Электрическая схема датчика вибрации цифровой. Датчик вибрации своими руками. Мы выпускаем виброметры

Консоль 3 выгибают из такой же проволоки и надежно укрепляют на одном из ее концов груз 5 массой 10...15 г из свинца или припоя. После этого консоль припаивают одним концом к плате, а примерно серединой - к седловине стойки 4.

Во избежание отрыва верхней обкладки от пьезоэлемента перед припайкой консоли ее слегка изгибают так, чтобы после установки на место она создавала на пьезоэлементе избыточное прижимающее упругое усилие. Размеры деталей датчика непринципиальны, поэтому на рис.1 не даны. Паять необходимо легкоплавким припоем.

Выводами датчика служат фольговая площадка, к которой припаян пьезоэлемент, и впаянное в плату основание консоли. Плату укрепляют на поверхности,


вибрацию которой надлежит контролировать. При механическом колебании этой поверхности на выводах датчика возникает несколько слабых импульсов длительностью З...15 мс.

Для того чтобы усилить эти импульсы и придать им форму, необходимую для дальнейшей обработки, сигнал с датчика подают на вход усилителя-формирователя (см. схему на рис.2). Операционный уси

литель DA1 работает в режиме максимального усиления, а транзистор VT1 - в режиме переключения. Диод VD1 увеличивает своим напряжением отсечки зону нечувствительности транзистора.

ОУ вместе с диодом и транзистором образуют компаратор напряжения, отличающийся малым энергопотреблением. Порог срабатывания компаратора устанавливают подстроечным резистором R2. Если амплитуда отрицательной полуволны сигнала датчика менее напряжения на резисторе R2, транзистор VT1 остается закрытым, а выходное напряжениеравным нулю.

Механическое возбуждение датчика приводит к появлению на выходе формирователя нескольких прямоугольных импульсов длительностью 3...15 мс, по амплитуде пригодных для прямого введения их в цифровой анализатор, выполненный на микросхемах КМОП. Простейшее подобное устройство, способное выделить полезный сигнал на фоне ложных срабатываний, представляет собой счетчик(001 на рис.2), периодически обнуляемый по входу R импульсами электронных часов или специального генератора. Сигнал тревоги - напряжение высокого уровня - появится на выходе лишь тогда, когда число импульсов на входе счетчика в интервале между двумя соседними обнуляющими импульсами достигнет некоторого числа, устанавливаемого переключателем SA1 (на рис.2 оно установлено равным восьми).

Если не задаваться решением задачи исключения ложных сигналов, то сигнал с коллектора транзистора VT1 можно подавать непосредственно на вход узла формирования сигнала тревоги.

Как показывает опыт, датчик практически не реагирует на акустические сигналы, распространяющиеся в воздушной среде. Чувствительный прежде всего к нормальной составляющей вибраций, он довольно хорошо воспринимает и возмущения, лежащие в плоскости пьезоэле-мента,-очевидно вследствие возникновения реакции в точках крепления стойки. Таким образом, датчик реагирует на вибрации произвольной ориентации. Ток, потребляемый усилителем-формирователем в режиме ожидания при напряжении питания 9 В, не превышает -18 мкА, при 5 В - 10 мкА.

Конечно, можно приобрести охранный блок в магазине. На рынке представлены различные девайсы. Но что делать, если вы не хотите переплачивать за разные опции. К тому же руки у вас растут откуда нужно. Нет проблем!

Можно собрать вполне приемлемый вариант самому. У этой автосигнализации нет ничего лишнего: управления центральным замком, радиобрелка. Зато самоделка обезопасит ваш автомобиль от проникновения при помощи концевых выключателей дверей и багажника. А также при помощи датчика удара-вибрации предупредит владельца об откручивании, например, колёс. Кстати, знаете ли вы, что отключить злоумышленнику такого рода сигнализацию гораздо сложнее. Он ведь не знает, что вы там могли внедрить. К тому же при отсутствии брелка степень защиты во много раз повышается,так как автожулики не смогут считать код (ведь известно, что большинство взломов происходит этим методом).

Схема устройства

Принцип работы заключается в следующем. Сигнал с A1 датчика вибрации поступает на усилитель, который выполнен на VT1, VT2 и управляет тиристором VS1. На базу транзистора VT2 также поступает сигнал от концевых выключателей дверей, капота, багажника. На транзисторах VT3,VT4 собран таймер, который управляет анодом тиристора VS1. В цепи базы VT3 используется конденсатор большой ёмкости C3. Благодаря чему при постановке на охрану надёжно спрятанном тумблером C3 начинает заряжаться через сирену автомобиля и цепь из резисторов R6,R7. В процессе заряда конденсатора VT3,VT4 будут закрыты, следовательно, тиристор VS1 заперт. Благодаря чему схема встаёт под охрану с некоторой задержкой, давая водителю время покинуть авто и закрыть дверь.

По прошествии 20 секунд конденсатор C3 набирает ёмкость, VT3 открывается и включает охрану в работу. Предположим, произошло воздействие на автомобиль или вскрытие какой-либо двери. Тиристор VS1 отпирается, начинает заряжаться C4 через VS1, VT4, R10. Тиристор устроен таким образом, что он остаётся открытым при прохождении постоянного тока. При закрывании двери (прекращении сигналов) тревожная сирена будет извещать владельца о проникновении. Если срабатывание датчиков произошло с появлением владельца, то за время заряда C4 (20 секунд) он отключит замаскированный тумблер. Если этого не сделать, то откроются VT5,VT6, включится реле KV1 , которое в свою очередь подключит сирену. Чтобы не беспокоить соседей и самому не бежать к автомобилю во время ложных срабатываний, как например проезжающий мимо грузовик, в данной автосигнализации реализована функция ограничения времени тревоги. Действует она следующим образом. Когда контакты KV1 замкнуты и ток протекает через R6,R7 , заряжается конденсатор C3. Через небольшое время закроются VT2, VT3, VS1, VT5, VT6 и реле KV1 отключится и снова возьмёт под охрану.

Какие детали можно использовать для реализации схемы. Требования к ним не критичные. Конденсаторы и резисторы любого типа, желательно малогабаритного. Реле KV1 с рабочим напряжением 12 вольт и током катушки в пределах 100 мА.Силовые контакты реле должны выдерживать ток в 5 А. Но можно снизить до 0,5 А, если применить промежуточное реле.

Датчик вибрации A1 не сложно изготовить самому. Он выполнен в виде катушки со стальным сердечником, от которого на небольшом расстоянии закреплен постоянный магнит на плоской пружине. При малейшем ударе по кузову автомобиля колебания через пружину передадутся на магнит. Тот в свою очередь создаст переменное магнитное поле, которое наведёт ЭДС в катушке. Последняя размером Ø10Χ15 мм мотается на сердечнике Ø3 мм из стали. Для обмотки используют медный провод 0,06...0,07 мм. Магнит с размерами 25Χ10Χ5 мм при помощи клея и ниток нужно закрепить на пружине. В качестве которой можно использовать пружину от будильника. Длина последней выбирается в пределах 60 — 80 мм. В процессе сборки датчика удара следует обратить внимание на то, чтобы магнит мог располагаться как можно ближе к боковой стороне катушки. Готовый датчик вибрации следует располагать в пространстве так, чтобы магнит имел возможность совершать колебания перпендикулярно поверхности земли.

Самодельный датчик вибрации

Теперь остаётся самое главное — спрятать тумблер, через который подаётся питание на схему. К этому вопросу стоит подойти с не меньшей ответственности. Поскольку вам придётся пользоваться им постоянно, ну а злоумышленник не должен его обнаружить.

Данная статья описывает устройство сейсмического датчика-детектора представляющего собой чувствительный электронный узел, способного зафиксировать даже очень слабый уровень вибрации в земной коре.

В конструкции сейсмического детектора применен пьезоэлектрический датчик вибрации , который очень чувствителен к вибрациям и сотрясениям. Данную схему можно использовать для обнаружения сотрясений всевозможных объектов, вибраций происходящих в земной коре, либо как составную часть охранной системы.

Описание работы сейсмического детектора на пьезоэлементе

Как уже было сказано выше, основным элементом, который чувствителен к вибрациям, является простой зуммер (пьезоэлемент). Он довольно часто применяется в устройствах, предназначенных для обнаружения вибраций и сотрясений, к примеру, в охранной сигнализации для велосипеда. Преимуществом схемы является не только низкая цена, но и проста в монтаже датчика, зачастую просто путем приклеивания на контролируемой поверхность.

Микросхема DA1 — операционный усилитель типа LM741, предназначена для усиления слабых сигналов от пьезоэлемента. Усиленный сигнал с выхода операционного усилителя через резистор R6 поступает на базу транзистора VT1. В результате этого транзистор открывается и на входе 2 таймера NE555 появляется сигнал низкого уровня (менее 1/3 напряжения питания).

На таймере NE555 построен классический ждущий мультивибратор, который запускается по низкому сигналу на выводе 2. В результате запуска мультивибратора, на его выходе (вывод 3) появляется сигнал включающий зуммер (с встроенным генератором) и зажигается светодиод.

Продолжительность сигнала определяется элементами RC-цепи (R8 и С2). С указанными значениями на схеме, этот период составляет примерно 3 минуты. По истечении этого времени устройство переходит в исходное состояние.

Схема простого, но чувствительного датчика вибрации на ОУ LM358. Устройство наладки не требует и начинает работать сразу. Реагирует на шаги с расстояния в несколько метров.

Схема вибродатчика показана на рисунке ниже:

В качестве датчика используется плоский пьезоизлучатель от наручных часов либо похожий. Провод от центральной пластины пьезоэлемента подключается ко входу ОУ. Сам пьезоэлемент закрепляется на контролируемой поверхности. Для усиления чувствительности к основанию пьезоэлемента можно прикрепить небольшую пружинку с грузиком таким образом, чтобы пьезоэлемент работал на изгиб. В спокойном состоянии напряжение на неинвертирующем входе U1 на несколько милливольт ниже, чем на инвертирующем. Поэтому на выходе U1 (выв.1) присутсвует напряжение, близкое к 0 (лог.0). При появлении вибрации на выводе 3 ОУ появляется дополнительное напряжение, которое в сумме с постоянным напряжением от делителя R3-R1-R2 оказывается выше, чем на выводе 2. ОУ переключается, и на его выходе появляется напряжение, близкое к напряжению питания (лог. 1). Таким образом, на выходе датчика формируются прямоугольные импульсы в такт с вибрацией. Выходной сигнал подается на 2 контакт разъема J1.

Резистором R1 подбирается чувствительность датчика. Его номинал может колебаться от 0.33 Ом до 10 Ом. Чем меньше сопротивление - тем выше чувствительность. Кондерсатор С1 выполняет роль фильтра, исключая ложное срабатывание от одиночных импульсов. Резисторы R2 и R3 должны быть одинакового сопротивления от 1 до 3 кОм. Резисторы R4 и R5 тоже должны быть одинакового сопротивления от 47 до 200 кОм.

Датчик может питаться напряженим от 4 до 12 вольт. Резистор R6 ограничивает выходной ток в случае напряжения питания больше 5 вольт и чувствительной нагрузке на выходе. Выход датчика модет быть подключен к микроконтроллеру или транзистору, управляющему, например, реле. Также к выходу датчика может быть подключен светодиод или вольтметр.

Датчик может быть собран на печатной плате, чертеж которой представлен на рисунке:

Пьезолемент подключется через разъем слева. Провода к нему должны быть скручены между собой.

Виброметр – это прибор для измерения параметров вибрации: виброускорения, виброскорости, виброперемещения и частоты колебаний. Он простой в использовании и не требует специальной подготовки.

Выделяют две группы виброметров:

  • для измерения вибрации вращающегося оборудования;
  • для измерения вибрации, воздействующей на человека для целей охраны труда.

Виброметры для измерения вибрации вращающегося оборудования

«ДПК-Вибро» в руке

Виброметр измеряет и оценивает вибрацию агрегатов с вращающимися частями. Это - двигатели, насосы, вентиляторы, генераторы. Вибрация таких агрегатов повторяется с каждым оборотом вала.

Виброметры измеряют интегральное значение вибрации (одно число). Самое популярное значение – , так как существуют стандарты для определения состояния агрегата по СКЗ виброскорости. Это число пропорционально мощности сил, вызывающих вибрацию агрегата.

Чаще всего вибрация в виброметрах измеряется . Этот диапазон указан в ГОСТ и позволяет измерять одинаковое значение вибрации на разных приборах.

Виброметр – это очень полезный прибор для оценки состояния оборудования. Максимальное значение вибрации, при котором состояние агрегата считается аварийным . Значение задаётся в паспорте на агрегат или в ГОСТ ИСО 10816-1-97. "Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях". Сравнение текущей вибрации с нормой позволяет оценить состояние агрегата.

Измерение вибрации виброметром очень быстрое и не требует подготовительных работ. Можно измерить 100 агрегатов за смену с выдачей отчётов о состоянии оборудования на предприятии.

Значения вибрации, измеренные через некоторое время (например, через 1 месяц) позволяют строить прогноз развития вибрации и планировать сроки следующих ремонтов. Это даёт значительную экономию денег, по сравнению с плановыми ремонтами. Такая система планирования ремонтов используется в нашей программе Аврора-2000 .

Значение вибрации, измеренное виброметром можно использовать и для диагностики дефектов агрегата. Например, по СКЗ виброскорости отлично диагностируется расцентровка и небаланс . Состояние крепления к фундаменту тоже проще оценить виброметром. Виброметром даже можно балансировать агрегат не используя отметчик фазы (метод трех пусков с пробными массами).

При этом виброметры значительно дешевле виброанализаторов и проще в работе. Однако, для изучения сложных случаев дефектов необходим виброанализатор и опыт вибродиагностики.

Виброручка ViPen СКЗ виброскорости на экране

Современные виброметры дополнительно имеют режимы измерения спектров и сигналов, память для сохранения замеров и передачи их в компьютер, режим измерения по маршруту, датчики температуры, оборотов и ударных импульсов от подшипников качения.

В виброанализаторах всегда есть режим виброметра. Он делается программно и не удорожает изготовление прибора.

Внутренний и внешний датчик

Виброметры имеют внутренний датчик вибрации, встроенный в корпус прибора или внешний датчик, подключённый к прибору проводом. Внутренний датчик – это компактность прибора, а внешний датчик позволяет измерить вибрацию в труднодоступных местах.

Мы выпускаем виброметры:

  • ViPen – виброметр-ручка с оценкой состояния подшипников и температурой
  • Виброметр-К1 – простой виброметр. Предназначен для проведения измерения вибрации в размерности СКЗ виброскорости (мм/с) в стандартном диапазоне частот от 10 до 1000 Гц
  • ДПК-Вибро – компактный виброметр. Кроме вибрации, умеет оценивать состояние подшипников качения, показывать сигналы и спектры и даже хранить их и передавать в компьютер (правда, всего несколько штук)
  • – малогабаритный виброметр для контроля уровня вибрации с возможностью анализа сигналов и спектров. Уже устаревший, но всё ещё популярный прибор. Имеет встроенный в внешний датчик
  • Виброметры для измерения вибрации, воздействующей на человека

    Измерение такой вибрации используется в сфере охраны труда. Приборы отличаются от приборов для измерения вибрации вращающегося оборудования. Они называются виброметры-шумомеры.

    Прибор измеряет мощность вибрации за какой-то период времени, например, за рабочую смену, показывает мощность вибрации в полосах частот. Вибрация разных частот оказывает разное влияние на человека, поэтому используются нормирующие коэфициенты для частных полос. В дополнение шумомеры умеют измерять акустический шум на рабочем месте.

    Предельные значения вибрации нормируется СанПиНами. Библиотеку этих нормативных документов можно найти на сайте НТМ-Защита:

    Не хватает информации?

    Я отвечу Вам и дополню статью полезной информацией.