Лабораторные работы по идентификации отпечатка пальца. Устройство идентификации личности по отпечаткам пальцев. Как отпечатки пальцев могут служить средством идентификации

Во второй части статьи (первая опубликована в РС Мagazin/RE, 1/2004) раскрыты основные методы распознавания отпечатков пальцев, алгоритмы построения систем распознавания и некоторые методы защиты от муляжей. Но прежде чем перейти к этим вопросам, рассмотрим, что собой представляет и как появляется папиллярный узор на поверхности пальцев.

Кожа человека состоит из двух слоев: эпидермиса (ерidermis), наружного слоя, и дермы (derma), более глубокого слоя.

На пятом месяце внутриутробного развития человека дерма, до этого ровная, становится неровной и начинает приобретать вид множества чередующихся между собой дермальных бугорков (иногда их называют сосочками). На поверхности пальцев эти бугорки складываются в ряды. Эпидермис повторяет строение внешнего слоя дермы и образует небольшие складки, отображающие и повторяющие ход рядов дермальных бугорков.

Складки, которые мы видим на поверхности кожи невооруженным глазом, называются папиллярными линиями (от латинского рарillae - сосочки) и отделяются друг от друга неглубокими бороздками. На вершинах складок, гребнях папиллярных линий, находятся многочисленные мельчайшие поры - наружные отверстия выводных протоков потовых желез кожи. Папиллярные линии на поверхности пальцев рук образуют различные узоры, называемые папиллярными узорами.

Окончательно папиллярный узор на поверхности пальцев формируется к седьмому месяцу внутриутробного развития. С этого времени бороздки, сформировавшиеся на поверхности пальцев, остаются неизменными в течение всей жизни человека.

Строение верхнего слоя кожи пальцев рук человека, эпидермиса, таково, что оно предохраняет дерму, т. е. собственно кожу, от механических повреждений. После любых повреждений эпидермиса, не затрагивающих дермальных бугорков, папиллярный узор в процессе заживления восстанавливается в прежнем виде, что подтверждено многочисленными экспериментами. Если же дермальные бугорки повреждаются, то образуется рубец, в определенной мере деформирующий папиллярный узор, но принципиально не изменяющий первоначального общего рисунка, причем сам рубец может быть использован как вторичный признак при идентификации.

В российской традиционной дактилоскопии папиллярные узоры пальцев рук делятся на три основных типа: дуговые (около 5% всех отпечатков), петлевые (65%) и завитковые (30%); для каждого типа проводится более детальная классификация на подтипы. Однако в рамках этой статьи будут рассмотрены в первую очередь методы автоматизированной идентификации человека, а не дактилоскопии.

Методы распознавания

В зависимости от качества изображения отпечатков пальцев, полученного со сканера, на нем можно выделить некоторые характерные признаки поверхности пальцев, которые в дальнейшем можно использовать для идентификации.

На самом простом техническом уровне, например при разрешении полученного со сканера изображения поверхности пальца 300-500 точка/дюйм, на нем видно достаточно большое количество мелких деталей (minutiae), по которым можно их классифицировать, но, как правило, в автоматизированных системах используют всего два типа деталей узора (особых точек): конечные точки, в которых отчетливо заканчиваются папиллярные линии, и точки ветвления, в которых папиллярные линии раздваиваются.

Если есть возможность получить изображение поверхности пальца с разрешением около 1000 точка/дюйм, то на нем можно обнаружить детали внутреннего строения самих папиллярных линий, в частности поры потовых желез, и соответственно использовать уже их расположение для идентификации. Однако из-за сложности получения в нелабораторных условиях изображений такого качества этот метод мало распространен.

При автоматизированном распознавании отпечатков пальцев (в отличие от традиционной дактилоскопии) возникает гораздо меньше проблем, связанных с различными внешними факторами, влияющими на сам процесс распознавания. При получении отпечатков пальцев красковым способом (с помощью откатки) важно исключить либо, по крайней мере, максимально уменьшить смещение или поворот пальца, изменение давления, изменение качества поверхности кожи и т. д. С электронных бескрасковых сканеров получить изображение отпечатка пальца с достаточным для обработки качеством значительно проще. Качество получаемого со сканера изображения папиллярного узора пальца - один из основных критериев, от которого зависит избираемый алгоритм формирования свертки отпечатка пальца и, следовательно, идентификации человека.

В настоящее время выделяют три класса алгоритмов сравнения отпечатков пальцев.

1. Корреляционное сравнение - два изображения отпечатка пальца накладываются друг на друга, и подсчитывается корреляция (по уровню интенсивности) между соответствующими пикселами, вычисленная для различных выравниваний изображений друг относительно друга (например, путем различных смещений и вращений); по соответствующему коэффициенту принимается решение об идентичности отпечатков. Из-за сложности и длительности работы данного алгоритма, особенно при решении задач идентификации (сравнение «один-ко-многим»), системы на его основе сейчас практически не используются.

2. Сравнение по особым точкам - по одному или нескольким изображениям отпечатков пальцев со сканера формируется шаблон, представляющий собой двухмерную поверхность, на которой выделены конечные точки и точки ветвления. На отсканированном изображении отпечатка также выделяются эти точки, их карта сравнивается с шаблоном, и по количеству совпавших точек принимается решение по идентичности отпечатков. В работе алгоритмов данного класса реализуются механизмы корреляционного сравнения, но при сравнении положения каждой из предположительно соответствующих друг другу точек. В силу простоты реализации и скорости работы алгоритмы данного класса наиболее широко распространены. Единственный существенный недостаток данного метода сравнения - достаточно высокие требования к качеству получаемого изображения (около 500 точка/дюйм).

3. Сравнение по узору - в данном алгоритме сравнения используются непосредственно особенности строения папиллярного узора на поверхности пальцев. Полученное со сканера изображение отпечатка пальца разбивается на множество мелких ячеек (размер ячеек зависит от требуемой точности). Расположение линий в каждой ячейке описывается параметрами некоторой синусоидальной волны, т. е. задается начальный сдвиг фазы, длина волны и направление ее распространения. Полученный для сравнения отпечаток выравнивается и приводится к тому же виду, что и шаблон. Затем сравниваются параметры волновых представлений соответствующих ячеек. Преимущество алгоритмов сравнения этого класса в том, что они не требуют изображения высокого качества.

В рамках статьи мы ограничимся обобщенным описанием работы каждого из классов алгоритмов, на практике это все выглядит намного сложнее с точки зрения как математического аппарата, так и работы с изображением. Отметим, что в автоматизированной идентификации существует несколько проблем, связанных со сложностью сканирования и распознавания некоторых типов отпечатков пальцев, в первую очередь это касается маленьких детей, так как их пальцы очень малы для того, чтобы даже на хорошем оборудовании получить их отпечатки с детализацией, приемлемой для распознавания. Кроме этого, около 1% взрослых людей обладают настолько уникальными отпечатками пальцев, что для работы с ними приходится разрабатывать специализированные алгоритмы обработки или делать исключение в виде персонального для них отказа от биометрии.

Подходы к защите от муляжей

Проблема зашиты самых различных биометрических систем от муляжей биометрических идентификаторов - одна из самых сложных как для всей области, так и в первую очередь для технологии распознавания отпечатков пальцев. Связано это с тем, что отпечатки пальцев относительно легко получить по сравнению, например, с радужной оболочкой глаза или 3D формой руки, и изготовление муляжа отпечатка пальца выглядит также более простой задачей. Мы не будем касаться технологий изготовления муляжей отпечатков пальцев, об этом в последнее время появилось достаточно информации во многих источниках. Остановимся на рассмотрении основных методов и подходов к защите от них.

Обобщенно все методы можно разделить на две группы.

1. Технические - методы зашиты, реализованные либо на уровне программного обеспечения, работающего с изображением, либо на уровне считывающего устройства. Рассмотрим их подробнее.

  • Защита на уровне считывающего устройства заключается в том, что в самом сканере реализован алгоритм получения изображения, который позволяет получить отпечаток пальца только с «живого» пальца, а не с муляжа, - например, так работают оптоволоконные сканеры, описанные в первой части статьи;
  • Защита по дополнительной характеристике заключается в получении с помощью сканирующего устройства некоторой дополнительной характеристики, по которой можно принять решение, является ли предоставленный идентификатор муляжом. Например, с помощью ультразвуковых сканеров можно получать информацию о наличии пульса в пальце, в некоторых оптических сканерах с высоким разрешением можно определить наличие на изображении частиц пота и т. д. Практически у каждого производителя есть такая «фирменная» характеристика, о которой, как правило, не говорится, поскольку, зная ее, гораздо легче найти способ обхода этой защиты;
  • Защита по предыдущим данным, когда отпечаток последнего прикасавшегося к сканеру пальца остается на его поверхности, чем можно воспользоваться при изготовлении муляжа. В этом случае защищаются путем хранения нескольких последних изображений со сканера (для каждого производителя их число разное), с которыми в первую очередь сравнивается любое новое изображение. А так как дважды приложить абсолютно одинаково палец к сканеру нельзя, при любом совпадении принимается решение о применении муляжа.

    2. Организационные - суть этих методов в организации процессов аутентификации таким образом, чтобы затруднить или исключить возможность использования муляжа. Рассмотрим эти методы.

  • Усложнение процесса идентификации. В процессе регистрации отпечатков пальцев в системе на каждого пользователя регистрируется несколько пальцев (в идеале все 10). Затем непосредственно в процессе аутентификации у пользователя запрашиваются для проверки несколько пальцев в произвольной последовательности, что значительно затрудняет вход в систему по муляжу;
  • Мулътибиометрия или многофакторная биометрия. Здесь для аутентификации реализуется несколько биометрических технологий, например отпечаток пальца и форма лица или сетчатка глаза и т. д;
  • Многофакторная аутентификация. Для усиления защиты используется совокупность методов аутентификации, например биометрия и смарт-карты или е-token.

    Заключение

    В данной статье было представлено общее описание внутренних особенностей получившей наибольшее распространение биометрической технологии. Не рассмотрены еще очень многие аспекты построения систем, основанных на автоматизированном распознавании человека по отпечаткам пальцев, такие, как обработка и нормализация изображений, особенности построения корпоративных сетевых систем, серверы биометрической аутентификации, виды атак на биометрические системы и способы защиты от них и т.д., каждая из которых представляет собой отдельную тему для большого материала. Распознавание по отпечаткам пальцев становится все интереснее в свете планируемых в ближайшие несколько лет реформ российских заграничных и внутренних паспортов и уже внедряемых в некоторых странах правил въезда по визам, содержащим биометрические данные, и в первую очередь отпечатки пальцев.

    PC Magazine/Russian Edition

  • Сафин И.Т, Старухин Г.А., студенты Уфимского государственного колледжа радиоэлектроники

    Туктаров Р.Ф., научный руководитель, научный сотрудник ИФМК УНЦ РАН

    Студентами колледжа радиоэлектроники Сафиным И.Т. и Старухиным Г.А. было разработано устройство, позволяющее определять личность человека по отпечатку его большого пальца. В основу разработки положены методы дактилоскопии, которая в свою очередь является частью более общей методологии, называемой биометрией.

    Биометрия – наука о характерных особенностях человеческого тела. К таковым относят отпечатки пальцев, радужная оболочка глаза, тембр голоса, запах и др. Многие из таких параметров уникальны для каждого человека, а, следовательно, имея возможность определить их, возможно практически безошибочно определить человека, проходящего идентификацию.

    Отпечатки пальцев, как наиболее популярные биометрические характеристики человека, стали применяться еще в XIX веке. Первыми работами на эту тему были работы профессора Бронеславского университета Я.Э. Пуркинье и английского антрополога Френсиса Гальтона. Пуркинье первым описал папиллярные узоры поверхности пальцев человека, а Гальтон разработал первую систему классификации признаков.

    Состав устройства.

    Устройство идентификации личности по отпечаткам пальцев состоит из

    1) сканера отпечатков пальцев,

    2) программы-обработчика, позволяющей производить анализ и идентификацию отпечатков.

    Разработкой сканера устройства занимался студент колледжа радиоэлектроники Сафин И.Т.

    Структурная схема устройства идентификации личности по отпечаткам пальцев:

    На схеме показаны ПК, Веб-камера, схема задержки, рабочая поверхность, подсветка и блок питания.

    Структурная схема устройства идентификации личности по отпечаткам пальцев включает в себя блоки:

    ПК – в нем происходит обработка полученного с устройства изображения;

    Веб-камера – снимает отпечаток пальца;

    Схема задержки – задерживает сигнал нажатия при прикладывании пальца к рабочей поверхности, что необходимо для автоматической настройки светочувствительности камеры и для того чтобы палец успел «растечься» по рабочей поверхности;

    Исполнительное устройство – служит для прикладывания пальца и для нажатия на кнопку веб-камеры которая делает снимок;

    Подсветка – служит для подсветки рабочей области -внутри корпуса устройства, чтобы выделить дорожки и впадины на отпечатке прикладываемом на рабочую поверхность;



    Блок питания – служит для питания цепи подсветки и схемы задержки.

    В данном устройстве используется эффект нарушенного полного внутреннего отражения, что позволяет получать снимки поверхности пальца в которых четко видны границы между дорожкой и бороздкой. Этот эффект получается при расположении камеры и источника освещения так как показано на рисунке ниже.

    Данное устройство представляет собой «коробочку» размерами 70*100*100 мм. Графически размеры и вид устройства показаны ниже на рисунке.

    Описание работы устройства.

    При прикладывании пальца к стеклу и нажатии на него, происходит замыкание кнопок, в результате чего «запускается» схема задержки. Схема задержки задерживает сигнал нажатия на кнопки примерно на 0,5 секунд, после чего срабатывает реле которое и замыкает кнопку «затвора» веб-камеры. Происходит снимок отпечатка пальца и на экране монитора ПК оно показывается.

    Разработкой программы анализа и идентификации занимался студент колледжа радиоэлектроники Старухин А.Г.

    Программа реализована на платформе PC, т.е. для работы ей необходим персональный компьютер, взаимодействующий со сканером по кабелю USB. Минимальные системные требования: процессор Pentium 4 1.8 ГГц, ОЗУ 256 МБ, наличие порта USB, ОС Windows XP или более поздние версии.

    Описание программы.

    Анализ образа отпечатка подразумевает выделение из него некоторых существенных признаков, свойственных отпечаткам пальца человека. Отпечаток состоит из папиллярных линий, образующих папиллярный узор, уникальный для каждого человека. К существенным признакам отпечатка относятся, например, направление этих линий, их окончание или разрывы. Все признаки делятся на две группы: глобальные и локальные.

    Глобальные признаки - те, которые можно увидеть невооружённым глазом:

    Папиллярный узор.

    Область образа - выделенный фрагмент отпечатка, в котором локализованы все признаки.



    Ядро - пункт, локализованный в середине отпечатка или некоторой выделенной области.

    Пункт "дельта" - начальная точка. Место, в котором происходит разделение или соединение бороздок папиллярных линий, либо очень короткая бороздка (может доходить до точки).

    Тип линии - две наибольшие линии, которые начинаются как параллельные, а затем расходятся и огибают всю область образа.

    Счётчик линий - число линий на области образа, либо между ядром и пунктом "дельта".

    Локальные признаки, они же минуции, определяют пункты изменения структуры папиллярных линий (окончание, раздвоение, разрыв и т.д.), ориентацию папиллярных линий и координаты в этих пунктах. Каждый отпечаток содержит до 70 минуций.

    После определения существенных признаков отпечатка производят его сравнение с другими отпечатками. В этом и заключатся процесс идентификации.

    Поэтапно процесс работы программы можно описать следующим образом. Управляющий сигнал инициирует процесс. Сканер отпечатка создает изображение – образ отпечатка, и передает его на ПК. На стороне ПК программа производит нормализацию образа, до приведения его к стандартному виду, после чего образ передается на обработку. В процессе обработки происходит чтение образа, выделение локальных и глобальных признаков отпечатка. Такие признаки записываются в вектор отпечатка. Далее, в зависимости от управляющего сигнала, происходит либо добавление пользователя в базу данных, либо его идентификация. При добавлении все данные о пользователе, включая вектор отпечатка, формируют в представление базы данных и через элемент обращения к БД, записываются в базу. При идентификации производится запрос на выборку из БД. Из выборки извлекаются векторы отпечатков, которые и сравниваются с входным вектором. Если идентичность двух сравниваемых векторов выше определенного порогового значение, то векторы считаются идентичными, и пользователь идентифицируется согласно текущей записи. Если ни один вектор из выборки не соответствует входному вектору, то пользователь считается не прошедшим идентификацию.

    Поиск преступников и установление их причастности к тем или иным криминальным деяниям является первоочередной задачей полицейских отделений всех стран мира. В качестве неоспоримого доказательства вины подозреваемого используются отпечатки пальцев, так называемый папиллярный узор. Как известно, вероятность встретить людей с одинаковыми линиями просто ничтожна. Но откуда мы это знаем? В этом нам помогает специальная научная дисциплина - дактилоскопия. Это тот самый раздел криминалистики, который в наше время считается основным и наиболее важным для изучения. Именно о нем и пойдет сегодня наш разговор.

    Что такое дактилоскопия?

    Современную криминалистику довольно сложно представить без данной науки, а еще сложнее понять, каким образом вели расследование преступлений полицейские восемнадцатых-девятнадцатых веков, не имея базы отпечатков пальцев. Ведь дактилоскопия - это методика опознавания личности человека, при которой используется индивидуальность оттисков его пальцев и ладоней.

    В настоящий момент именно на этом методе базируется криминалистика, все дактилоскопические лаборатории мира работают по идентичной технологии. Хотя можно сказать, что данная наука - одна из самых молодых и малоизученных. Да-да, метод, на который ссылаются во всех судах, относится к научно не проверенным. Как такое могло получиться? Сейчас мы вам все подробно расскажем.

    История возникновения дактилоскопии

    На самом деле люди всегда имели представление о том, что узоры на подушечках пальцев являются разными у каждого человека. Этому придавали мистическое значение и использовали в своих целях в Вавилоне и Китае. Считалось, что если человек поставит отпечаток пальца под каким-либо документом, то он просто обязан выполнить условия договора. Хотя классифицировать папиллярный узор тогда никому еще не приходило в голову.

    Многие считают основателем дактилоскопии англичанина Уильяма Гершеля. В конце девятнадцатого века он работал в Индии и постоянно сталкивался со случаями мошенничества при оформлении финансовых бумаг. Дело в том, что индийцы в своем большинстве были безграмотными людьми и ставили под договорами просто закорючку. При этом они не считали себя обязанными выполнять свои обязательства. Поэтому Гершель, вспомнив про мистическое значение оттисков рук для индийцев, ввел условие оставления отпечатка под договором. Удивительно, но метод сработал, и Гершель получил стопроцентное соблюдение правил и условий, указанных в документе. За время своей работы англичанин заметил, что каждый отпечаток отличается от другого и нет двух одинаковых.

    С помощью тех же отпечатков Уильям избавил себя от постоянных недостач при выплате заработной платы солдатам, которые отправляли за деньгами еще и своих родственников и таким образом получали двойную, а то и тройную заработную плату. После того как Гершель приказал им оставлять в ведомости отпечатки пальцев, ситуация вошла в нормальное русло. Все это очень заинтересовало англичанина, который начал серьезно изучать различные оттиски рук. Чем большая база у него накапливалась, тем более он убеждался, насколько индивидуальны узоры на руках человека.

    Пытливый англичанин даже снял отпечатки у преступников в местной тюрьме и навел там порядок. Ведь ранее многие правонарушения оставались безнаказанными из-за неумения европейцев различать индийцев по лицам. Как только в процессе расследования стали обращать внимание на отпечатки пальцев, проблема решилась сама собой. Можно сказать, что дактилоскопия родилась именно в этот момент.

    Развитие дактилоскопии

    Справедливости ради стоит сказать, что не только Гершель взялся изучать отпечатки пальцев различных людей. Параллельно ему над этим новым методом работало еще несколько человек. Например, один из талантливых шотландских врачей Г. Фолдс совершенно случайно заметил отпечатки пальцев на глиняных изделиях японских мастеров. Он заинтересовался этими рисунками и задался целью узнать, насколько они разнообразны и могут ли меняться в течение жизни. Он брал отпечатки у своих пациентов, слуг и просто знакомых. К его огромному удивлению, они никогда не повторялись. К тому же идеально совпадали со следами, оставленными на стекле или любой другой полированной поверхности. Данные наблюдения даже вдохновили его на научную статью, которая, впрочем, не привлекла внимание общественности.

    Не последняя роль в развитии дактилоскопии принадлежит полисмену Бертильону. Он приказал своим сотрудникам снимать отпечатки пальцев у всех задержанных и подозреваемых лиц. В итоге у него собралась обширная картотека, которая помогла в раскрытии многих преступлений. Это был первый случай в истории, когда дактилоскопия в криминалистике показала себя как оправданный и полезный метод идентификации личности.

    Классификация папиллярных узоров

    Со временем базы отпечатков пальцев, взятых в качестве эксперимента, накопились во многих полицейских участках, но вот как их классифицировать, не знал никто. В девяностых годах девятнадцатого века брат Чарлза Дарвина попробовал объединить все известные разработки различных людей и классифицировать узоры на пальцах. Фрэнсис Гальтон применил в своих исследованиях основы высшей математики и сумел вывести, что вероятность совпадения папиллярных узоров составляет один шанс на шестьдесят четыре миллиарда. Это была просто невероятная цифра по тем временам.

    Классификация Гальтона имела некоторые недостатки, но все же явилась первой серьезной научной работой на данную тему. Исследователь выделил четыре вида папиллярных линий:

    • с треугольниками;
    • без треугольника;
    • треугольник справа;
    • треугольник слева.

    Картотека, собранная в результате этой классификации, наполнялась неравномерно. Поэтому требовался новый, более эффективный способ, который мог бы использоваться в полиции. На основе своих трудов Гальтон выпустил целую книгу, где честно указал всех людей, наработки которых он использовал.

    Эдвард Генри, служащий в индийской полиции, воспользовавшись книгой Гальтона, создал свою собственную систему классификации отпечатков пальцев, которую и использует современная дактилоскопия. Это было огромным прорывом в науке и криминалистике. Разработки Генри послужили основой для работы полисменов в Британской Индии и сразу же в несколько раз повысили эффективность и результативность столь нелегкого дела, как расследование преступлений.

    Генри разделил узоры на следующие типы:

    • дуги (простые и пихтообразные);
    • петли (радиальные и ульнарные);
    • завихрения.

    К тому же Генри выделил дельту, названную Гальтоном треугольником, и разделил данный узор на несколько подвидов. Исследователь вывел ряд формул, благодаря которым можно было эффективно и максимально точно опознавать человека по отпечаткам пальцев.

    Первое применение новой методики в криминалистике

    Впервые дактилоскопия была применена в судебном процессе над братьями Стрэттонами. Их обвиняли в двойном убийстве, и основным доказательством служил кровавый отпечаток одного пальца. Проверив совпадения, полицейские вывели схожесть по одиннадцати пунктам. Этого оказалось вполне достаточно, чтобы осужденных приговорить к повешению. Удивительно, но судья был категорически не согласен с данным решением, хотя и вынужден был согласиться с присяжными заседателями.

    Применение данной методики в судебных процессах в качестве доказательной базы вызвало шквал общественной критики. В первую очередь разоблачительную статью опубликовал Фолдс, тот самый врач, работавший над изучением отпечатков пальцев. Дело в том, что Фолдс ссылался на некоторую "сыроватость" метода. Он пытался объяснить, что у многих людей узоры на пальцах бывают довольно схожи, и различия выражаются всего лишь в нескольких папиллярных линиях. Эти различия можно увидеть, только сняв отпечатки в лабораторных условиях. В противном случае эксперты могут допустить ошибку.

    К тому же Фолдса пугало, что достоверность метода не подвергалась абсолютно никаким сомнениям. Повсеместно судьи, присяжные, полицейские и адвокаты утверждали, что дактилоскопия - это единственная наука, гарантирующая стопроцентно верный результат. Никому не приходило в голову изучать науку, а технологией весьма неаккуратно пользовались довольно безграмотные на тот момент полицейские. Тем не менее криминалистика уже осознала удобство нового метода, и он стал использоваться во всем мире.

    На чем же в реальности основывается дактилоскопия? Почему в этом методе так уверены абсолютно все люди на планете? Давайте попробуем разобраться в этом.

    На самом деле серьезных научных работ по отпечаткам пальцев не так уж и много. Каково научное обоснование дактилоскопии? Специалисты насчитывают их всего два:

    • ни в одной базе и картотеке пока еще не встретились одинаковые отпечатки пальцев, даже компьютерная программа не находит подобных совпадений;
    • узоры на пальцах однояйцевых близнецов не являются идентичными.

    Этих двух фактов оказалось достаточно, чтобы превратить дактилоскопию в точную науку. На самом деле с течением времени у специалистов возникает к ней все больше вопросов. К примеру, двадцать лет назад агент ФБР разослал во все американские лаборатории письма с отпечатками пальца с места преступления и оттиски рук подозреваемого. Каково же было его удивление, когда лаборатории дали абсолютно разные результаты. Это существенно пошатнуло веру в дактилоскопию.

    Недавно были опубликованы сведения о том, что в течение жизни отпечатки пальцев могут измениться. Ранее таких фактов у криминалистов не было, поэтому в настоящий момент есть все предпосылки к тому, чтобы не принимать результаты дактилоскопии за стопроцентное доказательство вины подозреваемого.

    Можно ли обмануть природу?

    Как только дактилоскопия стала использоваться повсеместно, бандиты задумались о возможности обмануть природу, в частности изменить отпечатки пальцев. Первыми попытались сделать это в тридцатые годы прошлого века американские гангстеры. Члены одной из банд с помощью хирурга срезали кожу с пальцев и надеялись, что полностью избавились от прошлых отпечатков. Но спустя некоторое время раны затянулись, а прежние рисунки проявились вновь.

    Дальше пошел Джон Диллинджер. Этот знаменитый во всех штатах гангстер сжег свою кожу кислотой, сделав подушечки пальцев абсолютно гладкими. Этот метод тоже оказался неэффективным - через пару месяцев на пальцах стали проступать папиллярные линии.

    В тридцать четвертом году прошлого века агенты ФБР столкнулись с новой попыткой избежать возмездия за свои преступления. Полиция нашла труп известного гангстера, но проведенная дактилоскопия рук свидетельствовала, что перед ними совсем иная личность. Вызванные агенты осмотрели руки убитого и нашли на них многочисленные мелкие порезы. Как оказалось, шрамированием преступник пытался запутать следствие. Но даже такой радикальный метод не принес желаемого результата, в дальнейшем было доказано, что поверх порезов папиллярные линии вновь проступят через какое-то время.

    После этих безрезультатных попыток обмануть природу преступники перестали проводить радикальные эксперименты над своими руками.

    Что используется при выявлении отпечатков пальцев на месте преступления?

    В современной криминалистике используется несколько методов определения отпечатков пальцев. Чаще всего эксперты применяют следующие вспомогательные средства:

    • дактилоскопический порошок;
    • флуоресцентный порошок;
    • йодные пары.

    Конечно, есть и другие, в настоящий момент известно более двенадцати средств, позволяющих снять отпечатки с разных поверхностей. Именно от них зависит выбор технологии экспертом.

    Где хранятся отпечатки пальцев?

    Криминалистам хорошо известен такой термин, как "дактилоскопическая карта". Именно эти карты составляют основу базы данных папиллярных узоров. Обычно в ней указываются личные данные подозреваемого и отпечатки каждого пальца вместе с ладонями. Каждый оттиск должен быть предельно ясным и понятным, на обратной стороне указывается уголовная статья, по которой выносится обвинение.

    Дактилоскопическая карта должна также содержать дату проведения процедуры и данные лица, которое берет оттиски.

    Дактилоскопическая экспертиза: подробности

    Назначение дактилоскопической экспертизы находится в ведении следователей. Согласно законодательству, они могут брать у подозреваемых отпечатки пальцев и образцы почерка. Все эти действия проводятся в интересах следствия с целью выявления личности человека.

    Прохождение дактилоскопии - процесс довольно простой и незатейливый. На чистые и сухие руки с помощью валика наносится типографская краска. Далее следователь будто прокатывает подушечки пальцев по дактилоскопической карте, после получения всех отпечатков краску можно смыть теплой водой с мылом. Сейчас в крупных городах становится довольно распространенным снимать отпечатки пальцев с помощью современных технических средств. Специальный прибор сканирует подушечки пальцев и сразу создает электронную дактилоскопическую карту в базе данных. При этом исключаются мелкие неточности и погрешности.

    Всеобщая дактилоскопия: миф или реальность

    В последние годы в СМИ то и дело встречается информация о всеобщей дактилоскопии. Эта идея периодически возникает в умах правительств разных стран. Причем впервые данная мысль возникла в девятнадцатом веке в Англии и до сих пор не осуществилась ни в одной стране мира. Ведь данное предложение вызывает много споров у простых граждан. С одной стороны, расследовать преступления станет легче, а с другой, это нарушает личные права человека. В конечном итоге всеобщая дактилоскопия остается всего лишь возможным методом из множества других, позволяющим в случае применения снизить уровень мировой преступности.

    Для каких целей подходит эта технология?

    Распознавание отпечатков пальцев является исключительно адаптивным способом идентификации и подходит для разностороннего применения и, в том числе, для объектов, где традиционно используются ключи, карты доступа и пароли. Эта технология уже используется в оборудовании контроля прохода, в автоматах выдачи инструментов, в складских помещениях, при оказании сетевых услуг и на многих других объектах. Даже новый смартфон Apple iPhone 5s оборудован сканером отпечатков пальцев. Технология идентификации по отпечаткам пальцев используется повсеместно уже сейчас.

    В чем заключаются преимущества технологии идентификации по отпечаткам пальцев?

    Отпечаток пальца - это уникальный идентификатор личности. Если сравнивать отпечаток пальца и ключ, то можно сказать, что у каждого человека есть десять ключей, поскольку все отпечатки пальцев отличны друг от друга. Даже если вы порезали палец или вся рука находится в гипсе, у вас остается достаточное количество пальцев для целей идентификации. Идентификация с помощью отпечатка – весьма надежный способ, так как отпечатки пальцев у всех людей уникальны. Даже у однояйцевых близнецов разные отпечатки пальцев.

    По сравнению с другими методами идентификации, когда используется ключ, карта доступа, цифровой код или пароль, биометрический метод идентификации по отпечатку пальца обеспечивает высокую степень защиты. Отпечаток невозможно потерять, забыть или украсть. Этот способ также отличает высокая практичность, поскольку ничего не нужно носить с собой – в карманах ничего нет, больше не приходится рыться в сумке, да и брелок от ключа можно выбросить. Кроме того, это позволяет значительно сократить расходы, связанные с организацией контроля доступа. Для функционирования систем управления доступом в крупных организациях, например, на заводах, в офисах или фитнес-центрах, больше не нужны карты доступа или ключи, которые необходимо раздавать, собирать или удалять информацию о них из реестра в случае потери. Так, можно зарегистрировать отпечатки пальцев посетителей и предоставить им доступ лишь на один день.

    Как отпечатки пальцев могут служить средством идентификации?

    При распознавании происходит сравнение отпечатка пальца с ранее зарегистрированными данными. Данные могут храниться в базе данных системы идентификации, в чипе паспорта или в памяти карты доступа. Функцию идентификации может выполнять установленный на входе считыватель отпечатков пальцев, подключенный к компьютеру датчик или встроенный сканер смартфона.

    Существуют два метода идентификации: идентифицируемый отпечаток пальца сравнивается с различными образами отпечатков, сохраненными в системе, либо с зарегистрированным отпечатком конкретного человека. Примером первого варианта может служить система контроля и управления доступом предприятия, где отпечаток пальца сопоставляется с зарегистрированными образами, чтобы подтвердить право доступа идентифицируемого лица. Примером второго варианта является система лучевой терапии, где цель проверки – удостовериться в том, что план лечения предназначен именно для этого пациента, пришедшего на сеанс.

    Как происходит идентификация отпечатка пальца?

    Идентификация по отпечаткам пальцев основана на распознавании образа, когда папиллярные узоры сравниваются с зарегистрированными данными. Процесс идентификации выполняется в три этапа.

    1. Формируется изображение отпечатка пальца. Захват изображения может производиться с помощью встроенной камеры считывателя, либо с помощью регистрации разности потенциалов электрического поля между бугорками и впадинами папиллярного узора. Возможно применение комбинаций методов. В результате получается цифровой черно-белый снимок узоров отпечатка пальца.

    2. Изображение отпечатка пальца преобразуется в математическую модель, в которой уникальные признаки, такие как дуги, завитки, петли и расстояния между ними, сохраняются в виде цифрового кода.

    3. Производится сравнение идентифицируемой цифровой модели с шаблонами в базе данных и выполняется поиск соответствий.

    Что происходит после идентификации?

    В преобладающем большинстве случаев система идентификации по отпечаткам пальцев является частью какой-либо другой системы контроля, например, системы запирания. В результате идентификации устанавливается личность человека, после чего система может выполнить нужные мероприятия, например, открыть замок, разрешить доступ пользователю к программе или разрешить загрузку компьютера.

    Что влияет на эффективность идентификации по отпечаткам пальцев?

    Кожа – податливый и гибкий материал, и эти характеристики привносят определенные сложности в процесс идентификации. Так, например, сухость и температура кожи, а также сила прижима пальца, влияют на качество изображения отпечатка. Если палец прижат слишком сильно, рисунок отпечатка меняется и распознавание папиллярных линий затрудняется. Сухость и температура поверхности влияют на эластичность кожи, что, в свою очередь, определяет качество изображения. За последние годы технологии идентификации по отпечаткам пальцев и распознавания образа сильно шагнули вперед, поэтому даже в большинство проблемных случаев идентификация производится с высокой степенью надежности.

    Точность регистрации данных об отпечатке оказывает значительное влияние на качество последующей идентификации. Поэтому регистрацию следует производить тщательно, а в случае возникновения каких-либо затруднений ее рекомендуется выполнить повторно.

    Сканеры существенно отличаются друг от друга по воздействию загрязнений на точность сканирования. На объектах, где нет возможности регулярно выполнять очистку биометрических считывателей, стоит отдать предпочтение технологии, для которой не страшны пыль и грязь.

    Можно ли украсть отпечаток пальца?

    В соответствии со стандартами защиты информации в базах данных современных коммерческих системах распознавании личности по отпечаткам пальцев хранится не изображение отпечатка пальца, а его цифровая модель, которая содержит лишь несколько процентов из всего объема информации об отпечатке. Поэтому на основе сохраненной цифровой модели нельзя восстановить изображение отпечатка пальца. Исключение составляют системы государственного контроля, например, реестр отпечатков пальцев в полиции или паспорта, в которых отпечаток пальца приводится в виде изображения.

    Насколько быстро и надежно выполняется идентификация по отпечаткам пальцев?

    В настоящее время распознавание по отпечаткам пальцев выполняется очень быстро. Технология настолько усовершенствовалась, что время идентификации измеряется в долях секунды. Особенно эффективны электронные считыватели, которые идентифицируют отпечатки удивительно быстро.

    Надежность технологии находится на высоком уровне - практически любые отпечатки могут быть распознаны. Тем не менее, несмотря на то, что уровень надежности почти достиг 100 %, в ближайшие годы не ожидается, что станет возможным распознать абсолютно любой отпечаток пальца. Так, у людей, занятых в определенных отраслях, например, там, где кожа на кончиках пальцев разъедается или многократно подвергается воздействию вредных химических веществ, степень повреждения может препятствовать считыванию достаточного количества точек для идентификации. После разовых повреждений отпечаток пальца восстанавливается, так что однократные повреждения или малое их количество не влияют на точность идентификации.

    Подходит ли технология идентификации по отпечаткам пальцев для моей деятельности?

    Пользователи систем идентификации по отпечаткам пальцев обычно уже не хотят возвращаться к традиционным системам контроля. Главными факторами удовлетворенности пользователей являются легкость и простота использования. Поэтому мы настоятельно рекомендуем воспользоваться технологией идентификации по отпечаткам пальцев. Продукция компании Deltabit позволяет использовать отпечатки пальцев для открытия дверей. Система Deltabit Gatekeeper Lite представляет собой продукт, с помощью которого можно заменить ключ от вашего дома отпечатком пальца. Deltabit Gatekeeper Pro – это система контроля и управления доступом на основе биометрической идентификации для предприятий. Оба продукта получили самые положительные оценки потребителей.

    Для обеспечения конфиденциальности информации предлагались различные средства авторизации и аутентификации пользователя для предоставления ему необходимого физического доступа к данным, финансовым средствам и т.п. В основе большинства современных систем аутентификации лежит принцип получения, сбора и измерения биометрической информации, то есть информации об определенных физиологических характеристиках человека.

    реимущество биометрических систем идентификации по сравнению с традиционными (например, PIN-кодовыми системами или системами доступа по паролю) заключается в том, что идентифицируется собственно человек. Используемая в этих системах характеристика является неотъемлемой частью личности, ее невозможно потерять, передать, забыть. Поскольку биометрические характеристики каждого индивидуума уникальны, они могут использоваться для предотвращения воровства или мошенничества. Сегодня существует большое число компьютеризированных помещений, хранилищ, исследовательских лабораторий, банков крови, банкоматов, военных сооружений и т.д., доступ к которым контролируется устройствами, сканирующими уникальные физиологические характеристики человека.

    В последние годы к вопросам безопасности информационных сетей, а в частности биометрических систем безопасности, было приковано самое пристальное внимание. Свидетельство тому - огромное количество статей, посвященных обзору ставших уже традиционными и известными широкому кругу читателей методов идентификации человека: по отпечаткам пальцев, по сетчатке и радужной оболочке глаза, по особенностям и структуре лица, по геометрии кисти руки, по речи и почерку.

    Анализ научно-технической и периодической научно-популярной литературы позволяет систематизировать такие системы в плане трудоемкости их разработки и обеспечиваемой точности и надежности результатов измерений (рис. 1). Некоторые технологии уже сегодня получили широкое внедрение, другие еще только разрабатываются. В данной статье мы приведем примеры систем как первой, так и второй группы.

    Пароли сегодняшнего дня

    Идентификация по отпечаткам пальцев

    На сегодняшний день одной из самых распространенных биометрических технологий является технология идентификации по отпечаткам пальцев. Системы, использующие такие технологии, берут свое начало от криминалистических систем, когда отпечаток пальца преступника заносился в картотеку, а затем сравнивался с предъявленным отпечатком. С тех пор появилось большое количество усовершенствованных устройств, сканирующих отпечатки пальцев. Исследования в данной области показали, что отпечаток пальца человека не изменяется со временем, а при повреждении кожного покрова идентичный папиллярный узор полностью восстанавливается. Очевидно, в силу указанных причин, а также вследствие того, что сканирование отпечатка пальца, в отличие от многих других способов идентификации, не вызывает дискомфорта у человека, данный способ стал самым распространенным способом идентификации. Еще одним плюсом использования данной методики является достаточно высокая точность распознавания. Компании, занимающиеся разработкой устройств сканирования отпечатков пальцев, постоянно совершенствуют свои алгоритмы и значительно преуспели в этом. Например, компания BioLink Technologies выпустила BioLink U-Match Mouse (рис. 2), cтандартную компьютерную мышь с колесом прокрутки со встроенным оптическим сканером отпечатков пальцев: интерфейс - USB или COM+PS/2; защита от муляжей и «неживых» пальцев; использование передовых оптических элементов обеспечивает высокое качество сканирования и точность распознавания. Биометрический сканер BioLink U-Match MatchBook выполнен в виде отдельного устройства (рис. 3), время сканирования - 0,13 с, время распознавания - 0,2 с, USB-интерфейс, реализована защита от муляжей. Эти устройства демонстрируют такой показатель точности распознавания, при котором вероятность того, что доступ к защищенной информации получит неавторизованный пользователь, равна 1 на 1 млрд. предъявлений отпечатка пальца.

    На отечественном рынке популярность приобретают мыши со сканером от компании Siemens, клавиатуры со встроенным сканером от компании Cherry, а также ноутбуки со сканером отпечатков пальцев; представлены и устройства от других производителей. Поэтому если руководитель предприятия решится заменить устаревшую систему безопасности на более совершенные средства защиты информации, ему будет из чего выбирать.

    Анализ мирового биометрического рынка показывает, что технологии распознавания по отпечаткам пальцев представляют 50% биометрического рынка, а вместе с криминалистическими системами - и все 80%. По итогам 2001 года компания International Biometric Group констатировала, что технологии идентификации по отпечаткам пальцев все так же занимают лидирующее положение среди всех биометрических технологий, представленных на рынке.

    Для использования стандартной биометрической системы распознавания по отпечаткам пальцев пользователю необходимо сначала зарегистрироваться в системе. При этом нет основания опасаться, что отпечаток вашего пальца будет храниться в памяти устройства - большинство систем хранят в памяти не реальную картинку отпечатка, а лишь цифровой шаблон, по которому невозможно восстановить реальный образ, поэтому права пользователя никоим образом не нарушаются. Так, при использовании устройств компании BioLink Technologies изображение отпечатка моментально преобразуется в небольшой цифровой код (размером всего 512 байт).

    Внедрение биометрической защиты отнюдь не всегда требует замены существующей системы безопасности. Часто можно произвести замену паролей на биометрический паспорт пользователя с минимальными затратами. Например, решения компании BioLink Technologies позволяют установить систему биометрической защиты поверх стандартной парольной системы безопасности. При этом происходит совершенно безболезненная замена паролей на отпечатки пальцев. Таким образом, можно надежно защитить вход в операционную систему (Windows NT/2000, Windows 95/98, Novell NetWare) и режимы принудительной блокировки, экранной заставки и спящего режима, а также заменить стандартные средства защиты прикладных программ защитой по отпечатку пальца. Все эти базовые функции, а также многие другие возможности реализуются программным обеспечением BioLink Authentication Center версии 4.2 - единственной на сегодняшний день полностью русифицированной системой такого класса. При этом модели отпечатков пальцев хранятся централизованно - на программно-аппаратном комплексе аутентификации Authenteon (рис. 4). Сервер обеспечивает безопасное хранение до 5 тыс. моделей отпечатков пальцев, по которым невозможно воспроизвести реальный образ отпечатка, и другой секретной информации. Кроме того, сервер Authenteon - это централизованное администрирование пользователей, а также возможность для администратора легко раздавать зарегистрированным пользователям различные привилегии доступа к разным ресурсам без повторной регистрации. Отказоустойчивость сервера реализована следующим образом: сервер представляет собой корпус, в который помещены два независимых физических сервера, что делает возможными замену в горячем режиме и репликацию базы данных на работающий сервер.

    Поскольку в настоящее время все большую популярность приобретают Интернет-приложения (Интернет-банкинг, электронная коммерция, корпоративные порталы), разработчики BioLink позаботились о возможности внедрения биометрической идентификации по отпечаткам пальцев в Интернет-приложения. Таким образом, любая компания, предприятие или учреждение может надежно защитить секретную информацию.

    Решения компании BioLink Technologies прежде всего рассчитаны на средние и крупные предприятия. При этом комплексное русифицированное решение (ПО + устройства ввода + аппаратный сервер) наилучшим образом может быть интегрировано с информационными и ERP-системами, используемыми на предприятии, что позволяет, с одной стороны, значительно сократить расходы на администрирование парольных систем, а с другой - надежно обезопасить конфиденциальную информацию от несанкционированного доступа как извне, так и внутри предприятия.

    Кроме того, появляется возможность решить еще одну актуальную проблему - значительно уменьшить риски при передаче данных в финансовые, банковские и другие системы, осуществляющие важные транзакции с использованием сети Интернет.

    Системы идентификации по радужной оболочке глаза

    Как следует из рис. 1, наибольшую точность и надежность на современном этапе обеспечивают биометрические системы идентификации на основе анализа и сопоставления радужной оболочки глаза. Ведь глаз с одинаковой радужной оболочкой, даже у полностью идентичных близнецов, не существует. Формируясь в первый год жизни, этот параметр остается для человека уникальным в течение всего времени его существования. Этот метод идентификации отличается от первого большей сложностью в использовании, более высокой стоимостью аппаратуры и жесткими условиями регистрации.

    В качестве примера современной системы идентификации на основе анализа радужной оболочки глаза уместно привести решение от компании LG.

    Система IrisAccess позволяет менее чем за секунду отсканировать рисунок радужной оболочки глаза, обработать и сравнить с 4 тыс. других записей, которые она хранит в своей памяти, а затем послать соответствующий сигнал в охранную систему. Технология - полностью бесконтактная (рис. 5). На основе изображения радужной оболочки глаза строится компактный цифровой код размером 512 байт. Устройство имеет высокую надежность по сравнению с большинством известных систем биометрического контроля (рис. 6), поддерживает объемную базу данных, выдает звуковые инструкции на русском языке, позволяет интегрировать в систему карты доступа и PIN-клавиатуры. Один контроллер поддерживает четыре считывателя. Система может быть интегрирована в LAN.

    IrisAccess 3000 состоит из оптического устройства внесения в реестр EOU3000, удаленного оптического устройства ROU3000, контрольного устройства опознавания ICU3000, платы захвата изображения, дверной интерфейсной платы и PC-сервера.

    Если требуется осуществлять контроль за несколькими входами, то ряд удаленных устройств, включая ICU3000 и ROU3000, может быть подключен к PC-серверу через локальную сеть (LAN). Описания основных компонентов системы представлены на врезке.

    Организация контроля доступа и принципиальная схема развертывания охранной системы на базе IrisAccess от компании LG представлены на рис. 7 , .

    Системы распознавания речи

    Самую нижнюю позицию на рис. 1 - как в плане трудоемкости, так и в плане точности - занимают системы идентификации на основе распознавания речи. Причинами внедрения этих систем являются повсеместное распространение телефонных сетей и практика встраивания микрофонов в компьютеры и периферийные устройства, например в камеры. В качестве недостатков таких систем можно назвать факторы, влияющие на результаты распознавания: помехи в микрофонах, влияние окружающей обстановки на результаты распознавания (шум), ошибки при произнесении, различное эмоциональное состояние проверяемого в момент регистрации эталона и при каждой идентификации, использование разных устройств регистрации при записи эталонов и идентификации, помехи в низкокачественных каналах передачи данных и т.п.

    Пароли будущего

    Мы привели примеры биометрических устройств, которые уже достаточно широко применяются для контроля доступа, однако научно-технический прогресс не стоит на месте, и поэтому спектр технологий, которые могут использоваться в системах безопасности, постоянно расширяется. В настоящее время ряд биометрических технологий находится в стадии разработки, причем некоторые из них считаются весьма перспективными. Поэтому поговорим о технологиях, которые пока не нашли массового внедрения, но через некоторое время вполне могут встать в один ряд с наиболее надежными технологиями, используемыми сегодня. К этому списку мы отнесли следующие технологии:

    1. построение термограммы лица на основе информации от датчика инфракрасного излучения;
    2. анализ характеристик ДНК;
    3. анализ динамики ударов по клавиатуре компьютера при печатании текста;
    4. анализ структуры кожи и эпителия на пальцах на основе цифровой ультразвуковой информации;
    5. анализ отпечатков ладоней;
    6. анализ формы ушной раковины;
    7. анализ характеристик походки человека;
    8. анализ индивидуальных запахов человека.

    Рассмотрим суть этих методов подробнее. Технология построения и анализа термограммы (рис. 9) является одним из последних достижений в области биометрии. Как обнаружили ученые, использование инфракрасных камер дает уникальную картину объектов, находящихся под кожей лица. Разные плотности кости, жира и кровеносных сосудов строго индивидуальны и определяют термографическую картину лица пользователя. Согласно научным заключениям, термограмма лица является уникальной, вследствие чего можно уверенно различать даже абсолютно похожих близнецов. Из дополнительных свойств этого подхода можно отметить его инвариантность по отношению к любым косметическим или косметологическим изменениям, включая пластическую хирургию, изменения макияжа и т.п., а также скрытность процедуры регистрации.

    Технология, построенная на анализе характеристик ДНК, или, как ее называют ученые, метод геномной идентификации (рис. 10) является, по всей видимости, хотя и самой долгосрочной, но и наиболее перспективной из систем идентификации. В настоящее время данный метод контроля является слишком медленным и сложным для автоматизации. Метод основан на том, что в ДНК человека имеются полиморфные локусы (локус - положение хромосомы (в гене или аллели), часто имеющие 8-10 аллелей. Определение набора этих аллелей для нескольких полиморфных локусов у конкретного индивида позволяет получить своего рода геномную карту, характерную только для этого человека. Точность данного метода определяется характером и количеством анализируемых полиморфных локусов и на сегодняшний день позволяет достичь уровня ошибки 1 на 1 млн. человек.

    Динамика ударов по клавиатуре компьютера при печатании текста, или клавиатурный почерк, анализирует способ (ритм) печатания пользователем той или иной фразы. Существуют два типа систем распознавания клавиатурного почерка. Первые предназначены для аутентификации пользователя при попытке получения доступа к вычислительным ресурсам. Вторые осуществляют мониторинговый контроль уже после предоставления доступа и блокируют систему, если за компьютером начал работать не тот человек, которому доступ был предоставлен первоначально. Ритм работы на клавиатуре, как показали исследования ряда фирм и организаций, является достаточно индивидуальной характеристикой пользователя и вполне пригоден для его идентификации и аутентификации . Для его измерения оцениваются промежутки времени либо между ударами при печатании символов, расположенных в определенной последовательности, либо между моментом удара по клавише и моментом ее отпускания при печатании каждого символа в этой последовательности. Хотя второй способ считается более эффективным, наилучший результат достигается совместным использованием обоих способов. Отличительной особенностью этого метода является его дешевизна, так как для анализа информации не требуется никакого оборудования, кроме клавиатуры. Следует отметить, что на настоящий момент данная технология находится в стадии разработки, и поэтому сложно оценить степень ее надежности, особенно с учетом высоких требований, предъявляемых к системам безопасности.

    Для идентификации человека по руке используют несколько биометрических параметров - это геометрическая форма кисти руки или пальцев, расположение подкожных кровеносных сосудов ладони, узор линий на ладони.

    Технология анализа отпечатков ладоней стала развиваться сравнительно недавно, но уже имеет определенные достижения. Причиной развития этой технологии послужил тот факт, что устройства для распознавания отпечатков пальцев имеют недостаток - им нужны только чистые руки, а отпечаток грязного пальца система может и не распознать. Поэтому ряд компаний-разработчиков сосредоточились на технологии, анализирующей не рисунок линий на коже, а очертание ладони, которое также имеет индивидуальный характер. Так, в середине прошлого года в Великобритании началась разработка новой компьютерной системы, которая позволит устанавливать личность подозреваемых по отпечаткам ладоней. Аналогичная система, работающая с отпечатками пальцев, успешно используется британскими полицейскими уже три года. Но одних лишь отпечатков пальцев, как утверждают криминалисты, часто оказывается недостаточно. До 20% следов, оставляемых на месте преступления, - это отпечатки ладоней. Однако их анализ традиционными средствами достаточно трудоемок. Компьютеризация этого процесса позволит использовать отпечатки ладоней более широко и приведет к существенному увеличению раскрываемости преступлений. Ожидается, что система будет внедрена к началу 2004 года, а ее создание обойдется Министерству внутренних дел в 17 млн. фунтов стерлингов. Следует отметить, что устройства сканирования ладони, как правило, имеют высокую стоимость, и поэтому оснастить ими большое количество рабочих мест не так уж и просто.

    Технология анализа формы ушной раковины является одной из самых последних подходов в биометрической идентификации человека. С помощью даже недорогой Web-камеры можно получать довольно надежные образцы для сравнения и идентификации. Нужно отметить, что, поскольку этот способ недостаточно изучен, нам не удалось найти в научно-технической литературе достоверной информации о текущем состоянии дел.

    Способность собак различать людей по запаху и наличие генетического влияния на запах тела позволяют считать эту характеристику, несмотря на ее зависимость от обычаев и индивидуальных привычек (пользование парфюмерией, диета, употребление лекарств и пр.), перспективной в плане использования в целях биометрической аутентификации личности. В настоящее время уже ведутся разработки систем «электронного носа» (рис. 11). Как правило, «электронный нос» представляет собой комплексную систему, состоящую из трех функциональных узлов, работающих в режиме периодического восприятия пахучих веществ: системы пробоотбора и пробоподготовки, линейки или матрицы сенсоров с заданными свойствами и блока процессорной обработки сигналов матрицы сенсоров. Этой технологии, как и технологии анализа формы ушной раковины, еще предстоит пройти долгий путь развития, прежде чем она станет удовлетворять биометрическим требованиям.

    В заключение хочется отметить, что пока еще рано предсказывать, где, как и в каком виде будут в конечном итоге представлены надежные биометрические службы. Но совершенно ясно, что невозможно обойтись без биометрической идентификации, если необходимо получить позитивные, надежные и неопровержимые результаты проверки. Поэтому не исключено, что в самом ближайшем будущем пароли и PIN-коды уступят место новым, более надежным средствам авторизации и аутентификации.

    КомпьютерПресс 3"2002