Как называется прибор для измерения давления воздуха. Как измеряют атмосферное давление? Атмосферный барометр - принцип работы

В гигиенических исследованиях применяются два типа барометров :

- жидкостные барометры ;

- металлические барометры - анероидные .

Принцип работы различных модификаций жидкостных барометров основан на том, что атмосферное давление уравновешивает определенной высоты столб жидкости в запаянной с одного конца (верхнего) трубке. Чем меньше удельный вес жидкости, тем выше столб последней, уравновешиваемый давлением атмосферы.

Наибольшее распространение получили , так как высокий удельный вес жидкой ртути позволяет сделать прибор более компактным, что объясняется уравновешиванием давления атмосферы менее высоким столбом ртути в трубке.

Используются три системы ртутных барометров:

- чашечные ;

- сифонные ;

- сифонно-чашечные .

Указанные системы ртутных барометров схематически представлены на рисунке 35.

Станционные чашечные барометры (рисунок 35). В этих барометрах в чашку, заполненную ртутью, помещается запаянная сверху стеклянная трубка. В трубке над ртутью образуется так называемая торичеллиевая пустота. Воздух в зависимости от состояния обусловливает то или иное давление на ртуть, находящуюся в чашке. Таким образом, уровень ртути устанавливается на ту или иную высоту в стеклянной трубке. Именно данная высота будет уравновешивать давление воздуха на ртуть в чашке, а значит отражать атмосферное давление. Высоту уровня ртути, соответствующую атмосферному давлению, определяют по так называемой компенсированной шкале, имеющейся на металлической оправе барометра. Изготавливаются чашечные барометры со шкалами от 810 до 1110 мб и от 680 до 1110 мб. Рис. 35. Чашечный барометр (слева) А - шкала барометра; Б - винт; В - термометр; Г - чашечка со ртутью Ртутный сифонный барометр (справа) А - верхнее колено; В - нижнее колено; Д - нижняя шкала; Е - верхняя шкала; Н - термометр; а - отверстие в трубке

В отдельных модификациях имеются две шкалы - в мм рт. ст. и мб. Десятые доли мм рт. ст. или мб отсчитываются по подвижной шкале - нониусу. Для этого необходимо винтом установить нулевое деление шкалы нониуса на одной линии с вершиной мениска ртутного столба, отсчитать число целых делений миллиметров ртутного столба по шкале барометра и число десятых до-лей миллиметра ртутного столба до первой отметки шкалы нониуса , совпадающей с делением основной шкалы.

Пример . Нулевое деление шкалы нониуса находится между 760 и 761 мм рт. ст. основной шкалы. Следовательно, число целых делений равно 760 мм рт. ст. К этой цифре необходимо прибавить число десятых долей миллиметра ртутного столба, отсчитанных по шкале нониуса. Первым с делением основной шкалы совпадает 4-е деление шкалы нониуса. Барометрическое давление равно 760 + 0,4 = 760,4 мм рт. ст.


Как правило, в чашечные барометры встроен термометр (ртутный или спиртовый в зависимости от предполагаемого диапазона температуры воздуха при исследованиях), так как для получения окончательного результата необходимо специальными расчетами привести давление к стандартным условиям температуры (0°С) и барометрического давления (760 мм рт. ст.).

В чашечных экспедиционных барометрах перед наблюдением предварительно с помощью специального винта, расположенного в нижней части прибора, устанавливают уровень ртути в чашке на нулевую отметку.

Сифонные и сифонно-чашечные барометры (рисунок 35). В этих барометрах величина атмосферного давления измеряется по разнице высот ртутного столба в длинном (запаянном) и коротком (открытом) коленах трубки. Данный барометр позволяет производить измерение давления с точностью до 0,05 мм рт. ст . При помощи винта в нижней части приборов уровень ртути в коротком (открытом) колене трубки приводят к нулевой точке, а затем отсчитывают показания барометра.

Сифонно-чашечный инспекторский барометр. Данный прибор имеет две шкалы: слева в мб и справа в мм рт. ст. Для определения десятых долей мм рт. ст. служит нониус. Найденные значения атмосферного давления, как и при работе с другими жидкостными барометрами, необходимо с помощью вычислений или специальных таблиц привести к 0°С.

На метеорологических станциях в показания барометров вводят не только температурную поправку, но и так называемую постоянную поправку: инструментальную и поправку на силу тяжести.

Устанавливать барометры следует в отдалении или изолированно от источников теплового излучения (солнечное излучение, нагревательные приборы), а также в отдалении от дверей и окон.

Металлический барометр-анероид (рисунок 36). Данный прибор особенно удобен при проведении исследований в экспедиционных условиях. Однако этот барометр перед использованием должен быть выверен по более точному ртутному барометру.

Рис. 36.Барометр-анероид Рис. 37. Барограф

Принцип устройства и действия барометра-анероида очень прост. Металлическая подушечка (коробка) с гофрированными (для большей эластичности) стенками, из которой удален воздух до остаточного давления 50-60 мм рт. ст., под воздействием давления воздуха изменяет свой объем и в результате деформируется. Деформация передается по системе рычажков стрелке, которая и указывает на циферблате атмосферное давление. На циферблате барометра анероида вмонтирован изогнутой формы термометр в связи с необходимостью, как указывалось выше, приведения результатов измерения к 0°С. Градуировка циферблата может быть в мб или в мм рт. ст. В некоторых модификациях барометра-анероида имеются две шкалы - как в мб, так и в мм рт. ст.

Анероид-высотомер (альтиметр). В измерении высоты по уровню атмосферного давления заложена закономерность, согласно которой между давлением воздуха и высотой имеется зависимость, весьма близкая к линейной. То есть при подъеме на высоту пропорционально снижается атмосферное давление.

Данный прибор предназначен для измерения атмосферного давления именно на высоте и имеет две шкалы. На одной из них нанесены величины давления в мм рт. ст. или мб, на другой - высота в метрах. На летательных аппаратах применяют альтиметры с циферблатом, на котором по шкале определяется высота полета.

Барограф (барометр-самописец). Данный прибор предназначен для непрерывной регистрации атмосферного давления. В гигиенической практике применяются металлические (анероидные) барографы (рисунок 37). Под влиянием изменений атмосферного давления пакет соединенных вместе анероидных коробок в результате деформации оказывает влияние на систему рычажков, а через них на специальное перо с незасыхающими специальными чернилами. При увеличении атмосферного давления анероидные коробки сжимаются и рычажок с пером поднимается кверху.

При уменьшении давления анероидные коробки с помощью помещенных внутри их пружин расширяются и перо чертит линию книзу. Запись давления в виде непрерывной линии вычерчивается пером на градуированной в мм рт. ст. или мб бумажной ленте, помещенной на цилиндрический вращающийся с помощью механического завода барабан. Используются барографы с недельным или суточным заводом с соответствующими градуированными лентами в зависимости от цели, задач и характера исследований. Выпускаются барографы с электрическим приводом, вращающим барабан.

Однако на практике данная модификация прибора менее удобна, так как ограничивается его использование в экспедиционных условиях. Для устранения температурных влияний на показания барографа в них вставляется биметаллические компенсаторы, автоматически осуществляющие коррекцию (поправку) движения рычажков в зависимости от температуры воздуха. Перед началом работы рычажок с пером с помощью специального винта устанавливается в исходное положение, соответствующее времени, обозначенном на ленте и на уровень давления, измеренный точным ртутным барометром.

Чернила для записи барограмм можно приготовить по следующей прописи:

Приведение объема воздуха к нормальным условиям (760 мм рт. ст., 0°С). Данный аспект измерения барометрического давления весьма важен при измерении концентраций загрязняющих веществ в воздухе. Игнорирование указанного аспекта может обусловить значительные ошибки в расчетах концентраций вредных веществ, которые могут достигать 30 и более процентов.

Приведение объема воздуха к нормальным условиям производится по формуле:

(39)

Пример . Для измерения концентрации пыли в воздухе через бумажный фильтр с помощью электрического аспиратора пропущено 200 л воздуха. Температура воздуха в период его аспирации составляла- +26° С, барометрическое давление - 752 мм рт. ст. Необходимо привести объем воздуха к нормальным условиям, то есть к 0°С и 760 мм рт. ст.

Подставляем в формулу Х значения соответствующих параметров примера и рассчитываем искомый объем воздуха при нормальных условиях:

Таким образом, при расчете концентрации пыли в воздухе необходимо учитывать объем воздуха именно 180,69 л , а не 200 л .

Для упрощения расчетов объема воздуха при нормальных условиях можно пользоваться поправочными коэффициентами на температуру и давление (таблица 25) или рассчитанными готовыми величинами формулы 39 и (таблица 26).

Одним из самых точных приборов, применяемых для измерения атмосфер­ного давления на всех метеорологических станциях, является так называемый станционный чашечный барометр. Oн представляет собой стеклянную трубку длиной около 80 см, c поперечным сечением 1 см2. Верхний конец ее запаян, а нижний открытый опущен в чашку со ртутью. Трубка заполнена ртутью; в незаполненной части трубки - безвоз­душное (точнее крайне разреженное) пространство.

Для предохранения трубки от механических повреждений она заключена в металлическую оправу. Принци­пиальная схема устройства морско­го чашечного ба­рометра: с обеих сторон сделаны две продольные прорези, одна против другой, необходимые для определения высоты столба рту­ти в трубке. С левой стороны лицевой прорези нане­сена шкала: в старых барометрах-в миллиметрах, в новых - в миллибарах. Для отсчета давления по шкале пользуются под­вижным кольцом с нониусом. Перемещение нониуса вдоль про­рези производится с помощью винта, находящегося на правой стороне оправы. Перед отсчетом нижний срез нониуса подводит­ся к верхней точке видимого мениска ртути, и затем производится отсчет давления с десятыми долями: целые отсчитываются по нижнему срезу нониуса, а десятые - по делениям нониуса (от 0 до 9). О десятых долях (мм или мб) судят по то­му делению нониуса, которое точно совпадает с каким-либо де­лением на шкале. Для доступа воздуха в чашку со ртутью в ней сделано не­большое отверстие, неплотно запираемое винтовой пробкой.

Станционный чашечный барометр устанавливается в помеще­нии метеостанции в специальном шкафчике в вертикальном по­ложении.

Морской ртутный барометр, как говорит само его наименование, предназначен для измерения атмосферного давления па морских судах. В принципе он устроен так же, как и станционный чашечный барометр, и отличается от него мень­шими размерами и более узкой барометрической трубкой с рас­ширениями на ее концах. Сужение средней части трубки до толщины капилляра сделано для уменьшения колебание ртути в трубке во время качки судна и для предохранения от проникновения воздушных пузырьков в ртуть. Чашка со ртутью сделана более узкой, чем в станционном барометре. Это также в значительной мере устраняет влияние качки судна на состоя­ние и показания барометра.

Морской барометр подвешивается на судне в закрытом поме­щении на кардановом подвесе.

Барометр-анероид, или просто анероид, яв­ляется простым и удобным в обращении прибором, широко при­меняющимся для измерения ат­мосферного давления на судах.

Принцип действия анероида основан на измерении степени деформации стенок пустотелой плоской металлической барокоробки под действием атмосфер­ного давления.

Анероидная коробка, являясь воспринимающей частью прибо­ра, весьма чутко реагирует на из­менение атмосферного давления. Чувствительность барокоробки достигается тем, что воздух в ней очень сильно разряжен. При увеличении давления коробка сжимается, а при уменьшении - расширяется. Чтобы избежать полной деформации коробки, возможной под действием атмо­сферного давления, к ней прикреплена дугообразная пружина, которая, растягивая коробку, уравновешивает действующее на нее атмосферное давление.

Сжатие и растяжение коробки передаются на стрелку-ука­затель барометра через систему тяг и рычагов. Шкала анероида проградуирована либо в миллиметрах, либо в миллиметрах ртутного стоба. Гра­дуировка анероида произведена при условии, что температура барокоробки при всех значениях давления равна 0°. Поэтому для определения поправки па показание анероида, зависящей от температуры, при отсчете давления каждый раз определяют температуру самого прибора. Последняя определяется по термо­метру, вмонтированному в дугообразную прорезь на лицевой поверхности анероида.

Механизм анероида заключен в круглую металлическую или пластмассовую коробку, застекленную с лицевой стороны. При­бор всегда хранится в специальном футляре с открывающейся крышкой.

Барометр-анероид, по сравнению с ртутным барометром, ме­нее точный прибор, но зато почти не чувствительный к качке судна. Это делает его более удобным в пользовании и хранении в корабельных условиях. Основным недостатком анероидов является постепенное снижение их чувствительности и точности показании в связи с возникающей со временем остаточной де­формации анерондиой коробки и пружины. Для устранения этих недостатков анероиды периодически должны подвергаться проверке в специальных учреждениях Гидрометеорологической службы - в бюро поверки. Поверка анероидов должна производиться через каждые полгода.

Барограф предназначен для непрерывной записи изменения атмосферного давления. Его устройство ана­логично устройству термографа. Он также состоит из двух основных частей: воспринимающей и пишущей. В качестве приемника давления служит несколько (5-10) анерондных коро­бочек, соединенных между собой металлическими прокладками. Во избежание полной деформации коробочек, возможной под действием атмосферного давления, внутри каждой из них встроена пружина рессорного типа.

Частичная суммарная деформация в виде небольших верти­кальных смещений всей серии барокоробок, возникающих под действием меняющегося атмосферного давлення, передается че­рез систему рычагов па стрелку, па конце которой насажено перо.

Запись давлення в виде кривой происходит на ба­рабане, медленно вращающемся с помощью часового механиз­ма. На барабан надевается бумажная лента, разграфленная горизонтальными линиями (давлением в мб) и вертикальными дугами (время в часах и минутах.

В зависимости от времени полного оборота барабана, барорифы бывают «суточные» и«недельные».

По барографу можно определить не только конкретную ве­личину атмосферного давления в любой момент времени, по и величину и характер его изменения за любой интервал времени.

Поскольку изменение атмосферного давлення весьма тесно связано с текущей и предстоящей погодой, то для ее предсказа­ния в условиях плавания важно знать не столько абсолютное значение давления, сколько величину и характер ее изменения за последние несколько часов.

Барограф на судне устанавливают в закрытом помещении из пружинящих растяжках или крепят к специальной полке или к столу.

Домашний уют

Барометр - что это такое? Прибор для измерения атмосферного давления

28 октября 2016

Барометр, что это такое? Это приспособление для учета колебаний атмосферного давления. Надземный слой нашей планеты имеет толщину в десятки километров. Концентрация смешанных газов в нем отличается небольшой массой, однако в таких значимых объемах оказывает на поверхность существенную нагрузку. Фактически, человек редко его ощущает, так как имеет приспособленность к воздействию этого фактора. Тем не менее, эту величину вполне реально измерить.

Принцип действия простейших устройств

Простейший прибор для измерения атмосферного давления (АД) представляет собой нехитрое устройство, состоящее из тонкостенной стеклянной трубки и ртутного наполнителя. Один из стандартных размеров такого приспособления: трубка толщиной 1 миллиметр и длинной в сто сантиметров.

Если перевернуть емкость закрытым концом вверх, а открытой частью вниз, то некий объем ртути удалится, а определенная часть останется внутри. Содержание жидкого металла будет снижаться до стабилизации внутреннего и наружного давления.

Анероидный и ртутный прибор

Анероид-барометр, что это такое? В принципе работы этого устройства учитываются колебания через круглый металлический корпус с волнистыми стенками, из которого выкачан воздух.

Эластические боковины короба при увеличении давления прогибаются, а при снижении - выпираются. Специальным механизмом рабочие камеры связаны со стрелкой. Она показывает на величину атмосферного давления по шкале, градуированной в миллиметрах столба ртутного.

Прибор для измерения атмосферного давления представляет собой U-образно изогнутую стеклянную колбу с ртутным наполнителем. Показания определяются по разности содержимого в увеличенном и малом отрезке колбы.

При помощи барографов вариации АД регистрируются на ленте, находящейся в действующем блоке барабанного типа. Измеряемые показатели регистрируются в миллиметрах (мм рт. ст.) или миллибарах (мбар).

Барограф

Далее представлен барограф. На вопрос - барометр, что это такое в данной конфигурации, можно ответить - это агрегат-самописец для постоянной фиксации атмосферного давления. Его действие основано на колебаниях АД. В итоге деформация передается системой на устройство. При повышении показаний происходит сжимание коробок, рычаг с пером идет вверх, а в случае снижения давления камеры под действием контрольной пружины становятся шире, и самописец проводит нижнюю линию. Фиксированные показания давления вычитаются на специальной градуированной бумажной ленте, которая размещена на вращающемся барабане.

Для устранения температурных колебаний, влияющих на точность показаний, в устройства монтируют конденсаторы из биметалла. Приспособления устанавливаются вдали от нагревательных приборов и должны быть защищены от прямого воздействия солнечных лучей. Заводной механизм рассчитан на сутки либо на недельный режим.

Особенности использования

Показания барометра фиксируют с учетом изменения климатических условий в разных регионах, поскольку давление воздуха - величина непостоянная, о чем известно еще со школьных уроков природоведения.

При хорошей, теплой и безветренной погоде барометр настенный или настольный показывает высокие значения. Соответственно, при снижении данных в ближайшее время ожидается похолодание либо осадки.

Приспособление, расположенное внутри дома работает точно так, как и в пространстве, не ограниченном оградами, стенами и заборами. Слегка видоизменяет показания прибора высота здания, поскольку давление будет более низким на 9-м этаже и выше, чем на меньших уровнях одного строения.

Приспособление с учетом высоты

Чем выше подъем вверх, тем ниже показатели давления атмосферного столбика. Выявленная закономерность применяется в авиационных приборах, определяющих высоту полета. Подобные устройства называются альтиметрами.

Безусловно, результаты первых, не совсем совершенных приборов, существенно варьировались от погодных факторов, ведь негативные метеоусловия сопровождались падением давления, соответственно, показания прибора высвечивали данные, которые объективно больше реальной отметки. Для снятия правильных показаний требуется корректировка исходящих параметров. Принцип работы современных альтиметров иной - они не используют для измерения высоты давление атмосферы.

Как пользоваться?

Часы с барометром и другие виды устройств - это стрелочный прибор с круглой или овальной шкалой, на которой имеются деления. Величина измерения берется в миллиметрах ртутного столба.

При значениях 750-760 мм рт. ст. в перспективе ожидается замечательный погожий день, который не помешает прогулке, поездке на природу, дачу. При снижении указателя барометра ниже отметки 750 имеется вероятность дальнейшего падения, значит - стоит ожидать ненастную погоду, внезапное похолодание и обильное выпадение осадков.

Слежение за АД жизненно важно для тех, кто страдает повышенным давлением крови. В периоды критического изменения этого показателя такие люди подвержены ухудшению состояния здоровья. Информация о погодных переменах существенна для них по причине своевременного принятия лекарства, сохранения своей работоспособности и здоровья.

Современные экземпляры

Сейчас чаще всего используются барометры чашечного типа или сифонные виды. В стационарных устройствах, которые оборудованы компенсированной шкалой, атмосферное давление высчитывается непосредственно по положению ртути в стеклянной емкости.

В экземплярах для экспедиций перед началом наблюдений предварительно корректируют уровень ртути в чаше на нулевой отметке, используя регулирующий винт. В сифонно-чашечных приспособлениях величина АД измеряется по разнице высот столба в длинном и открытом участке. Такое приспособление отсчитывает показания с точностью до пяти сотых. Для определения десятых долей столба используется подвижной металлический шаблон.

Полученные числовые результаты атмосферного давления приводятся по специальной таблице к нулю градусов по Цельсию. Температурные корректировки показаний могут быть весьма существенными. Невзирая на виды барометров, они устанавливаются вдали от источников тепла (печей, обогревателей, прямого солнечного воздействия), а также подальше от дверных и оконных проемов.

Особенности

Рассматриваемое приспособление может применяться в удобном и компактном исполнении. Например, часы с барометром имеют следующую функциональность:

  • Непроницаемость для воды, вплоть до 50-100 метров.
  • Устойчивость к ударам и механическим воздействиям, что немаловажно для рыбаков, охотников и любителей экстремального отдыха.
  • Барометр позволяет спрогнозировать изменения атмосферного давления и погоды в целом.
  • Кроме того, часы могут оснащаться термометром, подсветкой, компасом и даже навигатором, что существенно облегчает пребывание в не совсем знакомой местности.

На вопрос "Барометр, что это такое?" однозначно можно ответить - приспособление особенно важное для путешественников, рыбаков, охотников и мореплавателей. Кроме того, эта штука в бытовом использовании позволяет довольно точно предугадать колебания погоды, что актуально для людей с заболеваниями сердечно-сосудистой и нервной системы.

Сила веса воздушного столба высотой 10 км, действующая на единицу земной поверхности, называется атмосферным давлением. В системе СИ за единицу давления принят Паскаль (Па)

Однако, 1 Па – очень малая величина давления, поэтому при измерении атмосферного давления пользуются кратными единицами: кПа = 1000 Па и МПа = 10 6 Па = 1000 кПа.

Кроме Паскаля для измерения атмосферного давления также используются внесистемные единицы – миллиметры ртутного (водяного) столба и бары, причем

1 бар = 101,3 кПа = 760 мм. рт. ст.,

именно такое значение имеет атмосферное давление на уровне моря.

Прибор для измерения атмосферного давления называется барометром. Наиболее распространенным типом является металлический барометр-анероид, конструкция которого показана на рис. 1.2. Основу анероида составляет цилиндрическая камера К , из которой откачан воздух. Камера герметично закрыта тонкой гофрированной (волнистой) мембраной М . Чтобы атмосферное давление не сплющило мембрану, она с помощью тяги Т соединена с пружиной П , закрепленной на корпусе прибора. К пружине шарнирно прикреплен нижний конец стрелки С , которая может вращаться вокруг оси О . Для измерения показаний прибора служит шкала Ш . При изменении атмосферного давления мембрана прогибается внутрь или наружу и перемещает стрелку по шкале, показывая значение давления (шкалу барометра-анероида градуируют и поверяют по показаниям ртутного барометра).

Рис. 1.2 – Принципиальная схема барометра-анероида

Анероиды очень удобны в работе, прочны, малогабаритны, но менее точные, чем ртутные барометры. Внешний вид барометра-анероида показан на рис. 1.3.

Прибор для измерения давления называется манометром. Манометры могут быть сифонной или чашечно типов .

Манометр сифонной типа - это U-образная стеклянная трубка, заполненная водой или ртутью (рис. 2.1).

Один из концов манометра запаянный и не имеет доступа воздуха; открытый конец соединен с атмосферным воздухом. Разница уровней жидкости в двух коленях трубки проградуирована в единицах давления.

Манометр чашечно типа содержит вертикальную стеклянную трубку, запаянную сверху и заполненную жидкостью (рис.2.2).

Нижний конец трубки погружен в резервуар, частично заполненный жидкостью. Давление, образуется столбиком жидкости в трубке, уравновешивается атмосферным давлением. Высокая точность измерения манометра чашечно типа (0,1 мм рт ст.) Позволяет использовать его как стандартный прибор для проверки анероидных барометров и высотомеров.

Рис. 2.1. Манометр сифонного типа

Рис. 2.2.

Ртутный барометр является классическим примером манометра чашечно типа. Атмосферное давление, измеряется ртутным барометром, равна:

где - плотность ртути, 13600 кг / м3; g - ускорение свободного падения, м / с2; h - высота ртутного столба, м.

Внешний вид ртутного манометра приведены на рис. 2.3.

Барометр содержит стеклянную трубку, заполненную ртутью, и погруженную в резервуар со ртутью.

Уровень ртути в резервуаре контролируется с помощью конусовидной кости.

Ртутный манометр характеризуется высокой чувствительностью. Точность измерения давления ртутного барометра составляет 0,1 гПа. Его недостаток - это токсичность ртути.

В соответствии с директивой Европейского Союза от 5 июня 2007 года было принято ограничение продажи ртути, практически остановило производство новых ртутных барометров в Европе.

Содержит анероидные капсулу, состоящую из двух тонких (0,2 мм толщиной) металлических гофрированных мембран (рис.2.4). В середине капсулы воздуха откачивают (давление составляет 10-2 гПа) или капсулу заполняют инертным газом при давлении 65 мбар.

Преимуществом барометра-анероида является его компактность, механическая прочность, возможность транспортировки. Эти приборы могут применяться в системах автоматического измерения давления, поскольку механические перемещения анероидных капсул легко превратить в электрический сигнал. Недостатком барометра-анероида является меньше по сравнению с ртутным барометром точность измерений.

Рис. 2.3. Ртутный манометр

Рис. 2.4.

Трубка Бурдона представляет собой плоскую искаженную трубку, которая выпрямляется при изменении атмосферного давления (рис. 2.5).

Эта трубка эллиптического сечения является чувствительным элементом деформационного типа. Один конец трубки открыт для регистрации давления, измеряется, тогда как второй жестко прикреплен к корпусу.

Определение давления по деформации трубчатой пружины было запатентовано в 1849 году французским часовщиком Эженом Бурдоном, фамилией которого и названа эта трубку

Трубку Бурдона применяют для измерений давлений, превышающих 10-2 тор (примерно 1 Па) точность измерений составляет ± 2%.

Рис. 2.5. Трубка Бурдона

Методы автоматизированного измерения атмосферного давления

Прибор, используемый для непрерывной регистрации давления воздуха. Он состоит из колонки анероидных коробок, соединенного со стрелкой самозаписувача (рис. 2.6).

Рис. 2.6.

Каждая анероидные капсула состоит из двух тонких (0,2 мм толщиной) металлических гофрированных мембран. Внутри капсулы давление воздуха составляет 10"2 гПа. Иногда капсулу заполняют инертным газом при давлении 65 мбар. Количество капсул в современных приборах может достигать 14. Мембраны находятся в напряженном состоянии благодаря гофрированной поверхности и действия пружины.

Известно, что собственная частота натянутой струны увеличивается с напряжением. Математически отношение между резонансной частотой струны и силой натяжения струны определяется по формуле:

где F - основная резонансная частота струны, Гц; L - длина струны, м; Г сила натяжения струны, Η; μ - масса единицы длины струны, кг / м.

Механические перемещения диафрагмы 1 такого прибора под влиянием переменного давления превращаются в электромагнитные колебания катушки индуктивности 2 вследствие движения магнита С, соединенного с проводом 4. Электромагнитные колебания фиксируются системой регистрации 5 (рис. 2.7). Для сенсоров такого типа используют вольфрам, индий или высокоэластическую сталь, а также такие сплавы, как "элинвар".

Рис. 2.7.

Конструкцию одного из таких сенсоров приведены на рис. 2.8. Увеличение давления на диафрагму снижает силу натяжения провода, что приводит к уменьшению резонансной частоты.

Рис. 2.8.

Состоит из тонкой диафрагмы, выполненной из металла или кварца с напыленными металлическими поверхностями. Диафрагма образует с металлическими поверхностями два конденсатора, которые вместе с еще двумя конденсаторами С1 и С2 образуют электрический мост (рис. 2.9).

Рис. 2.9. Емкостный сенсор давления

На диафрагму действует атмосферное давление с одной стороны и опорное давление с другой. Изменения внешнего давления вызывают изгиб диафрагмы и соответствующие изменения емкости конденсаторов, образованных диафрагмой и пластинами, расположенными по обе стороны диафрагмы. Эти изменения емкости (которые могут достигать несколько процентов от начальной емкости) приводят к изменению частоты сигнала системы регистрации, шкала которой проградуирована в единицах давления.

Емкостной сенсор давления характеризуются высокой чувствительностью, малыми размерами, возможностью давать отсчета при температурах до 250 ° С.

Этот прибор, изготовление которого стало возможным благодаря современным технологиям, состоит из двух кремниевых пластинок из сплавов, соединенных между собой прослойкой диоксида кремния (рис. 2.10).

Кремниевые сплавы выполняют функции обкладок конденсатора, в котором толщина диоксида кремния и соответственно емкость конденсатора зависят от приложенного атмосферного давления.

Емкость конденсатора С зависит от расстояния d между обкладками (), которая в свою очередь зависит от атмосферного давления.

Рис. 2.10.

Диапазон измерения давления барометрическим сенсором давления РТВ210 фирмы Vaisala (Финляндия) - 500-1100 гПа; температурный интервал от -40 ° С до + 60 ° С; общая точность ± 0,15 - 0,35 гПа; вес 110 г размеры 122 мм.

Пьезоэлектрический сенсор давления. Кристаллическая вещества, в которых при сжатии или растяжении в определенных направлениях возникает электрическая поляризация даже при отсутствии электрического поля, называются п " езоелектрикамы. Явление возникновения зарядов на поверхности пьезоэлектрика под влиянием механических деформаций называется прямым пьезоэффектом, а появление механических деформаций под воздействием электрического поля - обратным пьезоэффектом. К пьезоэлектриков принадлежат кварц, дигидрофосфат аммония (АДР), сульфат лития, сегнетовая соль, титанат бария и др.

Величина заряда q , возникающее на поверхности кристалла, определяется выражением:

где F - сила, прикладывается к кристаллу, Н; р - давление, Н / м2; S - площадь поверхности кристалла, м2; k - пьезоэлектрическая постоянная, Кл / Н.

Напряжение, которое измеряется на поверхностях кристалла благодаря пьезоэффекта, определяется так:

где U - напряжение, В; v - чувствительность кристалла, В-м / Н; d - толщина кристалла, м; р давление, Н / м2.

пример

Кристалл квариу имеет толщину 0,25 см. Определить напряжение, возникающее на поверхностях кристалла вследствие действия давления 345 Н / м2, если чувствительность кристалла составляет 0,055 В м Н-1.

решение

Используя уравнения (2.4), получаем:

контрольное задание

Определить пьезоэлектрическую постоянную кварца, если под давлением 345 Н / м2 кристалл площадью 1 см2 создает заряд Кл.

ответ:

Схему пьезоэлектрического датчика давления приведены на рис. 2.11.

Рис. 2.11.

Преимуществом пьезоэлектрических сенсоров является компактность, линейная зависимость электрического сигнала от механической нагрузки, способность иметь высокую стабильность в широком температурном диапазоне (до 1000 ° С).