Характеристика ультразвуковых генераторов. Как сделать ультразвуковой генератор своими руками

УЗ излучатель - это генератор мощных ультразвуковых волн. Как мы знаем, ультразвуковую частоту человек не слышит, но организм чувствует. Иными словами ультразвуковая частота воспринимается человеческим ухом, но определенный участок мозга, отвечающий за слух, не может расшифровать данные звуковые волны. Те, кто занимаются построением аудио систем должны знать, что высокая частота очень неприятна для нашего слуха, но если поднять частоту на еще высокий уровень (УЗ диапазон) то звук исчезнет, но на самом деле он есть. Мозг попытается безуспешно раскодировать звук, в следствии этого возникнет головная боль, тошнота, рвота, головокружение и т.п.

Ультразвуковая частота давно применяется в самых разных областях науки и техники. При помощи ультразвука можно сваривать металл, провести стирку и многое другое. Ультразвук активно применяется для отпугивания грызунов в сельскохозяйственной технике, поскольку организм многих животных приспособлен к общению с себе подобными на УЗ диапазоне. Есть данные и про отпугивание насекомых с помощью УЗИ генераторов, многие фирмы выпускают такие электронные репелленты. А мы предлагаем вам самостоятельно собрать такой прибор, по приведённой схеме:

Рассмотрим конструкцию достаточно простой УЗ пушки высокой мощности. Микросхема D4049 работает в качестве генератора сигналов ультразвуковой частоты, она имеет 6 логических инверторов.

Микросхему можно заменить на отечественный аналог К561ЛН2. Регулятор 22к нужен для подстройки частоты, ее можно снижать до слышимого диапазона, если резистор 100к заменить на 22к, а конденсатор 1,5нФ заменить на 2,2-3,3нФ. Сигналы с микросхемы подаются на выходной каскад, который построен всего на 4-х биполярных транзисторах средней мощности. Выбор транзисторов не критичен, главное подобрать максимально близкие по параметрам комплементарные пары.

В качестве излучателя можно использовать буквально любые ВЧ головки с мощностью от 5 ватт. Из отечественного интерьера можно использовать головки типа 5ГДВ-6, 10ГДВ-4, 10ГДВ-6. Такие ВЧ головки можно найти в акустических системах производства СССР.

Осталось только оформить все в корпус. Для направленности УЗ сигнала нужно использовать металлический рефлектор.


Владельцы патента RU 2343011:

Изобретение относится к измерительной технике и может быть использовано в качестве генератора эталонных акустических импульсов при тестировании высокочастотной датчиковой аппаратуры. Техническим результатом изобретения является повышение крутизны фронта генерируемых акустических импульсов, возможность формирования эталонных акустических импульсов с неискаженной формой и снижение уровня электромагнитных помех. Ультразвуковой генератор содержит источник питания, ограничительный резистор, формирующую электрическую цепь, включающую накопительный конденсатор и коммутирующее устройство, и пьезопреобразователь с токопроводами, подключенными к названной цепи. Элементы формирующей цепи и пьезопреобразователь конструктивно выполнены в виде единой осесимметричной конструкции с тремя изолированными друг от друга токопроводящими оболочками. Накопительный конденсатор выполнен в виде тонкостенного цилиндра, обкладками которого служат перекрывающиеся части средней и внутренней оболочек. Пьезопреобразователь размещен у одного из торцов накопительного конденсатора и снабжен демпфером, расположенным во внутренней полости указанного конденсатора. Внешняя оболочка выполнена замкнутой и служит обратным токопроводом пьезопреобразователя, прямым токопроводом которого служит одна из обкладок конденсатора. При этом коммутирующее устройство соединено с другой обкладкой конденсатора и внешней оболочкой и размещено внутри нее. 1 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике, конкретнее к области электрических измерений параметров импульсных механических нагрузок в виброакустике и физике взрыва, и может быть использовано в качестве генератора эталонных акустических импульсов при тестировании высокочастотной датчиковой аппаратуры.

Известно, что одним из важных этапов предварительной подготовки пьезополимерных высокочастотных датчиков динамических давлений однократного действия на основе пьезопленок поливинилиденфторида (ПВДФ), в том числе высокочастотных микрополосковых датчиков (см., например, 1. Толстиков И.Г., Мартынов А.П., Фомченко В.Н., Погодин Е.П., Долгов В.И. Пьезоэлектрический датчик и способ его изготовления. Патент RU №2258276, БИ №22, 2005. 2. Толстиков И.Г., Мартынов А.П., Фомченко В.Н., Астайкин А.И., Троцюк К.В. Пьезоэлектрический датчик. Патент RU №2262157, БИ №28, 2005) к эксперименту является неразрушающее тестирование (входной контроль) с целью отбора групп датчиков с одинаковой пьезоактивностью и последующая калибровка датчиков каждой группы для корректировки результатов измерений. Для этой цели в настоящее время используются в основном такие известные экспериментальные установки для создания ударных и акустических волн, как различного рода ударные трубы и легкогазовые пушки или мощные импульсные лазеры (см., например, 3. В.В.Селиванов, B.C.Соловьев, Н.Н.Сысоев. Ударные и детонационные волны. Методы исследования. - М.: Изд-во МГУ, 1990, 265 с.). Обычно необходимая амплитуда зондирующих плоских волн лежит в диапазоне от 10 кПа до 1 МПа, длительность импульсов давления с постоянной амплитудой лежит в субмикросекундном или микросекундном диапазоне, длительность переднего фронта - несколько десятков наносекунд, форма эталонных импульсов давления должна быть близка к прямоугольной (ступеньке), при этом разновременность прихода переднего фронта волны на площадку, размеры которой должны быть существенно больше размеров чувствительного элемента датчика, должна быть значительно меньше длительности переднего фронта импульсов давления. К недостаткам указанных установок, предназначенных, как правило, для создания более мощных ударных волн, чем необходимо для тестирования указанных датчиков, следует отнести их высокую стоимость, сложность технического обслуживания, высокую стоимость отдельного опыта, а также проблемы, связанные с защитой датчиков от разрушения.

Известны способ и устройство для создания ударных волн, используемых в технике, преимущественно в медицинской технике (Werner Hartmann, Joerg Kieser. Apparatus for producing shock waves for technical, preferably medical application. Patent US 6,383,152. Int. Cl. 7 A61B 17/22. Date of Patent: May 7, 2002). В соответствии с этим изобретением волны давления создают с помощью кратковременного нагрева проводящего электролита, причем с помощью интенсивного электрического импульса электрическая энергия непосредственно и без потерь преобразуется в тепловую энергию электролита. Соответствующее устройство для осуществления способа отличается наличием двух электродов, которые закрывают электролит и соединены с мощным импульсным генератором. Один из электродов обеспечивает выход звуковых волн в среду, распространяющую звук.

Недостатком известного устройства является использование мощного импульсного генератора и жидкой рабочей среды (электролита) для формирования импульса давления, что, несомненно, усложняет установку в целом. Другим недостатком является необходимость охлаждения электролита после опыта, что увеличивает время между отдельными опытами.

Известен ультразвуковой генератор (В.П.Минчук. Ультразвуковой генератор. А.с. 411918, М. Кл. В06В 1/06, Н03h 5/08. Опубл. БИ №3, 1974). В этом ультразвуковом генераторе формирование электрических импульсов возбуждения пьезоэлектрического преобразователя (пьезопреобразователя) осуществляется за счет медленного заряда и быстрого разряда емкости самого преобразователя. Возбуждение упругих колебаний стенок пьезопреобразователя происходит при разряде, когда резко уменьшается напряжение на обкладках пьезопреобразователя и снимается воздействие электрического поля.

Недостатком известного ультразвукового генератора является сильное отличие (искажение) формы генерируемого импульса давления от эталонной вследствие быстрого падения напряжения на пьезопреобразователе при разряде.

Наиболее близким аналогом (прототипом) по технической сущности к предлагаемому техническому решению является ультразвуковой генератор (излучатель), работающий в импульсном режиме т.н. ударного возбуждения пьезопреобразователя (4. Ультразвуковые пьезопреобразователи для неразрушающего контроля. Под общ. ред. Ермолова И.Н. - М.: Машиностроение, 1986, 280 с., см. с.64, см. также, с.61). Такой ультразвуковой генератор (генератор акустических волн) работает следующим образом. От источника питания через ограничительный резистор предварительно заряжается накопительный конденсатор, который после срабатывания коммутатора разряжается через электрическую цепь (с сосредоточенными оптимальными параметрами), в которую включен (ультразвуковой) пьезопреобразователь.

Таким образом, известный ультразвуковой генератор содержит источник питания, ограничительный (зарядный) резистор, формирующую электрическую цепь с сосредоточенными оптимальными параметрами, включающую накопительный конденсатор и коммутирующее устройство, и пьезопреобразователь с токопроводами, подключенными к названной цепи.

Как отмечается в работе , быстродействие пьезопреобразователей теоретически ограничивается только временем установления ионной поляризации в пьезоматериалах и лежит в пределах 10 -10 -10 -13 с. На практике минимальная длительность акустических импульсов, излучаемых обычными пьезопреобразователями из пьезокерамики, составляет единицы наносекунд и ограничивается чисто техническими возможностями создания электронных схем генераторов наносекундной длительности и чистотой обработки излучающей поверхности пьезоэлемента. Проблема в нашем случае осложняется тем, что для достижения максимальных амплитудных значений эталонных импульсов на достаточно большой площади (порядка нескольких квадратных сантиметров) необходимо использовать высоковольтную импульсную (наносекундную) технику без традиционных электронных схем.

Задача, на решение которой направлено заявляемое изобретение, заключается в создании простого импульсного генератора акустических волн (ультразвукового генератора) для тестирования высокочастотных датчиков, отличающегося крутым фронтом (длительностью порядка единиц наносекунд или менее), регулируемой амплитудой (до 1 МПа) и не являющегося источником заметных электромагнитных помех.

Технический результат, достигаемый при осуществлении предполагаемого изобретения, заключается в повышении крутизны фронта генерируемых акустических импульсов приблизительно на порядок величины (повышении частоты, расширении частотного диапазона), в возможности формирования эталонных акустических импульсов с неискаженной формой, а также в значительном снижении создаваемых ультразвуковым генератором электромагнитных помех (повышение электромагнитной совместимости ультразвукового генератора и тестируемой с его помощью датчиковой аппаратуры), что в конечном итоге позволяет использовать названный генератор для тестирования высокочастотных датчиков в качестве генератора эталонных акустических импульсов.

Для достижения указанного технического результата в заявленном ультразвуковом генераторе, содержащем источник питания, ограничительный резистор, формирующую электрическую цепь, включающую накопительный конденсатор и коммутирующее устройство, и пьезопреобразователь с токопроводами, подключенными к названной цепи, новым является то, что элементы формирующей цепи и пьезопреобразователь конструктивно выполнены в виде единой осесимметричной конструкции с тремя изолированными друг от друга токопроводящими оболочками, в которой накопительный конденсатор выполнен в виде тонкостенного цилиндра, обкладками которого служат перекрывающиеся части средней и внутренней оболочек, пьезопреобразователь размещен у одного из торцов накопительного конденсатора и снабжен демпфером, расположенным во внутренней полости указанного конденсатора, внешняя оболочка выполнена замкнутой и служит обратным токопроводом пьезопреобразователя, прямым токопроводом которого служит одна из обкладок конденсатора, при этом коммутирующее устройство соединено с другой обкладкой конденсатора и внешней оболочкой и размещено внутри нее.

Кроме того, для получения разделенных по времени эталонных акустических импульсов сжатия и растяжения пьезопреобразователь выполнен в виде плоскопараллельной пьезопластины, дополнительно введены коммутирующее устройство, включенное между внутренней и средней оболочками, и устройство управления коммутирующими устройствами.

Кроме того, пьезопреобразователь выполнен в виде плоскопараллельной пьезопластины, совершающей упругие колебания по толщине, дополнительно введены второе коммутирующее устройство, включенное между внутренней и средней оболочками, и устройство управления коммутирующими устройствами. Интервал времени между моментами срабатывания последних выбран меньше полупериода собственных колебаний пьезопластины. Это позволяет получить разделенные по времени эталонные акустические импульсы сжатия и растяжения (см. ниже). При этом последовательность формирования названных импульсов на выходе ультразвукового генератора обратима и зависит от полярности нагружающего пьезопреобразователь электрического импульса (точнее, от взаимного расположения вектора напряженности электрического поля и полярной оси пьезоматериала).

На фиг.1 представлен вариант конструкции заявленного ультразвукового генератора с одним коммутирующим устройством. На фиг.2 приведена упрощенная электрическая схема для ультразвукового генератора на фиг.1. На фиг.3 представлен вариант конструкции заявленного ультразвукового генератора с двумя коммутирующими устройствами. На фиг.4 приведена упрощенная электрическая схема для ультразвукового генератора на фиг.3.

Ультразвуковой генератор с одним коммутирующим устройством на фиг.1 (см. также обозначения на фиг.2) содержит корпус 1 с крышкой 2, пьезопреобразователь (С п) 3 с электродами 4, 5 и демпфером 6, накопительный конденсатора (С н) 7 с обкладками 8 и 9, коммутирующее устройство (Р) 10 с выходом к устройству (блоку) управления (БУ), шунтирующее сопротивление (Z) 11 и токовыводы 12, 13 и 14 цепи заряда накопительного конденсатора 7. Накопительный конденсатор 7 выполнен в виде тонкостенного цилиндра, во внутренней полости которого размещен демпфер 6. Двумя стрелками справа на фиг.1 отмечены места подключения цепи ограничительного резистора (R) и источника питания (U 0) (на фиг.1 не показаны, см. фиг.2). Стрелками слева на фиг.1 показано направление распространения выходного акустического импульса ультразвукового генератора от выходного (лицевого) электрода 4 пьезопреобразователя 3 во внешнюю среду. При этом элементы формирующей цепи (7, 10) и пьезопреобразователь 3 конструктивно выполнены в виде единой осесимметричной конструкции с тремя изолированными друг от друга (с помощью изолятора 15, диэлектрического материала накопительного конденсатора 7 и пьезоматериала пьезопреобразователя 3) токопроводящими оболочками, которые используются для обеспечения электрических и механически соединений элементов ультразвукового генератора в целом. Внешняя замкнутая оболочка состоит из корпуса 1, крышки 2 и выходного электрода 4 пьезопреобразователя 3 и используется также для соединения пьезопреобразователя 3, коммутирующего устройства 10, токовывода 14 и крепления токовывода 12 с помощью изолирующей втулки 16. Внутренняя оболочка, выполненная в виде стакана, состоит из внутренней обкладки 8 накопительного конденсатора 7, внутреннего (тыльного) электрода 5 пьезопреобразователя 3 и промежуточной части 17, соединяющей токопроводы пьезопреобразователя 3 и накопительного конденсатора 7. Средняя оболочка, также выполненная в виде стакана, состоит из внешней обкладки 9 накопительного конденсатора 7 и донной части 18, используемой для соединения токовывода 12, коммутирующего устройства 10 и крепления шунтирующего сопротивления 11 и токовывода 13 с помощью изолирующей втулки 19. Пьезопреобразователь 3 размещен у одного из торцов накопительного конденсатора 7, обкладками 8 и 9 которого служат перекрывающиеся части средней и внутренней оболочек. Внешняя оболочка служит обратным токопроводом пьезопреобразователя 3, прямым токопроводом которого служит одна из обкладок (8 на фиг.1 в рассматриваемом варианте) конденсатора 7, при этом коммутирующее устройство 10 соединено с другой обкладкой (9 на фиг.1 в рассматриваемом варианте) конденсатора 7 и внешней оболочкой и размещено внутри нее. Отметим, что в соответствии с формулой изобретения возможен другой вариант выполнения конструкции ультразвукового генератора, который формально можно получить, поменяв местами в приведенном выше описании слова «средняя» и «внутренняя» (оболочка), а также соответственно «внешняя» и «внутренняя» (обкладки).

Отметим, что в варианте выполнения ультразвукового генератора с одним коммутирующим устройством (см. фиг.1 и 2) в качестве последнего может быть использован как управляемый, так и неуправляемый разрядник. В варианте с двумя коммутирующими устройствами (см. фиг.3 и 4) используются управляемые разрядники, например вакуумные искровые разрядники типа ВИР (см. ссылку , с.87-92).

Ультразвуковой генератор с двумя коммутирующими устройствами на фиг.3 (см. также обозначения на фиг.4) в отличие от предыдущего варианта содержит дополнительно второе коммутирующее устройство 20, включенное между внутренней и средней оболочками, т.е. параллельно конденсатору 7, с помощью дополнительного токовывода 21, и устройство управления двумя коммутирующими устройствами (P 1 , Р 2) 10 и 20. Второе коммутирующее устройство 20 (и токовывод 21) принадлежит формирующей цепи и размещается непосредственно за демпфером по оси симметрии. Устройство управления (блок управления БУ) коммутирующими устройствами 10 и 20 размещается аналогично источнику питания (на фиг.3, 4 не показан). При этом пьезопреобразователь 3 выполнен в виде плоскопараллельной пьезопластины, совершающей упругие колебания по толщине, а интервал времени между моментами срабатывания коммутирующих устройств 10 и 20 выбран меньше полупериода собственных колебаний пьезопластины.

Ультразвуковой генератор функционирует следующим образом (см. фиг.1-4). Тестируемые высокочастотные датчики (см., например, ссылки ) размещаются предварительно на выходной поверхности ультразвукового генератора (выходном электроде 4 пьезопреобразователя (С п) 3), на которой может быть нанесена путем напыления диэлектрическая пленка, а также сами датчики, например, на основе ленгмюровских ультратонких пьезопленках (см. ) Затем от источника питания (U 0) через ограничительный резистор (R), шунтирующее сопротивление (Z) 11 и токовыводы 12, 13 и 14 медленно заряжается накопительный конденсатор 7. После срабатывания коммутатора 10 в момент времени t=0 накопительный конденсатор 7 быстро разряжается через формирующую электрическую цепь, в которую включен (ультразвуковой) пьезопреобразователь 3. При этом, как известно, шунтирующее сопротивление (Z) 11 выбирается таким образом, чтобы на высоких частотах оно было значительно больше сопротивления пьезопреобразователя (С п) 3, поэтому ток разряда накопительного конденсатора 7 во время формирования выходного импульса давления протекает в основном через пьезопреобразователь. Кроме того, поскольку емкость накопительного конденсатора (С п) 7 значительно больше емкости пьезопреобразователя (С п) 3, то форма импульса напряжения U(t) на пьезопреобразователе 3 близка к прямоугольной ступеньке с амплитудой, практически равной напряжению источника U 0 в течение времени, необходимого для возбуждения в последнем эталонного импульса давления (см. ниже).

В качестве преобразователя 3, имеющего наиболее простую конструкцию, может быть использован, например, пьезоэлемент в виде диска из кварца х-среза (см. фиг.1) толщиной d с электродами на основаниях 4 и 5, размещенный вплотную с демпфером 6. Демпфер 6, выполненный, например, из эпоксидной смолы с вольфрамовым порошковым наполнителем, акустически согласован с пьезоэлементом преобразователя 3 и обеспечивает быстрое поглощение входящих в него акустических волн. Работа такого преобразователя 3 основана на том, что акустические сигналы возникают на поверхностях (основаниях), несущих электроды 4 и 5 (см., например, ). Если в момент времени t=0 (срабатывания коммутирующего устройства) преобразователь возбудить электрическим импульсом U(t) длительностью t 0 , то на электродах 4 и 5 появляются свободные электрические заряды и вследствие обратного пьезоэффекта оба его основания приходят в движение. Каждое основание работает как источник двух ультразвуковых волн (сжатия и растяжения), излучаемых в двух направлениях по оси симметрии генератора: в объем пьезоэлемента и во внешнюю среду (демпфер). Отметим, что все волны, прошедшие влево через тыльную поверхность (5), поглощаются демпфером 6, отражение на тыльной поверхности (5) отсутствует. В результате на лицевой поверхности (4) возникает два акустических импульса: первый импульс, излучаемый лицевой стороной (4) с момента времени t=0; второй импульс, излучаемый с момента времени t=0 тыльной поверхностью (5) и приходящий на лицевую поверхность (4) в момент t=Т=d/c (где с - скорость упругих волн в кварце), то есть с задержкой, соответствующей времени распространения упругой волны по пьезоэлементу. Форма обоих импульсов давления σ(t) (механического напряжения) одинакова и совпадает с формой нагружающего импульса U(t) (для высокочастотных пьезоматериалов типа кварца) / см., например, Кайно Г. Акустические волны: Устройства, визуализация и аналоговая обработка сигналов: Пер. с англ. - М.: Мир, 1990, 656 с., см. с.58/, т.е. является близкой к прямоугольной. Важно отметить, что при любой длительности t 0 нагружающего импульса U(t) в интервале времени 0≤t<Т форма импульса давления на лицевой поверхности (4) соответствует эталонной.

Временная диаграмма импульсов давления σ(t) зависит от длительности t 0 нагружающего импульса U(t) следующим образом: при t 0 >d/c=Т, т.е. в случае с одним коммутирующим устройством импульсы σ(t) накладываются друг на друга с момента t=Т в интервале Т

Зависимость σ(t) и значение σ 0 можно определить из уравнения обратного пьезоэффекта:

σ(t)=e·E(t)=e·U(t)/d,

σ 0 =е·Е 0 =е·U 0 /d,

где е - пьезоконстанта пьезоматериала, е=е 11 для кварца х-среза,

Амплитуда акустического импульса σ 0 (в пьезоматериале) может принимать следующие значения (или меньше): для кварца σ 0 =0,9 МПа при Е 0 =5 кВ/мм (е 11 =0,18 Кл/м 2), для пьезокерамики ЦТС-21 σ 0 =6,73 МПа при Е 0 =1 кВ/мм, для пьезокерамики титаната бария ТБ-1 σ 0 =12,7 МПа при Е 0 =1 кВ/мм.

Расчетная длительность импульсов давления с постоянной амплитудой лежит в субмикросекундном или микросекундном диапазоне, длительность переднего фронта - несколько наносекунд. При этом длительность генерируемого акустического импульса определяется длительностью Т полупериода собственных колебаний пьезопластины (для варианта конструкции с одним коммутирующим устройством) или длительностью t 0

Таким образом, выполнение ультразвукового генератора в соответствии с предлагаемым изобретением приводит к повышению крутизны фронта генерируемых акустических импульсов приблизительно на порядок величины, к возможности формирования эталонных акустических импульсов с неискаженной формой, а также к значительному снижению создаваемых ультразвуковым генератором электромагнитных помех, что в конечном итоге позволяет использовать названный генератор для тестирования высокочастотных датчиков в качестве генератора эталонных акустических импульсов.

1. Ультразвуковой генератор, содержащий источник питания, ограничительный резистор, формирующую электрическую цепь, включающую накопительный конденсатор и коммутирующее устройство, и пьезопреобразователь с токопроводами, подключенными к названной цепи, отличающийся тем, что элементы формирующей цепи и пьезопреобразователь конструктивно выполнены в виде единой осесимметричной конструкции с тремя изолированными друг от друга токопроводящими оболочками, в которой накопительный конденсатор выполнен в виде тонкостенного цилиндра, обкладками которого служат перекрывающиеся части средней и внутренней оболочек, пьезопреобразователь размещен у одного из торцов накопительного конденсатора и снабжен демпфером, расположенным во внутренней полости указанного конденсатора, внешняя оболочка выполнена замкнутой и служит обратным токопроводом пьезопреобразователя, прямым токопроводом которого служит одна из обкладок конденсатора, при этом коммутирующее устройство соединено с другой обкладкой конденсатора и внешней оболочкой и размещено внутри нее.

Изобретение относится к эхолокации и может быть использовано в различных ультразвуковых устройствах, где в качестве приемоизлучателя используется пьезоэлектрический преобразователь (ПЭП), а именно в средствах неразрушающего контроля, в частности в ультразвуковых дефектоскопах и толщиномерах, в медицине - в ультразвуковых сканерах, в навигации - в эхолотах, гидролокаторах

Изобретение относится к измерительной технике и может быть использовано в качестве генератора эталонных акустических импульсов при тестировании высокочастотной датчиковой аппаратуры

Неоднократно каждый из нас слышал выражение "ультразвук" - в данной статье мы рассмотрим что это, как создается, и для чего он нужен.

Понятие "ультразвук"

Ультразвук - это механические колебания, которые находятся значительно выше той области частот, которую слышит ухо человека. Колебания ультразвука чем-то напоминают волну, похожую на световую. Но, в отличие от волн светового типа, которые распространяются только в вакууме, ультразвуку нужна упругая среда - жидкость, газ или любое другое твердое тело.

Основные параметры ультразвука

Основными параметрами ультразвуковой волны принято считать длину волны и период. Время, которое требуется для полного цикла, принято называть периодом волны, измеряется оно в секундах.

Мощнейшим генератором ультразвуковых волн считается УЗ-излучатель. Человеку не под силу слышать ультразвуковую частоту, но его организм способен ее чувствовать. Если говорить другими словами, то человеческое ухо воспринимает ультразвуковую частоту, но участок мозга, отвечающий за слух, не в силах сделать расшифровку этой звуковой волны. Для человеческого слуха неприятна высокая частота, но, если поднять частоту на еще один диапазон, то звук полностью исчезнет - несмотря на то, что в УЗ-частоте он есть. И мозг прилагает усилия, чтобы безуспешно его раскодировать, из-за этого у человека возникает жуткая головная боль, головокружение, тошнота и другие не совсем приятные ощущения.

Генераторы ультразвуковых колебаний используются во всех областях техники и науки. Например, ультразвуку под силу не только постирать белье, но и сваривать металл. В современном мире УЗ активно применяется в сельскохозяйственной технике для отпугивания грызунов, поскольку организм большинства животных приспособлен к общению с себе подобными на ультразвуковой частоте. Также следует сказать, что генератор ультразвуковых волн способен отпугивать и насекомых - сегодня многие производители выпускают такого рода электронные репелленты.

Разновидности ультразвуковых волн

Ультразвуковые волны бывают не только поперечные или продольные, но и поверхностные и волны Лэмба.

Поперечные УЗ волны - это волны, которые движутся перпендикулярно плоскости направления скоростей и смещений частиц тела.

Продольные УЗ волны - это волны, движение которых совпадает с направлением скоростей и смещений частиц среды.

Волна Лэмба - это упругая волна, которая распространяется в твердом слое со свободными границами. Именно в этой волне происходит колебательное смещение частиц как перпендикулярно плоскости пластины, так и в направлении движения самой волны. Именно волна Лэмба - это нормальная волна в платине со свободными границами.

Рэлеевские (поверхностные) УЗ волны - это волны с эллиптическим движением частиц, которые распространяются на поверхности материала. Скорость поверхностной волны составляет почти 90% от скорости движения волны поперечного типа, а ее проникновение в материал равно самой длине волны.

Использование ультразвука

Как уже выше говорилось, разнообразное использование УЗ, при котором применяются самые различные его характеристики, условно можно разделить на три направления:

  1. получение информации;
  2. активное воздействие на вещество;
  3. обработка и передача сигналов.

Следует учитывать, что при каждом конкретном применении необходимо выбирать УЗ определенного частотного диапазона.

Воздействие ультразвука на вещество

Если материал или вещество попадает под активное воздействие УЗ-волн, то это приводит к необратимым в нем изменениям. Это обусловлено нелинейными эффектами в звуковом поле. Такой тип воздействия на материал популярно в промышленной технологии.

Получение информации при помощи УЗ-методов

Ультразвуковые методы сегодня широко применяются в различного рода научных исследованиях для тщательного изучения строения и свойств веществ, а также для полного понимания проходящих в них процессов на микро- и макроуровнях.

Все эти методы главным образом основаны на зависимости скорости распространения и затухания акустических волн от происходящих в них процессах и от свойств веществ.

Обработка и передача сигналов

Ультразвуковые генераторы используются для преобразования и аналоговой обработки различного рода электрических сигналов во всех отраслях радиоэлектроники и для контроля световых сигналов в оптике и оптоэлектронике.

Ультразвуковой излучатель своими руками

В современном мире ультразвуковой генератор используется достаточно широко. Например, в промышленности используются для быстрой и качественной очистки чего-либо. Следует сказать, что такой метод очистки зарекомендовал себя только с лучшей стороны. Сегодня ультразвуковой генератор набирает популярность в использовании и в других целях.

Сборка схемы УЗГ для отпугивания собак

Многие жители мегаполисов страны ежедневно сталкиваются с довольно-таки ощутимой проблемой встречи стаи бродячих собак. Заранее предугадать поведение стаи невозможно, поэтому здесь придет в помощь УЗГ.

В данной статье мы с вами разберем как сделать ультразвуковой

Для создания УЗГ в домашних условиях потребуются такие детали:

  • печатная плата;
  • миркосхема;
  • радиотехнические элементы.

Самостоятельно собрать схему не составит большого труда. Для того чтобы была возможность управлять импульсами, следует закрепить при помощи паяльника к конкретным ножкам микросхемы радиодетали.

Разберем конструкцию генератора ультразвуковой частоты высокой мощности. В качестве генератора УЗ-частоты работает микросхема D4049, которая имеет 6 логическиХ интерторов.

Зарубежную микросхему можно заменить на аналог отечественного производства К561ЛН2. Для подстройки частоты требуется регулятор 22к, при помощи его УЗ можно снижать до слышимой частоты. На выходной каскад, благодаря 4-м биополярным транзисторам со средней мощностью, поступают сигналы с микросхемы. Особого условия по выбору транзисторов нет, здесь главное выбрать максимально близкие по параметрам комплементарные пары.

Практически любая ВЧ-головка, которая имеет мощность от 5 ватт, может быть использована в качестве излучателя. Идеальным вариантом станут отечественные головки типа 10ГДВ-6, 10ГДВ-4 или 5ГДВ-6, их с легкостью можно найти во всех акустических системах производства СССР.

Сделанную своими руками схему генератора УЗ осталось только спрятать в корпус. Контролировать мощность ультразвукового генератора поможет металлический рефлектор.

Схема ультразвукового генератора

В современном мире для отпугивания собак, насекомых, грызунов, а также для высококачественной стирки принято использовать генератор ультразвуковой. УЗГ также используется для того, чтобы значительно сократить временные затраты при промывке и травлении печатных плат. Химические процессы в жидкости протекают значительно быстрее благодаря кавитации.

В основе схемы УЗГ состоят два импульсных генератора прямоугольной формы и усилитель мощности мостового вида. На логических элементах типа DD1.3 и DD1.4 устанавливается перестраиваемый генератор импульсов УЗ частоты формы меандр. Следует помнить, что его рабочая частота напрямую зависит только от общей сопротивляемости резисторов R4 и R6, а также от емкости конденсатора С3.

Запомните правило: чем меньше частота, тем больше сопротивление этих резисторов.

На элементах DD1.1 и DD1.2 сделан генератор НЧ, который имеет рабочую частоту 1 Гц. Между собой генераторы связаны при помощи резисторов R3 и R4. Для того чтобы достичь плавного изменения частоты высокочастотного генератора нужно использовать конденсатор С2. Здесь также следует запомнить один секрет - если конденсатор С2 зашунтировать с помощью переключателя SA1, то частота генератора высоких частот станет постоянной.

Использование ультразвука: широчайшая сфера применения

Как все мы знаем, ультразвук в современном мире где только не используется. Наверняка каждый из нас хоть раз в жизни проходил процедуру УЗИ (ультразвукового исследования). Следует добавить, то именно благодаря УЗИ доктора могут обнаружить возникновение заболеваний органов человека.

Ультразвук активно применяется в косметологии для эффективного очищения кожного покрова не только от грязи и жира, но и от эпителия. К примеру, ультразвуковой фонофорез успешно используется в салонах красоты как для питания и очищения, так и для увлажнения и омоложения кожного покрова. Методика применения УЗ-фонофореза усиляет за счет действия ультразвуковой волны защитные механизмы кожи. Косметические процедуры с применением ультразвука считаются универсальными и подходят для всех типов кожи. Ультразвуковой фонофорез вторит чудеса!

Ультразвуковой генератор пара активно используется не только в турецких хаммамах, финских саунах, но и в наших современных русских банях. Благодаря пару наше тело эффективно очищается от невидимой грязи, наш организм избавляется от токсинов и шлаков, оздоравливаются кожа и волосы, пар положительно влияет на органы дыхания человека.

Генераторы искусственного тумана активно используются для повышения влажности воздуха в помещениях, что благотворно влияет на климат в квартире. Особенно актуальным это стает в холодное время года, когда централизованное отопление пересушивает воздух. Используют генераторы искусственного тумана как в жилых помещениях, так и террариуме или зимнем саду. Специалисты советуют иметь ультразвуковой генератор тумана людям с заболеваниями дыхательных путей или склонными к аллергическим заболеваниям.

Вывод

В домашнем использовании ультразвуковой генератор пара или тумана - это очень полезный прибор, который не только создаст комфорт и уют, но и сможет обогатить воздух невидимыми глазу витаминами, легкими отрицательными аэроионами, которых так много на морском берегу, в горах или в лесу и крайне мало внутри наших квартир. А это, в свою очередь, будет способствовать повышению эмоционального состояния и улучшению здоровья.

Необходим для очень широкого спектра девайсов - отпугивателей мышей, комаров, собак. Или просто в качестве ультразвуковой стиральной машинки. Так-же с данным EPU можно ставить интересные опыты и эксперименты (товарищи добавляют: в том числе и с соседями:)). Может использоваться для сокращения времени травления и промывки печатных плат, уменьшения времени замачивания белья. Ускорение протекания химических процессов в жидкости, облучённой ультразвуком, происходит благодаря явлению кавитации — возникновению в жидкости множества пульсирующих пузырьков, заполненных паром, газом или их смесью и звукокапиллярному эффекту. Ниже представлена схема ультразвукового генератора переменной частоты, взятая из журнала "Радиоконструктор".

Основу схемы составляют два генератора импульсов прямоугольной формы и мостовой усилитель мощности. На логических элементах DD1.3, DD1.4 выполнен перестраиваемый генератор импульсов формы меандр ультразвуковой частоты. Его рабочая частота зависит от ёмкости конденсатора С3 и общего сопротивления резисторов R6, R4. Чем сопротивление этих резисторов больше, тем частота меньше. На элементах DD1.1, DD1.2 сделан НЧ генератор с рабочей частотой около 1 Гц. Оба генератора связаны между собой через резисторы R3, R4. Конденсатор С2 предназначен для того, чтобы частота высокочастотного генератора изменялась плавно. Если конденсатор С2 зашунтировать переключателем SA1, то частота высокочастотного генератора будет постоянной. На микросхеме DD2 и полевых транзисторах выполнен мостовой усилитель мощности импульсов. Инверторы микросхемы раскачивают двухтактные повторители на полевых транзисторах. Когда на выводах 3, 6 DD2 лог. О, то на выходах DD2.3, DD2.4 будет лог. 1. Соответственно, в этот момент времени будут открыты транзисторы VT1, VT4, a VT2, VT4 будут закрыты. Использование сигнала прямоугольной формы приводит к богатому гармониками акустическому излучению. В качестве излучателей ультразвука используются две высокочастотные динамические головки типа 2ГД-36-2500. Можно использовать и 6ГД-13 (6ГДВ-4-8), ЭГД-31 (5ГДВ-1-8) и другие аналогичные. При возможности, их желательно заменить мощным пьезокерамическим излучателем или магнитостриктором, который можно попробовать изготовить самостоятельно, намотав на ферритовом П-образном сердечнике от ТВС телевизора несколько десятков витков многожильного медного провода, а в качестве мембраны применить небольшую стальную пластину. Катушка должна быть размещена на массивной опоре. Р-канальные полевые транзисторы можно заменить на IRF5305, IRF9Z34S, IRF5210; п-канальные — IRF511, IRF541, IRF520, IRFZ44N, IRFZ48N. Транзисторы устанавливаются на радиаторы. Микросхемы можно заменить на 564ЛА7, CD4011A, К561ЛЕ5, КР1561ЛЕ5, CD4001B. Дроссель L1 — любой миниатюрный индуктивностью 220.... 1000 мкГн. Резисторы R7, R8 — самодельные проволочные. Переменный резистор СП3-30, СП3-3-33-32 или с выключателем питания СП2-33-20. Печатную качаем в архиве.

Настройка. Движок переменного резистора R5 устанавливается в среднее положение, контакты выключателя SA1 замыкаются, подбором ёмкости конденсатора С3 и сопротивления резистора R6 устанавливается частота генератора на DD1.3, DD1.4 около 30 кГц. Далее, контакты SA1 размыкаются и подбором сопротивлений резисторов R2, R3 и R4 следует установить девиацию ультразвуковой частоты от 24 кГц до 35...45 кГц. Делать её более широкой не следует, так как или работа устройства станет слышимой человеком, либо заметно возрастут потери на переключение полевых транзисторов, а эффективность излучателей звука упадёт. Срыв работы генератора на DD1.3, DD1.4 не допускается, так как это может привести к повреждению катушек динамических головок. Источник питания должен быть рассчитан на ток не менее 2 А. Напряжение питания может быть от 11 до 13 вольт.

Сегодня собрал такую схему ультразвукового излучателя - работает не очень, но! Немного пораскинув умом, пришел к выводу о необходимости повысить ёмкость С3 до 2200 пф, далее естественно была устранена ошибка в схеме - в элементе DD2.2 выводы 4 и 6 перепутаны. И о чудо - работает. Правда долго выдержать этот пронзительный звук, меняющийся в широком диапазоне не представляется возможным даже тем, кто находится и в других комнатах. Голова начинает даже не болеть, а её как будто в тиски жмёт, до тошноты противное состояние, выдержал секунд 30.

Ток потребления можно рассчитать исходя из сопротивления применяемого ультразвукового излучателя, закон Ома помнят думаю все. К примеру, у меня стоит на 16 Ом, приняв за КПД 100% оконечного каскада, что почти так и есть, получаем 750 мА при напряжении питания 12 В. Напряжение менять не стоит, иначе упадет мощность, да и смысл уменьшать? Свой ультразвуковой излучатель питаю от кренки на 12 В. При перепадах напряжения частота более менее стабильна получается. Диапазон выходных частот варьирует в широком пределе переменным резистором от слышимого спектра - до не слышимого, необходимо лишь правильно подобрать скважность импульсов для правильной работы схемы. Устройство собрал и испытал: ГУБЕРНАТОР.