтому являются тихоходными машинами, имеют большие размеры и массы, а также большое число полюсов.

К б составляет 20-40 об/мин для ковшевых турбин, 50-450 об/мин для радиально осевых турбин и 400-1200 об/мин (чаще 600-800 об/мин) для поворотно-лопастных турбин.
Как видно из формулы (1-2), частота вращения тем меньше, чем выше мощность гидроагрегата и ниже напор. Большая часть исполненных машин имеет частоту вращения в пределах от 50 до 125 об/мин, т. е. относится к тихоходным машинам. Число полюсов всегда выражается целым числом, поэтому частота вращения гидрогенераторов иногда оказывается дробной, например гидрогенераторы Иркутской ГЭС имеют частоту вращения 83,3 об/мин (р = 36), Саратовской ГЭС - 51,5 об/мин (р = 58), Краноярской ГЭС - 93,8 об/мин (р = 32).

Гидрогенераторы выполняют с явнополюсными роторами и преимущественно с вертикальным расположением вала. Диаметры роторов мощных гидрогенераторов достигают 14 – 16 метров, а диаметры статоров – 20 – 22 м (рис. 6.2).

В машинах с большим диаметром ротора сердечником служит обод, собираемый на спицах, которые крепятся на втулках ротора. Полюсы, как и обод, делают наборными из стальных листов и монтируют на ободе ротора с помощью Т-образных выступов. На полюсах помимо обмотки возбуждения размещается еще так называемая демпферная обмотка, которая образуется из медных стержней, закладываемых в пазы на полюсных наконечниках и замыкаемых с торцов ротора кольцами. Эта обмотка предназначена для успокоения колебаний ротора агрегата, которые возникают при всяком возмущении, связанном с резкими изменениями нагрузки генератора.

Самым основным предназначением данного агрегата является преобразование энергии механического типа, получаемой вследствие вращения турбины (газовой или паровой), в электрическую. Данное преобразование является результатом вращения магнитного поля самого ротора в статоре. Возникает это поле из-за установленного на роторе магнита или тока постоянного напряжения. Это способствует возникновению тока в обмотках статора, а также переменного трёхфазного напряжения. Они прямо пропорциональны этому полю.

Принцип действия турбогенератора основан на выработке электрической энергии в довольно длительном номинальном режиме функционирования. При этом данные агрегаты соединены с паровыми либо же газовыми турбинами. Применяются турбогенераторы на атомных и тепловых электростанциях. В зависимости от мощности данного оборудования, его разделяют на три основные категории:

  • 2,5 - 32 МВт;
  • 60 - 320 МВт;
  • мощность турбогенераторов более чем 500 МВт.

Что касается частоты вращения, то турбогенераторы бывают:

  • двухполюсные с частотой вращения от 1500 до 1800 оборотов в минуту;
  • четырёхполюсные (300 - 3600 об/мин).

В устройство турбогенератора входит цилиндрический ротор, который монтируется на 2-х специальных подшипниках скольжения, и двухслойные обмотки статора. В зависимости от того, какая применяется система возбуждения, эти агрегаты могут быть с независимым и статическим самовозбуждением, а также бесщёточными.

В зависимости от электрической мощности и самих технических задач энергоснабжения, различают следующие типы турбогенераторов с различными системами охлаждения:

  • масляные;
  • воздушные;
  • водородные;
  • асинхронные;
  • комбинированные водородно-водяные.

Последний тип данных устройств чаще всего используют для работы на АЭС. Асинхронные же турбогенераторы нашли своё применение в энергетических системах с высокими колебаниями нагрузки и составе мощных ТЭЦ. Агрегаты масляным и воздушным охлаждением применяют для работы на тепловых электростанциях (ТЭС), обладающих различной мощностью.

Срок службы турбогенераторов зависит от условий его эксплуатации. Также, на него влияет нагрев основных узлов (ротора, обмоток и сердечника статора) и охлаждающая среда. Кроме этого следует помнить и знать, что продолжительное превышение напряжения на трансформаторах, ограничителях напряжения, шунтирующих реакторах больше допустимого приводит к существенному снижению срока эксплуатации данного агрегата и росту аварийности.

Конструкция турбогенератора

Сюда входит два самых главных компонента - статор и ротор. Каждый из них обладает наличием множества элементов и систем. Ротор представляет собой вращающееся устройство турбогенератора. На него оказывают воздействие электромагнитные, механические и термические нагрузки. Статор же установлен стационарно. Но на него также влияют различные динамические нагрузки (высоковольтные, крутящие, вибрационные и др.).

Сердечник самого турбогенератора собирают из высоколегированной листовой горячекатаной стали. Если же его мощность превышает 100 МВт, то используется холоднокатаная сталь. Её листы расположены таким образом, чтобы направление, в котором движется магнитный поток в спинке самого сердечника, совпадало с направлением прокатки стали. Из этих листов набираются специальные пакеты, из которых уже формируются элементы сердечника. Все имеющиеся вентиляционные каналы между этими пакетами изготавливаются при помощи распорок из стали немагнитного типа.

Обмотки статора делают двухслойными и стойкими к коррозии. В каждый имеющийся паз вставляются два стержня, которые относятся к двум различным секциям. В самих обмотках применяется непрерывная изоляция. Статор турбогенератора включает в себя сам несущий корпус, в который устанавливается сердечник, и рёбра, жёстко связанные с опорными рамами. Между этими двумя элементами устанавливаются упругие детали. Изготавливаются они в виде прямоугольных эластичных призм. Между опорными площадками присутствуют сквозные овальные отверстия.

Паровая турбина турбогенератора

Это один из видов тепловых двигателей ротативного типа, который применяет энергию водяного пара. В ней происходит двукратное преобразование тепловой энергии пара в механическую работу. По сравнению с поршневой машиной, паровая турбина является на много удобней в использовании, экономичной и компактной.

При истечении самого пара сквозь сопла, его потенциальная энергия трансформируется в кинетическую, передаваемую непосредственно на сами лопатки. Комплект рабочих лопаток и неподвижных насадок называют ступенью турбины, которая может быть реактивной и активной.

Принцип действия данного устройства заключается в следующем. Через паропровод перегретый пар от котла подводится непосредственно к самой паровой турбине турбогенератора. Именно тут большая доля его тепловой энергии преобразуется в механическую работу. Затем этот отработанный с довольно сильно низким уровнем температуры и давления направляется в конденсатор. Тут присутствует система трубок, по которым постоянно прокачивается охлажденная вода. После соприкосновения с холодной поверхностью пар конденсируется, превращаясь в воду. Этот образовавшийся конденсат откачивается насосом и подаётся в сборный бак через специально предназначенный подогреватель и затем в паровой котёл. Отсюда можно сделать вывод, что в паровой турбине вода, пар и конденсат образуют замкнутый цикл. Потеря пара и воды совсем незначительная, но она компенсируется при помощи добавления в саму систему сырой воды, проходящую заранее через очиститель воды. Ту т она подвергается специальной химической обработке, чтобы удалить все нежелательные примеси.

КПД турбогенератора

Величина данного параметра определяется самим заводом-изготовителем, а именно конструкцией и числом применённых активных материалов. Но стоит помнить, что только лишь обслуживающий персонал при нормальной работе турбогенератора способен увеличить коэффициент полезного действия путём минимизирования определённых потерь.

КПД данного агрегата равен отношению выдаваемой полезной мощности к той мощности, которая подводится к турбогенератору от турбины. Этот показатель зависит от нагрузки, которую несёт само устройство. Для многих турбогенераторов максимальное значение данного коэффициента находится непосредственно в самой нагрузке, составляющей порядка 80-90% от номинальной. Это соответствует вполне нормальной работы турбины в экономичном режиме.

Выставка «Электро»

Данное международное мероприятие является самым масштабным не только в России, но и в странах СНГ. Тут будет осуществлён показ электрооборудования для энергетики, автоматизации, светотехники и электротехники.

Каждый посетитель выставки «Электро» в ЦВК «Экспоцентр» сможет увидеть самые актуальные и инновационные разработки в данной отрасли, начиная генерацией энергии и завершая её потреблением.

Здесь вы сможете более детально узнать о том, что такое турбогенератор, его назначение, типы, устройство и принцип работы. На данной выставке ежегодно уже 25 лет собираются ведущие специалисты и представители крупнейших производств со всего мира, чтобы обсудить самые актуальные вопросы и узнать много интересного в данной отрасли.