Что необходимо для производства солнечных панелей. Солнечная батарея для дома своими руками. Изготовление солнечной батареи для дома своими руками

Выгода солнечной энергетики очевидна, об этом сказано уже весьма много и сомнений в этом не осталось. Именно по этой причине многие люди уже сегодня установили на своих домах панели, в то время как другие только мечтают об этом. Солнечные батареи – это, безусловно, выгодно, однако такие устройства имеют достаточно высокую стоимость, из-за чего далеко не каждый может позволить себе такую роскошь. Благодаря этому многие задаются вопросом, - как сделать солнечную батарею своими руками, возможно ли это, и что для этого необходимо?

Ответ – конечно же, это вполне реально. Причем на сегодняшний день существует несколько способов, которые помогут вам изготовить солнечные батареи своими руками. Выбор метода зависит от того, какая производительность вам нужна.

1. Подготовка исходных материалов

  • Элементы, изготовленные из поликристаллического кремния;
  • Монокристаллические фотоэлементы.

Первый вариант обладает более низким уровнем коэффициента полезного действия (КПД), который составляет около 7-9%. Однако панели, состоящие из таких элементов, не теряют эффективности, даже в пасмурную погоду. Они практически одинаково продуктивны как в солнечные дни, так и в дождливую погоду.

Монокристаллические панели в свою очередь имеют более высокий уровень КПД, который составляет около 13%. Однако они более эффективны только при условии солнечной погоды, а случае облачности или затемнения их производительно достаточно сильно уменьшается. Благодаря таким особенностям, наиболее часто для того, чтобы получилась достаточно мощная самодельная солнечная батарея, которая будет одинаково эффективная при любых погодных условиях, используются именно поликристаллические фотоэлементы.

Настоятельно рекомендуется приобретать фотоэлементы от одного производителя. Это объясняется тем, что устройства разных марок вполне могут иметь отличия по эффективности, что в свою очередь создает дополнительные трудности в момент определения общей мощности батареи. Помимо этого, расчетный период работы элементов также может иметь отличия.

Самым простым и распространенным на сегодняшний день методом приобретения необходимых элементов являются аукционы типа еВау. Здесь можно приобрести уже готовые наборы фотоячеек, при этом они будут иметь вполне приемлемую стоимость . Для того чтобы собрать солнечные батареи для дома своими руками из имеющихся подручных материалов, вам потребуются специальные проводники, которыми фотоэлементы соединяются между собой. Помимо этого потребуются паяльник и приспособления для пайки.

Вполне возможно приобрести немного поврежденные фотоячейки, так как они абсолютно не теряют производительности, но при этом имеют гораздо более низкую стоимость. Конечно же, такие элементы имеют менее эстетичный вид.

Для изготовления корпуса батареи наиболее подходящим материалом являются алюминиевые уголки, которые имеют небольшую высоту. Конечно, вполне возможно сделать солнечные батареи своими руками из подручных средств, не покупая уголки, а используя, к примеру, деревянные бруски. Однако стоит понимать, что самодельные солнечные батареи будут постоянно использоваться, а значит, подвергаться различным погодным условиям. Дерево при этом может крайне быстро испортиться, благодаря чему придется переделывать корпус.

Размеры солнечной батареи зависят от количества фотоэлементов, которые будут использоваться. Внешнее защитное покрытие панели должно быть прозрачным и при этом достаточно прочным и долговечным. В качестве такого покрытия лучше всего использовать оргстекло либо поликарбонат. Можно, конечно, использовать и прочное закаленное стекло, однако с такими панелями стоит быть более аккуратным. Также, будет лучше, если эта защита не будет пропускать инфракрасные лучи, так как благодаря такой защите уменьшается нагрев панели во время использования.

2. Пайка проводников

После того, как вы приобрели все необходимые материалы, можно переходить к выполнению сборки самодельной солнечной батареи. В первую очередь, вам нужно припаять проводники к фотоэлементам. Данный процесс является весьма трудоемким и потребует от вас определенного терпения и аккуратности. В процессе пайки могут возникнуть некоторые трудности, связанные с хрупкостью структуры фотоячеек. Гораздо проще будет купить элементы, которые уже имеют припаянные проводники, однако, даже при самостоятельной пайке, в скором времени вы ”набьете” руку и с легкостью справитесь с этой задачей. К тому же, уже паяные фотоэлементы могут иметь более высокую стоимость.

В том случае, если вы планируете осуществлять пайку проводников самостоятельно, вам нужно знать следующий порядок действий:

  • Первым делом следует нарезать имеющиеся проводники на необходимую длину (более удобно делать это по картонному шаблону);
  • Далее нужно аккуратно поместить на фотоэлемент вырезанный проводник;
  • После этого следует нанести паяльную кислоту, а также припой на то место, где будет выполняться пайка;
  • Аккуратно и внимательно провести пайку проводника. При этом ни в коем случае не следует нажимать на кристалл. Пайка делается легко и быстро. Это придет с опытом.

Данный процесс не является быстрым, из-за чего изготавливая самодельные солнечные батареи для дома, вам потребуется некоторое количество времени, а также терпения.

3. Сборка корпуса и установка фотоэлементов

Как уже говорилось, для изготовления рамы, имеющей требуемый размер, необходимы алюминиевые уголки, а также крепежные материалы (метизы). Лучше всего брать уголки с низкой высотой, так как в противном случае они будут закрывать Солнце, и создавать тень на фотоячейках. Помимо этого, используя слишком высокие уголки, у вас получится неоправданно широкий корпус для панели.

На внутренние грани скрепленных профилей необходимо нанести силиконовый герметик. Это необходимо для того, чтобы самодельная солнечная батарея была герметичной. На нанесенный герметик следует уложить вырезанный по размерам лист оргстекла, плотно прижимая его и фиксируя. После того, как герметик высохнет, оргстекло можно дополнительно зафиксировать метизами.

После выполнения вышеперечисленных действий необходимо разместить на внутренней плоскости прозрачного листа фотоэлементы с припаянными проводниками. При этом между ячейками необходимо выдерживать небольшое расстояние (около 5 мм). Это объясняется тем, что элементы в процессе использования могут расширяться под воздействием температуры. К тому же, благодаря этим отступам исключается возможность нарушения контактов. Для того чтобы солнечная батарея для дома своими руками была правильно собрана, к данному процессу необходимо подходить со всей внимательностью. Помимо этого, для облегчения работы можно предварительно разметить подложку.

4. Объединение фотоэлементов в единую систему

Спаивать все фотоячейки в одну систему необходимо соблюдая электрическую схему. На сегодняшний день известно несколько схем:

  • Последовательное соединение;
  • Соединение с общей шиной;
  • Соединение с выведенной средней точкой.

Также существуют и другие схемы, поэтому, лучше всего предварительно выбрать наиболее подходящий вариант. При этом главное, чтобы в схеме присутствовали шунтирующие диоды, которые необходимо устанавливать на общем ”+” проводнике. Эти диоды требуются для того, чтобы исключить разрядку устройства в темное время суток либо при частичном затемнении. Для этих целей лучше всего использовать диоды Шоттки. В качестве токовыводящих проводов можно использовать обычные кабели, имеющие силиконовую изоляцию. Конечно же, их необходимо надежно и прочно закрепить.

После объединения фотоэлементов по выбранной схеме полученную солнечную батарею необходимо протестировать на силу тока и напряжение. Для этого понадобится обычный амперметр и вольтметр, либо мультиметр, который имеет обе эти функции. Если проверка пройдена успешно, то значит, что соединение элементов выполнено правильно и все контакты целы.

После проверки следует зафиксировать все фотоячейки и выполнить герметизацию панели. Самый легкий способ заключается в нанесении на каждый элемент монтажный силикон, после чего устройство необходимо закрыть панелью, которая может быть изготовлена из прочного пластика. При этом если использовать прозрачный пластик, то у вас будет возможность следить за возможным появлением дефектов либо трещин в элементах. После того как силикон высохнет, заднюю панель необходимо зафиксировать в предварительно изготовленной алюминиевой раме. Все швы конструкции также необходимо загерметизировать при помощи силикона. Для фиксации фотоячеек можно использовать и двухстороннюю липкую ленту. Главное правило заключается в том, чтобы толщина этой ленты (либо слоя силикона) превышала высоту пайки. Это поможет избежать повреждения контактов.

5. Солнечная батарея своими руками из транзисторов

На сегодняшний день существует возможность сделать солнечную батарею своими руками, не используя покупные фотоэлементы. К примеру, ее можно изготовить из транзисторов либо диодов. Конечно, из этих материалов невозможно сделать солнечную батарею, которая сможет обеспечить энергией целый дом, однако такое устройство вполне способно питать небольшие и компактные электроприборы.

Итак, как сделать самодельную солнечную батарею? Весьма просто. Для изготовления самодельной панели вам потребуются старые транзисторы, лучше всего взять устройства типов ”П” либо ”КТ”. В первую очередь необходимо предельно аккуратно спилить верхнюю часть корпуса таким образом, чтобы солнечный свет смог попадать на р-n переходы. В случае использования транзисторов ”П”, из него дополнительно потребуется высыпать порошок и продуть внутреннюю часть.

Далее, полученные фотоэлементы необходимо объединить в блоки. Соединение проводится последовательно – для повышения напряжения, и параллельно – для повышения силы тока. Соединяя таким образом транзисторы, вполне возможно создать солнечную батарею своими руками, которая будет иметь необходимые параметры. Фиксировать такие элементы удобно на текстолитовой подложке путем навесной установки.

Помимо этого, возможно собрать гелиобатарею из диодов, к примеру Д223Б. При этом их даже не нужно разбирать, вполне достаточно просто стереть краску при помощи ацетона. Под краской вы обнаружите стеклянный корпус. Благодаря маленьким размерам таких диодов достигается высокая плотность установки элементов. Впаивать диоды в подложку необходимо вертикально, так как это позволит достичь максимальной освещенности кристалла, а, следовательно, и предельной производительности.

6. Солнечная батарея своими руками: Видео

Неизменный рост потребления энергии солнечного света способствует увеличению спроса на оборудование, с помощью которого эту энергию можно накапливать и использовать для дальнейших нужд. Наиболее популярным способом получения электроэнергии является солнечная фотовольтаика. В первую очередь объясняется это тем, что производство солнечных батарей основано на использовании кремния – химического элемента, занимающего второе место по содержанию в земной коре.

Рынок солнечных батарей на сегодняшний день представляют крупнейшие мировые компании с многомиллионными оборотами и многолетним опытом. В основе производства солнечных панелей лежат различные технологии, которые постоянно совершенствуются. В зависимости от ваших нужд вы можете найти солнечные батареи, размеры которых позволяют встроить их в микрокалькулятор, или панели, которые без проблем разместятся на крыше здания или автомобиля. Как правило, одиночные фотоэлементы вырабатывают очень небольшое количество мощности, поэтому используются технологии, позволяющие соединять их в так называемые солнечные модули. О том, кто и как это делает и пойдет речь дальше.

Технологический процесс изготовления солнечных панелей

1 этап

Первое с чего начинается любое производство, в том числе и производство солнечных батарей – это подготовка сырья. Как мы уже упоминали выше, основным сырьем в данном случае служит кремний, а точнее кварцевый песок определенных пород. Технология подготовки сырья состоит из 2 процессов:

  1. Этап высокотемпературного плавления.
  2. Этап синтеза, сопровождающийся добавлением различных химических веществ.

Путем этих процессов достигают максимальной степени очистки кремния до 99,99%. Для изготовления солнечных батарей чаще всего используют монокристаллический и поликристаллический кремний. Технологии их производства различны, но процесс получения поликристаллического кремния менее затратный. Поэтому солнечные батареи, изготовленные из этого вида кремния, обходятся потребителям дешевле.

После того, как кремний прошел очистку, его разрезают на тонкие пластины, которые, в свою очередь, тщательно тестируют, производя замер электрических параметров посредством световых вспышек ксеноновых ламп высокой мощности. После проведенных испытаний пластины сортируют и отправляют на следующий этап производства.

2 этап

Второй этап технологии представляет собой процесс пайки пластин в секции, с последующим формированием из этих секций блоков на стекле. Для переноса готовых секций на поверхность стекла используют вакуумные держатели. Это необходимо для того, чтобы исключить возможность механического воздействия на готовые солнечные элементы. Секции, как правило, формируют из 9 или 10 солнечных элементов, а блоки – из 4 или 6 секций.

3 этап

3 этап – это этап ламинирования. Спаянные блоки фотоэлектрических пластин ламинируют этиленвинилацетатной пленкой и специальным защитным покрытием. Использование компьютерного управления позволяет следить за уровнем температуры, вакуума и давления. А также программировать требуемые условия ламинирования в случае использования разных материалов.

4 этап

На последнем этапе изготовления блоков солнечных батарей монтируется алюминиевая рама и соединительная коробка. Для надежного соединения коробки и модуля используется специальный герметик-клей. После чего солнечные батареи проходят тестирование, где измеряют показатели тока короткого замыкания, тока и напряжения точки максимальной мощности и напряжения холостого хода. Для получения необходимых значений силы тока и напряжения возможно объединение не только солнечных элементов, но и готовых солнечных блоков между собой.

Какое оборудование необходимо?

При производстве солнечных панелей необходимо использовать только качественное оборудование. Это обеспечивает минимальные погрешности при измерении различных показателей в процессе тестирования солнечных элементов и состоящих из них блоков. Надежность оборудования предполагает более долгий срок эксплуатации, следовательно, минимизируются расходы на замену вышедшего из строя оборудования. При низком качестве возможны нарушения технологии изготовления.

Основное оборудование, используемое в процессе производства солнечных панелей:

Кто поставляет нам солнечные батареи?

Солнечные панели – дело очень перспективное, а главное прибыльное. Количество покупаемых солнечных батарей увеличивается с каждым годом. Что обеспечивает постоянный рост объемов продаж, в котором заинтересован любой завод по производству солнечных батарей, а их по всему миру немало.

На первом месте стоят, конечно, китайские компании. Низкая стоимость солнечных батарей, которые китайцы экспортируют по всему миру, привела к появлению множества проблем у других крупнейших компаний. За последние 2-3 года о закрытии производства солнечных панелей объявили, по меньшей мере, 4 немецких бренда. Началось все с банкротства компании Solon, после которой закрылись Solarhybrid, Q-Cells и Solar Millennium. Американская компания First Solar также заявила о закрытии своего завода во Франкфурте-на-Одере. Свое производство панелей свернули и такие гиганты как Siemens и Bosch. Хотя, учитывая, что китайские солнечные батареи стоят, к примеру, почти в 2 раза дешевле немецких аналогов, удивляться здесь нечему.

Первые места в топе компаний, производящих солнечные панели, занимают:

  • Yingli Green Energy (YGE) является ведущим производителем солнечных батарей. За 2012 год ее прибыль составила более 120 млн. $. Всего она установила солнечных модулей более чем на 2 ГВт. Среди ее продукции панели из монокристаллического кремния мощностью 245-265 Вт и поликристаллические кремниевые батареи мощностью 175-290 Вт.
  • First Solar. Хоть эта компания и закрыла свой завод в Германии, в числе крупнейших она все-таки осталась. Ее профиль – это тонкопленочные панели, мощность которых за 2012 год составила около 3,8 ГВт.
  • Suntech Power Ко. Производственные мощности этого китайского гиганта составляют примерно 1800 МВт в год. Около 13 млн солнечных батарей в 80 странах мира – это результат труда этой компании.

Среди российских заводов следует выделить:

  • «Солнечный ветер»
  • ООО «Хевел» в Новочебоксарске
  • «Телеком-СТВ» в Зеленограде
  • ОАО «Рязанский завод металлокерамических приборов»
  • ЗАО «Термотрон-завод» и другие.

Более полный перечень фирм, изготавливающих и поставляющих оборудование и изделия для солнечной энергетики, вы найдете в нашем .

Не отстают и страны СНГ. Так, например, завод по производству солнечных батарей еще в прошлом году был запущен в Астане. Это первое предприятия подобного рода в Казахстане. В качестве сырья планируется использовать 100% казахского кремния, а оборудование, установленное на заводе, отвечает всем последним требованиям и полностью автоматизировано. Запуск аналогичного завода есть и в планах у Узбекистана. Инициатором строительства выступила крупнейшая китайская компания Suntech Power Holdings Co, такое же предложение поступило и от российского нефтяного гиганта «ЛУКОЙЛ».

При таких темпах строительства, следует ожидать повсеместного использования солнечных модулей. Но это и неплохо. Экологичный энергетический источник, дающий бесплатную энергию, сможет решить множество проблем, связанных с загрязнением окружающей среды и истощением запасов природного топлива.

Статью подготовила Абдуллина Регина

Видео о процессе изготовления солнечных панелей:

Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.

Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.

Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:

  • Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
  • Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
  • Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.

Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.

Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.

Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.

Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.

В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.

Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.

При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между . Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.

Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно .

Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см 2 , на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.

Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.

Основные недостатки солнечных батарей:

  • Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
  • Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
  • Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
  • В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
  • Большая площадь, требующаяся для конструкции достаточной мощности.
  • Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
  • Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.

Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.

Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.

Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.

Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:

  • Отсутствие механических преобразований энергии и движущихся частей.
  • Минимальные расходы на эксплуатацию.
  • Долговечность 30~50 лет.
  • Тишина при работе, отсутствие вредных выбросов. Экологичность.
  • Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
  • Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
  • Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м 2 . В средней полосе России он находится в пределах 0,7~1,0 кВт/м 2 . КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м 2 , 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м 2 . Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м 2 . Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м 2 , а для 50 Ач — примерно 1,5 м 2 .

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Подбор материалов для создания панели

В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.

Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.

Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м 2:

  • Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
  • Ток: КЗ — 1,5 А, рабочий — 1,2 А.
  • Рабочая мощность — 0,62 Вт.
  • Габариты — 52х77 мм.
  • Цена 29 р.
Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.

Изготовление солнечной батареи для дома своими руками

Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.

Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.

Рассчитываем комплектующие

Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.

Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.

Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.

Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.

Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.

Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.

Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.

Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.

Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:

  • Длина — 15 x 52 = 780 мм.
  • Ширина — 77 x 6 = 462 мм.

Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.

Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.

Также нам потребуются:

  • Паяльник электрический 40 Вт.
  • Припой, канифоль.
  • Монтажный провод.
  • Силиконовый герметик.
  • Двусторонний скотч.

Этапы изготовления

Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.

Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, для квартиры и дома.

При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать .

Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:

  1. Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
  2. Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
  3. Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
  4. Склеиваем окончательно пластины с задней стороны скотчем.
  5. Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
  6. Вставляем в раму заднюю стенку и герметизируем её.

При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.

Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.

Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.

Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м 2 = 20 м 2 .

Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.

Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.

Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.

Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.

Делаем выводы

При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.

Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.

В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.

Видео о том, как изготовить прибор для сбора солнечной энергии самому

Если обратить внимание на крыши многих частных домов или небольших компаний, то там можно увидеть солнечные батареи. Подорожание энергоносителей приводит к тому, что люди начинают искать альтернативные источники. В этих условиях спрос на солнечные батареи растет день ото дня.

Потенциальные возможности

В условиях растущей популярности альтернативных источников энергии целесообразно вовремя занять нишу в рынке. Для этого необходимо для начала приобрести оборудование для производства солнечных батарей. Его можно купить как в странах Европы, США и СНГ, так и в Китае.

В зависимости от спроса на эти изделия в вашем регионе или в местах, куда вы сможете поставлять произведенный товар, необходимо определиться с тем, на что будет ориентировано ваше производство. В настоящее время на рынке можно найти панели, предназначенные для различных сфер использования.

Это могут быть как легкие переносные варианты, которые берут с собой в туристические походы, стационарные модули, подходящие для установки на крышах помещений и жилых домов, или мощные панели, которые используют в качестве небольших электростанций.

Рабочие линии

Если у вас есть помещение для изготовления, тогда можно задуматься и о том, чтобы купить оборудование для производства солнечных батарей. Также не стоит забывать, что при их изготовлении у вас должны всегда быть в достаточном количестве необходимые расходные комплектующие.

Так, в список необходимого оборудования попадают станки, которые нарезают лазером материал для панелей на квадраты, сортируют их, ламинируют, вставляют в рамы и соединяют их вместе. Помимо этого, для производства необходимы машины, которые занимаются замешиванием специального клея, обрезают пленку под панелью и их края. Не обойтись при изготовлении и без столов, на которых необходимо будет корректировать углы, вставлять в панели провода и формировать их, и тележек, предназначенных для их перемещения и прессования.

Каждый станок для производства солнечных батарей является незаменимым компонентом линии по их изготовлению. Поэтому, прежде чем начинать заказывать материалы для производства, подсчитайте общую стоимость оборудования и проанализируйте, можете ли вы позволить себе такие траты. Правда, при этом стоит учесть, что при наличии каналов сбыта, они достаточно быстро окупаются.

Процесс изготовления

Если вы видели солнечные батареи раньше только на картинках и плохо себе представляете, как идет их создание, тогда лучше найти человека, которому известна технология производства солнечных батарей. Если говорить о ней в общих чертах, то надо знать, что она состоит из ряда этапов.

Начинается изготовление с проверки и подготовки к работе поступивших в цех материалов. После нарезки и сортировки фотоэлектрических преобразователей (ФЭП) они поступают на оборудование, на котором проходит процесс припайки к контактам панелей специальных луженных шинок из меди. Лишь после этого начинается процесс соединения всех ФЭП в цепочки необходимой длины.

Следующим этапом является создание сэндвича, который состоит из собранных в матрицу преобразователей, стекла, двух слоев герметизирующей пленки и тыльной стороны панели. Именно на этой стадии оборудование для производства солнечных батарей формирует схему модуля, тут же определяется его рабочее напряжение.

Собранную конструкцию проверяют и отправляют на ламинирование – герметизацию, которая проходит под давлением при высокой температуре. Лишь после этого на подготовленный полуфабрикат крепят раму и монтируют специальную коммутационную коробку.

Тестирование продукции

Встретить на рынке брак среди подобных товаров практически невозможно, ведь каждая панель после сборки попадает в специальный цех тестирования.

Именно там их проверяют на возможность пробоя напряжением. После этого они сортируются, пакуются и отправляются в продажу, в магазинах можно встреть как небольшие переносные варианты, так и солнечные батареи для дома.

Производство этих видов практически ничем не отличается.

Конечно, безукоснительно соблюдать все этапы может позволить себе только крупный производитель с большими объемами производства и достаточным количеством сотрудников. Новым мелким изготовителям тяжело конкурировать с гигантами, ведь единовременное создание больших партий позволяет уменьшить себестоимость продукции.

являются фотоэлектрические преобразователи (солнечные модули), которые обращают энергию солнечного света в электричество. Для того, чтобы в доме пользоваться бытовыми приборами за счет солнечной батареи, таких модулей должно быть достаточно много.

Энергии, вырабатываемой одним модулем, недостаточно для удовлетворения энергетических потребностей. Между собой фотоэлектрические преобразователи связаны одной последовательной цепью.

Части, из которых состоит солнечная батарея:

  1. Солнечные модули ,объединенные в рамки.В одной рамке объединяются от единиц до нескольких десятков фотоэлектрических элементов. Для обеспечения электроэнергией целого дома понадобится несколько панелей с элементами.
  2. . Служит для накопления получаемой энергии, которую затем можно использовать в темное время суток.
  3. Контроллер . Он следит за разрядкой и зарядкой аккумулятора.
  4. . Преобразует постоянный ток, полученный от солнечных модулей в переменный.

Солнечный модуль (или фотоэлектрический элемент) основан на принципе p-n перехода, и по своему устройству очень напоминает транзистор. Если у транзистора спилить шляпку и на поверхность направить солнечные лучи, то подключенным к нему прибором можно определить мизерный электрический ток. Солнечный модуль работает по такому же принципу, только поверхность перехода у солнечного элемента значительно больше.

Как и многие типы транзисторов, солнечные элементы изготавливаются из кристаллического кремния.

По технологии изготовления и материалам различают три вида модулей:

  1. Монокристаллические . Изготовлены в виде цилиндрических кремниевых слитков. Преимущества элементов заключается в высокой производительности, компактности и в наибольшем сроке службы.
  2. Тонкопленочные . Делается напыление слоев фотоэлектрического преобразователя на тонкую подложку. КПД тонкопленочных модулей относительно невысок (7-13%).
  3. Поликристаллические . Расплавленный кремний заливается в квадратную форму, затем остуженный материал режется на квадратные пластинки. Внешне отличаются от монокристаллических модулей тем, что края углов у поликристаллических пластин не обрезаны.

Аккумулятор. В солнечных батареях наибольшее применение нашли свинцово-кислотные аккумуляторы. Стандартный аккумулятор имеет напряжение 12 вольт, для получения большего напряжения собирают аккумуляторные блоки. Так можно собрать блок напряжением 24 и 48 вольт.

Контроллер заряда солнечных батарей. Контроллер заряда действует по принципу регулятора напряжения в автомобиле. В основном на 12 вольт выдают напряжение от 15 до 20 вольт, и без контроллера могут быть повреждены перегрузкой. При 100% заряженном аккумуляторе контроллер отключает модули и предохраняет аккумулятор от закипания.

Инвертор. Солнечные модули вырабатывают постоянный ток, а для использования бытовых приборов и техники требуется переменный ток и напряжение 220 вольт. Инверторы предназначены для преобразования постоянного тока, делая его переменным.

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Собирать инвертор самостоятельно имеет смысл только при небольшом энергопотреблении. Контроллер заряда в простом исполнении не так дорого стоит, поэтому нет особого смысла тратить время на изготовление прибора.

Технология изготовления своими руками

Для сборки солнечной батарей потребуется:

  1. Сконструировать рамку (корпус).
  2. Спаять все солнечные элементы в параллельную цепь.
  3. Закрепить солнечные элементы на рамке.
  4. Сделать корпус герметичным – прямое попадание атмосферных осадков на фотоэлектрические элементы недопустимо.
  5. Разместить батарею в районе наибольшей солнечной освещенности.

Для удовлетворения энергетических потребностей частного дома одной солнечной панели (рамки) будет недостаточно. Исходя из практики, с одного квадратного метра солнечной панели можно получить 120 Вт мощности. Для нормального энергообеспечения жилого дома потребуется где-то 20 кв. м. площади солнечных элементов.

Чаще всего батареи размещают на крыше дома с солнечной стороны.

Сборка корпуса


Корпус можно собирать из фанерного листа и реек, или из алюминиевых уголков и листа и оргстекла (текстолита). Необходимо определиться, сколько элементов будет размещаться в рамке. Следует учитывать, что между элементами необходим зазор в 3-5 мм, и размер рамки рассчитывается с учетом этих расстояний. Расстояние необходимо для того, чтобы при тепловом расширении пластины не прикасались друг с другом.

Сборка конструкции из алюминиевого профиля и оргстекла:

  • из алюминиевого уголка делается прямоугольный каркас;
  • По углам в алюминиевом корпусе сверлятся отверстия для крепежа;
  • на внутреннюю часть профиля корпуса наносится силиконовый герметик по всему периметру;
  • в раму устанавливается лист оргстекла (текстолита) и плотно прижимается к раме;
  • по углам корпуса с помощью шурупов ставятся крепежные уголки, которые надежно фиксируют лист прозрачного материала в корпусе;
  • герметику дают основательно высохнуть;

Все, корпус готов. Перед размещением солнечных элементов в корпусе необходимо тщательно протереть поверхность от грязи и пыли.

Соединение фотоэлементов


Обращаясь с фотоэлектронными элементами, следует помнить, что они очень хрупкие и требуют бережного отношения. Перед соединением пластин в последовательную цепочку их сначала тщательно, но аккуратно протирают– пластины должны быть идеально чистыми.

Если фотоэлементы были куплены уже с припаянными проводниками, это упрощает процесс соединения модулей. Но перед сборкой в этом случае необходимо проверить качество готовой пайки, и если есть неровности – устранить их.

На фотоэлектрических пластинах предусмотрены контакты по обеим сторонам – это контакты разной полярности. Если проводники(шины) еще не припаяны, необходимо сначала припаять их к контактам пластин, а затем уже соединить фотоэлектрические элементы между собой.

Чтобы припаять шины к фотоэлектрическим модулям, нужно:

  1. Отмерить нужную длину шины и нарезать на куски нужное количество полосок.
  2. Протереть контакты пластин спиртом.
  3. Тонким слоем нанести на контакт флюс по всей длине контакта с одной стороны.
  4. Приложить шину точно по длине контакта и разогретым паяльником медленно провести по всей поверхности пайки.
  5. Перевернуть пластину и повторить все операции пайки на другой стороне.

Нельзя сильно прижимать паяльник к пластине, элемент может лопнуть. Также необходимо проверить качество пайки – неровностей на лицевой стороне фотоэлементов быть не должно. Если бугорки и шероховатости остались, нужно еще раз аккуратно пройтись паяльником по шву контакта. Пользоваться необходимо маломощным паяльником.

Что нужно сделать, чтобы правильно и точно произвести соединение фотоэлектрических элементов:

  1. Если нет опыта в сборке элементов, рекомендуется воспользоваться разметочной поверхностью, на которой следует разместить элементы (фанерный лист).
  2. Расположить солнечные панели строго по разметке. Размечая, не забывать оставлять расстояние между элементами 5 мм.
  3. Пропаивая контакты пластин, обязательно следить за полярностью. Фотоэлементы должны быть правильно собраны в последовательную цепочку, иначе батарея не будет нормально работать.

Механический монтаж панелей:

  1. В корпусе сделать разметку для пластин.
  2. Солнечные элементы поместить в корпус, положив их на оргстекло. В рамке закрепить силиконовым клеем по размеченным местам. Клея много не наносить, только крохотную каплю по центру пластины. Нажимать осторожно, чтобы не повредить пластины.В корпус лучше перемещать пластины вдвоем, одному будет неудобно.
  3. Соединить все провода по краям пластин с общими шинами.

Прежде чем герметизировать панель, нужно протестировать качество пайки. Конструкцию аккуратно выносят поближе к солнечному свету и замеряют напряжение на общих шинах. Оно должно быть в пределах ожидаемых значений.

Как вариант, герметизацию можно провести следующим образом:

  1. Нанести капельки силиконового герметика между пластинами и по краям корпуса, аккуратно пальцами руки края фотоэлементов прижать к оргстеклу. Нужно, чтобы элементы как можно плотнее легли к прозрачному основанию.
  2. Поставить на все края элементов небольшой груз , допустим, головки из автомобильного набора инструментов.
  3. Дать герметику хорошо высохнуть , пластины за это время надежно зафиксируются.
  4. Затем промазать аккуратно все стыки между пластинами и краями рамки. То есть, нужно промазать в корпусе все, кроме самих пластин. Попадание герметика на края тыльной стороны пластин допустимо.

Финальная сборка солнечной батареи


  1. Сбоку корпуса установить соединительный разъем, разъем соединить с Шоттки.
  2. Закрыть с наружной стороны пластины защитным экраном из прозрачного материала. В данном случае, оргстеклом. Конструкция должна быть герметичной и исключать проникновение в нее влаги.
  3. Лицевую сторону (оргстекло) желательно обработать , например, лаком (лак PLASTIK-71).

Для чего нужен диод Шоттки? Если свет падает только на часть солнечной батареи, а другая часть затемнена, возможен выход элементов из строя.

Диоды помогают избежать поломки конструкции в таких случаях. При этом теряется мощность на 25%, но без диодов не обойтись – они шунтируют ток, ток идет в обход фотоэлементов. Чтобы падение напряжения было минимальным, необходимо применять низкоомные полупроводники, такими являются диоды Шоттки.

Преимущества и недостатки солнечной батареи


У солнечных батарей есть как преимущества, так и недостатки. Если бы были только одни плюсы от применения фотоэлектрических преобразователей, весь мир давно бы уже перешел на этот вид получения электроэнергии.

Преимущества:

  1. Автономность источника питания , нет зависимости от перебоев напряжения в централизованной электросети.
  2. Отсутствие абонентской платы за использование электроэнергией.

Недостатки:

  1. Высокая себестоимость оборудования и элементов.
  2. Зависимость от солнечного освещения.
  3. Возможность повреждения элементов солнечной батареи вследствие неблагоприятных погодных условий (град, буря, ураган).

В каких случаях целесообразно использовать установку на фотоэлектрических элементах:

  1. Если объект (дом или дача) находится на большом удалении от линии электропередач. Это может быть загородный коттедж в сельской глубинке.
  2. Когда объект расположен в южном солнечном районе.
  3. При совмещении различных видов энергии. Например, отопление частного дома с помощью печного отопления и солнечной энергии. Себестоимость маломощной солнечной станции будет не столь высока, и может быть экономически оправдана в данном случае.

Установка


Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом , велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются , следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон , на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником , и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки , деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Схема электроснабжения дома


Последовательная цепь энергоснабжения частного дома на солнечных батареях выглядит следующим образом:

  1. Солнечная батарея из нескольких панелей , которые расположены на скате крыши дома, либо на кронштейне. В зависимости от энергопотребления, панелей может быть до 20 штук и больше. Батарея вырабатывает постоянный ток 12 вольт.
  2. Контроллер зарядки . Устройство предохраняет аккумуляторы от преждевременного разряда, а также ограничивает напряжение в цепи постоянного тока. Тем самым, контроллер защищает аккумуляторы от перегрузки.
  3. Инвертор напряжения . Преобразует постоянный ток в переменный ток, обеспечивая тем самым возможность потребления электроэнергии бытовыми приборами.
  4. Аккумуляторы . Для частных домов и дач ставят несколько аккумуляторов, соединяя их последовательно. Служат для накопления энергии. Энергия аккумуляторов используется в темное время суток, когда элементы солнечной батареи не вырабатывают ток.
  5. Электросчетчик .

Довольно часто в частных домах система энергоснабжения дополняется резервным генератором.

В целом, собрать солнечную батарею своими руками не так уж и сложно. Необходимы только определенные средства, терпение и аккуратность.