Стандарты на чистоту воздуха в лечебных учреждениях. Гигиеническое значение нормальных составных частей воздуха Критерии и показатели загрязнения воздуха физические химические

Современный человек проводит в помещениях жилых и об­щественных зданий в зависимости от образа жизни и условий трудовой деятельности от 52 до 85 % суточного времени. По­этому внутренняя среда помещений даже при относительно невысоких концентрациях большого количества токсических веществ небезразлична для человека и может влиять на его са­мочувствие, работоспособность и здоровье.

Кроме этого, в зданиях токсичные вещества действуют не изолированно, а в сочетании с такими факторами, как тем­пература и влажность воздуха, ионный режим, радиоактивный фон и др.

Химическое загрязнение воздуха помещений. Основными источниками загрязнения воздуха закрытых помещений явля­ются атмосферный воздух, строительные и отделочные поли­мерные материалы, жизнедеятельность организма самого чело­века и бытовая деятельность.

Качество воздушной среды закрытых помещений по хими­ческому составу в значительной степени зависит от качества ок­ружающего атмосферного воздуха, так как здания имеют пос­тоянный обмен и не защищают жителей от загрязненного атмосферного воздуха. Миграция пыли и токсичных веществ, содержащихся в атмосфере, обусловлена их естественной и ис­кусственной вентиляцией, и поэтому вещества, присутствую­щие в наружном воздухе, обнаруживаются и в помещениях, причем даже в тех, в которые подается кондиционированный воздух.

Степень проникновения различных химических загрязните­лей атмосферного воздуха в помещения различна: концентра­ции диоксида серы, озона и свинца обычно ниже, чем снаружи; концентрации оксидов азота, углерода и пыли близки внутри и снаружи; концентрации же ацетальдегида, ацетона, бензола, этилового спирта, толуола, этилбензола, ксилола и других органических соединений в воздухе помещений превышают их концентрации в атмосфере более чем в 10 раз, что, видимо, связано с внутренними источниками загрязнений.

Одним из самых мощных внутренних источников загрязне­ния воздушной среды закрытых помещений являются полимер­ные строительные и отделочные материалы. Номенклатура по­лимерных материалов насчитывает около 100 наименований. Их используют для покрытия полов, отделки стен, теплоизоляции наружных кровли и стен, гидроизоляции, герметизации и об­лицовки панелей, изготовления оконных блоков и дверей и т.д.

Масштабы и целесообразность применения полимеров в стро­ительстве жилых и общественных зданий определяются нали­чием ряда положительных свойств, облегчающих их использо­вание, улучшающих качество строительства и удешевляющих его. Однако установлено, что все полимерные материалы выде­ляют разнообразные токсичные для организма человека вещест­ва: поливинилхлоридные материалы выделяют в воздушную среду бензол, толуол, этилбензол, циклогексан, ксилол, бути­ловый спирт; древесно-стружечные плиты на фенолформальде­гидной и мочевино-формальдегидной основах - фенол, фор­мальдегид и аммиак; стеклопластики - ацетон, метакриловую кислоту, толуол, бутанол, формальдегид, фенол, стирол; лако­красочные покрытия и кленсодержащие вещества - толуол, бутилметакрилат, бутилацетат, ксилол, стирол, ацетон, бутанол, этиленгликоль; ковровые изделия из химических волокон - стирол, изофенол, сернистый ангидрид.

Интенсивность выделения летучих веществ зависит от усло­вий эксплуатации полимерных материалов - температуры, влажности, кратности воздухообмена, времени эксплуатации. Даже в небольших концентрациях эти химические вещества могут стать причиной сенсибилизации организма. Установле­но, что в помещениях, насыщенных полимерными материала­ми, наблюдается большая подверженность населения аллерги­ческим и простудным заболеваниям, гипертонии, неврастении, вегетососудистой дистонии. Наиболее чувствительными явля­ются организмы детей и больных людей.

Следующим внутренним источником загрязнения воздуш­ной среды помещений являются продукты жизнедеятельности организма человека - антропотоксины. Установлено, что чело­век в процессе своей жизнедеятельности вьщеляет около 400 хи­мических соединений, названных антропотоксинами, причем пятая часть из них относится к числу высокоопасных веществ (2-й класс опасности), это диметиламин, сероводород, диоксид азота, окись этилена, бензол.

Концентрации диметиламина и сероводорода превышали ПДК для атмосферного воздуха; превышали ПДК или находи­лись на их уровне концентрации диоксида и оксида углерода, аммиака.

К 3-му классу - малоопасным веществам - относятся ук­сусная кислота, фенол, метилстирол, толуол, метанол, винил­ацетат.

Остальные вещества составляли десятые и меньшие доли ПДК, но взятые вместе они свидетельствовали о неблагополу­чии воздушной среды, поскольку даже 2-4-часовое пребыва­ние в этих условиях отрицательно сказывалось на состоянии умственной работоспособности испытуемых. Воздушная среда невентилируемых помещений ухудшается пропорционально числу людей и времени их пребывания в помещении.

Источником загрязнения воздушной среды являются и бы­товые процессы. Газификация квартир повышает уровень их благоустройства, но результаты многочисленных исследова­ний показали, что открытое сжигание газа ухудшает состояние воздушной среды газифицированных жилищ в плане загрязне­ния разнообразными химическими веществами и ухудшения микроклимата помещений.

Было установлено, что при часовом горении газа в воздухе помещений концентрации веществ составляли (мг/м3): оксид углерода - 15; формальдегид - 0,037; оксид азота - 0,62; ди­оксид углерода - 0,44; бензол - 0,07, причем высокие кон­центрации этих веществ обнаруживались не только на кухне, но и в жилых помещениях.

Температура воздуха в помещении во время горения газа по­вышалась на 3-6 "С, влажность - на 10-15 %. После выклю­чения газа концентрации химических веществ снижались, но к исходным величинам иногда не возвращались и через 1,5-2,5 ч.

Источником бытового загрязнения воздуха является и куре­ние. При курении воздух загрязняется, по данным хроматомасс-спектрометрического анализа, 186 химическими соедине­ниями, в числе которых оксиды углерода и азота, серы, стирол, ксилол, лимонен, бензол, этилбензол, никотин, формальдегид, сероводород, фенол, акролеин, ацетилен, бенз(а)пирен, причем в достаточно высоких концентрациях.

У пассивных курильщиков (некурящих людей, находящихся рядом с курящими), компоненты табачного дыма вызывали раздражение слизистых оболочек глаз, увеличение содержания в крови карбоксигемоглобина, учащение пульса, повышение уровней артериального давления. С табакокурением напрямую связывают развитие рака бронхолегочной системы. Подсчита­но, что 40 выкуренных сигарет в день поставляют в легкие око­ло 150 мг бенз(а)пирена дополнительно к бенз(а)пирену атмос­ферного воздуха.

Микробное загрязнение воздуха помещений. В воздухе обна­руживаются различные микроорганизмы, из которых наиболь­ший гигиенический интерес представляют бактерии и вирусы. Атмосферный воздух не является благоприятной средой для жизнедеятельности микроорганизмов, и поэтому, попав в нее, они сравнительно быстро погибают вследствие высыхания, от­сутствия питательного материала и бактерицидного действия ультрафиолетового излучения Солнца. Бактерии, содержащие­ся в атмосфере, являются сапрофитами, которые отличаются большей устойчивостью в окружающей среде, чем патогенные микробы.

В воздухе же закрытых, плохо проветриваемых и перенаселен­ных людьми помещений содержится значительное количество микробов, среди которых могут быть и патогенные (возбудите­ли вирусных заболеваний - гриппа, кори, ветряной спы и др., бактериальных - коклюша, дифтерии, скарлатины, туберкуле­за и других инфекций, которые могут иметь даже массовый, эпидемический характер распространения).

П.Н, Лащенков установил, что существуют два пути переда­чи инфекции через воздух, воздушно-капельный и воздушно­-пылевой.

При воздушно-капельном пути передачи заражение проис­ходит в результате вдыхания мельчайших капелек слюны, мок­роты, слизи, выделяемых больным или носителем микро­бов во время кашля, чиханья и даже разговора. Известно, что мельчайшие капельки могут разбрызгиваться на расстояние от I до 1,5 м, перемещаясь дальше с воздушными течениями на несколько метров, сохраняясь во взвешенном состоянии до 1 ч. При этом пути передачи в воздух, а затем и в организм воспри­имчивого человека поступают вирулентные возбудители. К то­му же они лучше защищены от высыхания, легко и быстро пос­тупая в организм людей через дыхательные пути. Все это делает воздушно-капельный путь передачи инфекций более опасным в эпидемиологическом отношении. Действительно, все эпиде­мические инфекции распространяются этим путем.

При воздушно-пылевом пути передачи инфекции заражение происходит через взвешенную в воздухе пыль, содержащую па­тогенные микроорганизмы, вирулентность которых ослаблена за счет высыхания инфицированных капелек выделений боль­ного. Пылевые частицы с осевшими на них микробами могут держаться в виде бактериального аэрозоля от нескольких минут до 2-4 ч. Между содержанием в воздухе помещений пыли и ко­личеством микробов существует прямая зависимость: чем боль­ше пыли, тем обильнее микрофлора. Поэтому борьба с пылью в закрытых помещениях одновременно является и борьбой с бактериальным загрязнением воздуха.

Мерами предупреждения передачи инфекций воздушным путем являются элементарные правила поведения при кашле и чиханье (закрывать нос и рот носовым платком, повернув­шись в сторону от рядом находящихся людей, очень эффектив­но ношение марлевых масок всеми людьми в период эпиде­мий); соблюдение чистоты в помещениях путем регулярной влажной их уборки, соблюдение установленных норм площади и кубатуры жилых и общественных зданий; санация воздуха и помещений ЛПУ с помощью дезинфектантов и бактерицид­ных ламп.

МЕТОДИКА ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СО2 И ОКИСЛЯЕМОСТИ ВОЗДУХА КАК ПОКАЗАТЕЛЕЙ АНТРОПОГЕННОГО ЗАГРЯЗНЕНИЯ ВОЗДУХА И ВЕНТИЛЯЦИИ ПОМЕЩЕНИЙ

1. Учебная цель

1.1. Ознакомиться с факторами и показателями загрязнения воздуха помещений коммунально-бытового, общественного и производственного назначения.

1.2. Овладеть методикой гигиенической оценки чистоты воздуха и эффективности вентиляции помещений.

2. Исходные знания и умения

2.1. Знать:

2.1.1. Физиолого-гигиеничное значение составных компонентов воздуха и их влияние на здоровье и санитарные условия жизни.

2.1.2. Источники и показатели загрязнения воздуха помещений коммунального, бытового, общественного и производственного назначения, их гигиеническое нормирование.

2.1.3. Обмен воздуха в помещениях. Виды и классификация вентиляции помещений, основные параметры, которые характеризуют ее эффективность.

2.2. Уметь:

2.2.1. Определять концентрацию углекислого газа в воздухе и оценивать степень чистоты воздушной среды помещений.

2.2.2. Рассчитывать необходимый и фактический объем и кратность вентиляции помещений.

3. Вопросы для самоподготовки

3.1. Химический состав атмосферного и выдыхаемого воздуха.

3.2. Основные источники загрязнения воздуха помещений коммунально-бытового, общественного и производственного назначения. Критерии и показатели загрязнения воздуха (физические, химические, бактериологические).

3.3. Источники загрязнения воздуха жилых помещений. Окисляемость воздуха и диоксид углерода как косвенные показатели загрязнения воздуха.

3.4. Влияние разных концентраций диоксида углерода на организм человека.

3.5. Экспрессные методы определения концентрации диоксида углерода в воздухе (метод Лунге-Цеккендорфа, Прохорова).

3.6. Гигиеническое значение вентиляции помещений. Виды, классификация вентиляции помещений коммунально-бытового и производственного назначения.

3.7. Показатели эффективности вентиляции. Необходимый и фактический объем и кратность вентиляции, методы их определения.

3.8. Кондиционирование воздуха. Принципы построения кондиционеров.

4. Задания (задачи) для самоподготовки

4.1. Рассчитайте, сколько углекислого газа выделяет человек за один час в покое и при выполнении физической работы.

4.2. Рассчитайте необходимый объем вентиляции для больного в палате и для хирурга в операционной (см. приложение).

4.3. Рассчитайте необходимую кратность вентиляции палаты на 4 койки площадью 30 м2 и высотой 3,2 м.

5. Структура и содержание занятия

Занятие лабораторное. После проверки исходного уровня знаний и подготовки к занятию студенты получают индивидуальные задачи и, пользуясь инструкциями приложений и рекомендованной литературой, определяют концентрацию диоксида углерода в помещении учебной лаборатории и за ее пределами (на улице), ведут необходимые расчеты, составляют выводы; рассчитывают необходимые объем и кратность вентиляции для лаборатории с учетом количества людей и характера выполняемой работы ; измеряют объем воздуха, который поступает или удаляется из помещения, рассчитывают фактические объем и кратность вентиляции, составляют выводы и рекомендации. Работу оформляют протоколом.

6. Литература

6.1. Основная:

6.1.1. Общая гигиена. Пропедевтика гигиены. /, / Под ред. . - К.: Высшая школа, 1995. - С. 118-137.

6.1.2. Общая гигиена. Пропедевтика гигиены. / , и др. - К.: Высшая школа, 2000. - С. 140-142.

6.1.3. Минх гигиенических исследований. - М., 1971. - С.73-77, 267-273.

6.1.4. Общая гигиена. Пособие к практическим занятиям. /, и др. / Под ред. . - Львов: Мир, 1992. - С. 43-48.

6.1.5. , Шахбазян. К.: Высшая школа, 1983. - С. 45-52, 123-129.

6.1.6. Лекция.

6.2. Дополнительная:

6.2.1. , Габович медицина. Общая гигиена с основами экологии. - К.: Здоровье, 1999. - С. 6-21, 74-79, 498-519, 608-658.

6.2.2. СНиП П-33-75. Отопление, вентиляция и кондинционирование воздуха. Нормы проектирования. - М., 1975.

7. Оснащение занятия

1. Шприц Жанне (50-100 мл).

2. Раствор безводной соды NaСО3 (5,3 г на 100 мл дистиллированной воды) с 0,1% раствором фенол-фталеина.

3. Пипетка на 10 мл.

4. Дистиллированная вода в флаконе свежекипяченая и охлажденная.

5. Формулы для расчета необходимого объема и кратности вентиляции помещений.

6. Рулетка или сантиметровая лента.

7. Задача студенту по определению концентрации СО2 в воздухе и показателей вентиляции помещения.

Приложение 1

Гигиенические показатели санитарного состояния и вентиляции помещений

1. Химический состав атмосферного воздуха: азота - 78,08%; кислорода - 20,95%; углекислого газа - 0,03-0,04%; инертных газов (аргон, неон, гелий, криптон, ксенон) - 0,93%; влаги, как правило, от 40-60% до насыщения; пыль, микроорганизмы, естественные и техногенные загрязнения - в зависимости от промышленного развития региона, типа поверхности (пустыня, горы, наличие зеленых насаждений и др.)

2. Основные источники загрязнения воздуха населенных мест, производственных помещений - выбросы промышленных предприятий, автотранспорта; пиле-, газообразование промышленных предприятий; метеорологические факторы (ветры) и тип поверхности регионов (пылевые бури пустынных мест без зеленых насаждений).

3. Источники загрязнения воздуха жилых помещений, помещений коммунально-бытового назначения и общественных помещений - продукты жизнедеятельности организма людей, которые выделяются кожей и при дыхании (продукты распада пота, кожного сала, омертвелого эпидермиса, другие продукты жизнедеятельности, которые выделяются в воздух помещения пропорционально количеству людей, срока их пребывания в помещении и количества углекислого газа, который накапливается в воздухе пропорционально перечисленным загрязнителям), и поэтому используется как показатель (индикатор) степени загрязнения этими веществами воздуха помещений различного назначения.

4. Учитывая, что через кожу и при дыхании выделяются, в основном, органические продукты обмена веществ, для оценки степени загрязнения воздуха помещений людьми было предложено определять другой показатель этого загрязнения – окисляемость воздуха, т. е. измерять количество миллиграммов кислорода, необходимого для окисления органических соединений в 1 м3 воздуха с помощью титрованного раствора бихромата калия К2Сr2О7.

Окисляемость атмосферного воздуха обычно не превышает 3-4 мг/м3, в хорошо проветриваемых помещениях окисляемость находится на уровне 4-6 мг/м3, а в помещениях с неблагоприятным санитарным состоянием окисляемость воздуха может достигать 20 и более мг/м3.

5. Концентрация углекислого газа отображает степень загрязнения воздуха другими продуктами жизнедеятельности организма. Концентрация углекислого газа в помещениях увеличивается пропорционально количеству людей и времени их пребывания в помещении, но как правило, не достигает вредных для организма уровней. Только в замкнутых, недостаточно вентилируемых помещениях (хранилищах, подводных лодках, подземных выработках, производственных помещениях, канализационных системах и т. п.) за счет брожения , горения, гниения количество углекислого газа может достигать концентраций, опасных для здоровья и даже жизни человека.

Бресткина и ряда других авторов установлено, что повышение концентрации СО2 до 2-2,5% не вызывает заметных отклонений в самочувствии человека, его трудоспособности. Концентрации СО2 до 4% вызывают повышение интенсивности дыхания, сердечной деятельности, снижение трудоспособности. Концентрации СО2 до 5% сопровождаются одышкой, усилением сердечной деятельности, снижением трудоспособности, а 6% - способствуют снижению умственной деятельности, возникновению головной боли, умопомрачению, 7% - может вызвать неспособность контролировать свои действия, потерю сознания и даже смерть, 10% - вызывает быструю, а 15-20% мгновенную смерть из-за паралича дыхания.

Для определения концентрации СО2 в воздухе разработано несколько методов, среди которых метод Субботина-Нагорского с гидроокисью бария, методы Реберга-Винокурова, Калмыкова, интерферометрический. Вместе с тем в санитарной практике наиболее широко используется портативный экспрессный метод Лунге-Цеккендорфа в модификации (приложение 2).

Приложение 2

Определение диоксида углерода в воздухе экспресс-методом Лунге-Цеккендорфа в модификации

Принцип метода основан на пропускании исследуемого воздуха через титрованный раствор углекислого натрия (или аммиака) в присутствии фенолфталеина. При этом происходит реакция Na2CO3+H2O+CO2=2NaHCO3. Раствор фенолфталеина, который имеет розовую окраску в щелочной среде, после связывания CO2 обесцвечивается (кислая среда).

Разведением 5,3 г химически чистого Na2CO3 в 100 мл дистиллированной воды готовят исходный раствор, к которому прибавляют 0,1% раствор фенолфталеина. Перед анализом готовят рабочий раствор разведением исходного раствора 2 мл до 10 мл дистиллированной водой.

Раствор переносят в склянку Дрекселя по Лунге-Цеккендорфу (рис. 11.1а) или в шприц Жанне по Прохорову (рис. 11.1б). В первом случае к длинной трубке склянки Дрекселя с утонченным носиком присоединяют резиновую грушу с клапаном или небольшим отверстием. Медленно сжимая и быстро отпуская грушу, продувают через раствор исследуемый воздух. После каждой продувки склянку встряхивают для полного поглощения CO2 из порции воздуха. Во втором случае (по Прохорову) в шприц, наполненный 10 мл рабочего раствора соды с фенолфталеином, держа его вертикально, набирают порцию исследуемого воздуха. Затем энергичным встряхиванием (7-8 раз) воздух приводят в контакт с поглотителем, после чего воздух выталкивается и вместо него набирается одна за другой порции исследуемого воздуха до полного обесцвечивания раствора в шприце. Считают количество объемов (порций) воздуха, пошедших на обесцвечивание раствора. Анализ воздуха проводят в помещении и за пределами помещения (атмосферный воздух).

Результат рассчитывают по обратной пропорции на основании сопоставления количества израсходованных объемов (порций) груш или шприцев и концентрации CO2 в атмосферном воздухе (0,04%) и в конкретном исследуемом помещении, где определяется концентрация СО2. Например, в помещении израсходовано 10 объемов груш, или шприцев, на улице – 50 объемов. Отсюда, концентрация CO2 в помещении = (0,04 x 50) : 10 = 0,2%.

Предельно допустимая концентрация (ПДК) CO2 в жилых помещениях разного назначения установленная в пределах 0,07-0,1%, в производственных помещениях, где CO2 накапливается от технологического процесса, до 1-1,5%.

Рис.11.1а. Прибор для определения концентрации СО2 по Лунге-Цеккендорфу

(а - резиновая груша для продувки воздуха с клапаном; б - склянка Дрекселя с раствором соды и фенол-фталеина)

Рис. 11.1б. Шприц Жанне для определения концентрации СО2

Приложение 3

Методика определения и гигиенической оценки показателей воздухообмена и вентиляции помещений

Воздух жилых помещений считается чистым, если концентрация CO2 не превышает предельно допустимых концентраций – 0,07% (0,7‰) по Петтенкоферу или 0,1% (1,0‰) по Флюге.

На этом основании рассчитывается необходимый объем вентиляции – количество воздуха (в м3), которое должно поступать в помещение в течение 1 ч, чтобы концентрация CO2 в воздухе не превысила предельно допустимых концентраций для данного вида помещений. Его рассчитывают по формуле:

где: V – объем вентиляции, м3/час;

К – количество СО2, выделяемое одним человеком за один час (в покое 21,6 л/ч; во сне – 16 л/ч; при выполнении работы разной тяжести – 30-40 л/ч);

n - количество людей в помещении;

Р – предельно допустимая концентрация СО2 в промилле (0,7 или 1,0‰);

Р1 – концентрация СО2 в атмосферном воздухе в промилле (0,4‰).

При расчете количества СО2, которое выделяет один человек за один час, выходят из того, что взрослый человек при легкой физической работе производит в течение 1 минуты 18 дыхательных движений с объемом каждого вдоха (выдоха) 0,5 л и, следовательно, в течение часа выдыхает 540 л воздуха (18 х 60 х 0,5 = 540).

Учитывая, что концентрация углекислого газа в выдыхаемом воздухе примерно 4% (3,4-4,7%), то общее количество выдыхаемого углекислого газа за пропорцией составит:

х = = 21,6 л/час

При физических нагрузках пропорционально их тяжести и интенсивности возрастает количество дыхательных движений, а потому возрастает и количество выдыхаемого СО2 и необходимый объем вентиляции.

Необходимая кратность вентиляции – число, которое показывает, сколько раз в течение часа меняется воздух помещения, чтобы концентрация СО2 не превышала предельно допустимых уровней.

Необходимую кратность вентиляции находят путем деления рассчитанного необходимого объема вентиляции на кубатуру помещения.

Фактический объем вентиляции находят путем определения площади вентиляционного отверстия и скорости движения воздуха в нем (фрамуга, форточка). При этом учитывают, что через поры стен, щели в окнах и двери в помещение проникает объем воздуха, близкий к кубатуре помещения и его нужно прибавить к объему, который проникает через вентиляционное отверстие.

Фактическую кратность вентиляции рассчитывают делением фактического объема вентиляции на кубатуру помещения.

Сопоставляя необходимые и фактические объемы и кратность вентиляции, оценивают эффективность обмена воздуха в помещении.

Приложение 4

Нормативы кратности обмена воздуха в помещениях разного назначения

Помещение

Кратность обмена воздуха, ч

СНиП 2.08. 02-89 – больничные помещения

Палата взрослых

80 м3 на 1 койку

Предродовая, перевязочная

Родовая, операционная, предоперационная

Послеродовая палата

80 м3 на 1 кровать

Палата для детей

80 м3 на 1 кровать

Бокс, полубокс

2,5 раза/ч в коридор

Кабинет врача

СНиП 2.08. 01-89 – жилые помещения

Жилая комната

3 м3/ч на 1 м2 площади

Кухня газифицирована

Туалет, ванная комната

ДБН В. 2.2-3-97 – дома и сооружения учебных заведений

Класс, кабинет

16 м3 на 1 человека

Мастерская

20 м3 на 1 человека

Спортзал

80 м3 на 1 человека

Учительская

Необходимый объем и кратность вентиляции положены также в основу научного обоснования норм жилой площади. Учитывая, что при закрытых окнах и двери, как сказано выше, через поры стен, щели в окнах и двери в помещение проникает объем воздух, близкий к кубатуре помещения (т. е., его кратность равняется ~ 1 раз/час), а высота помещения в среднем равняется 3 м, норма площади на 1 человека составляет:

По Флюге (ПДК СО2=1‰)

S = = = 12 м2/человека.

По Петтенкоферу (ПДК СО2=0,7‰)

S = = 24 м2/человека.

Основными источниками загрязнения воздуха закрытых помещений являются атмосферный воздух, проникающий в помещение через оконные проемы и неплотности строительных конструкций, строительные и отделочные полимерные материалы, выделяющие в воздух разнообразные, токсичные для человека вещества, многие из которых являются высокоопасными (бензол, толуол, циклогексан, ксилол, ацетон, бутанол, фенол, формальдегид, ацетальдегид, этиленгликоль, хлороформ), продукты жизнедеятельности человека и его бытовых занятий (антропотоксины: угарный газ, аммиак, ацетон, углеводороды, сероводород, альдегиды, органические кислоты, диэтиламин, метилацетат, крезол, фенол и др.), накапливающиеся в воздухе невентилируемых помещений с большим числом людей. Многие вещества являются высокоопасными, относящимися ко 2-му классу опасности. Это диметиламин, сероводород, диоксид азота, окись этилена, индол, скатол, меркаптан. Наибольший суммарный риск имеют бензол, хлороформ, формальдегид. Присутствующие одновременно даже в небольших количествах, они свидетельствуют о неблагополучии воздушной среды, оказывающей отрицательное воздействие на состояние умственной трудоспособности людей, находящихся в этих помещениях.

Кроме того, выдыхаемый людьми воздух по сравнению с атмосферным содержит меньше кислорода (до 15,1-16%), в 100 раз больше углекислого газа (до 3,4-4,7%), насыщен водяными парами, нагрет до температуры тела человека и деионизирован в процессе его прохождения через системы приточной вентиляции из-за задержки легких положительных и отрицательных аэроионов в воздуховодах.

В воздух поступает значительное количество микробов, среди которых могут быть и патогенные. Чем больше в воздухе поме- щений пыли, тем обильнее в нем микробное загрязнение. Пыль является фактором передачи инфекционных болезней с аэрозольным механизмом распространения и бактериальных инфекций (например, туберкулеза). Пыль, содержащая плесневые грибы родов Penicillium и Mukor, вызывает аллергические заболевания.

Воздействие различных факторов на человека внутри помещения может вызвать нарушения состояния его здоровья, т.е. заболевания, связанные со зданием», например, парами формальдегида, выделяющегося из полимерных и древесно-стружечных материалов.

Симптомы заболевания сохраняются долго, даже после устранения источника вредного воздействия. «Синдром больного здания» проявляется в виде острых нарушений состояния здоровья и дискомфорта (головной боли, раздражения глаз, носа и органов дыхания, сухого кашля, сухости и зуде кожи, слабости, тошноте, повышенной утомляемости, восприимчивости к запахам), возникающих в конкретных помещениях и почти полностью исчезающих при выходе из него. Развитие этого синдрома связывается с комбинированными и сочетанными действиями химических, физических (температура, влажность) и биологических (бактерии, неизвестные вирусы и др.) факторов. Его причинами чаще всего является недостаточная естественная и искусственная вентиляция помещений, строительные и отделочные полимерные материалы, выделяющие в воздух разнообразные токсичные для человека вещества, нерегулярная уборка помещений.

Качество воздушной среды принято оценивать косвенно по интегральному санитарному показателю чистоты воз- духа - содержанию углекислого газа (показателю Петтенкофера), а в качестве предельно допустимого норматива (ПДК) использовать его концентрацию в помещениях - 1,0%с или 0,1% (1000 см3 в 1 м3). Углекислый газ постоянно выделяется в воздух закрытых помещений при дыхании, наиболее доступен простому определению и имеет достоверную прямую корреляцию с суммарным загрязнением воздуха. Показатель Петтенкофера является не предельно допустимой концентрацией самого диоксида углерода, а показателем вредности концентраций многочисленных метаболитов человека, накопившихся в воздухе параллельно с диоксидом углерода. Более высокое содержание СО2 (>1,0%о) сопровождается суммарным изменением химического состава и физическим свойством воздуха в помещении, которые неблагоприятно влияют на состояние находящихся в нем людей, хотя сам по себе диоксид углерода и в значительно более высоких концентрациях не проявляет токсические для человека свойства. При оценке качества воздуха и проектировании систем вентиляции помещений с большим количеством людей содержание диоксида углерода служит основной расчетной величиной.

Мерами предупреждения загрязнения воздуха помещений является их проветривание, если это возможно, соблюдение чистоты путем регулярной влажной уборки помещений, соблюдение установленных норм площади и кубатуры помещений, санация воздуха с помощью дезинфицирующих средств и бактерицидных ламп.

В результате в воздухе увеличивается концентрация углекислоты, появляются аммиак, альдегиды, кетоны и другие дурно пахнущие газы, увеличивается влажность, пылевая и микробная загрязненность воздуха, что в целом характеризуется как душный (жилой) воздух, оказывающий влияние на самочувствие, работоспособность и здоровье людей. Поконцентрации углекислоты в таком воздухе можно определить степень общей его загрязненности. Поэтому углекислый газ служит санитарным показателем чистоты воздуха в жилых и общественных помещениях. Воздух считается свежим, если концентрация углекислоты в нем не превышает 0,1%. Эта величина и считается предельно допустимой для воздуха в жилых и общественных помещениях.

Кроме того, следует учитывать тот фактор, что углекислый газ тяжелее воздуха и может скапливаться в нижних частях замкнутых пространств, не подвергающихся интенсивной вентиляции. Наиболее важно это для тех мест, где происходят усиленные окислительные процессы (бродильные чаны, заброшенные шахты или колодцы, на дне которых находятся гниющие или бродящие отбросы и т. д.). В таких местах концентрация углекислоты может достигать больших величин и представлять опасность для здоровья и существования человека. Если концентрация углекислого газа во вдыхаемом воздухе превышает 3% то существование в такой атмосфере становится опасным для здоровья. Концентрация СО2 порядка 10 % считается опасной для жизни (потеря сознания наступает через несколько минут дыхания таким воздухом). При концентрации 20 % происходит паралич дыхательного центра в течение нескольких секунд.

Основные источники загрязнения воздушной среды помещений условно можно разделить на четыре группы:

1. Вещества, поступающие в помещение с загрязненным воздухом. Основным источником загрязнения воздуха в помещениях является бытовая пыль. Она представляет собой мельчайшие частицы различных веществ, способных парить в воздухе. Пыль еще и адсорбирует многие химические соединения. Степень проникновения атмосферных загрязнений внутрь здания для разных химических веществ различна. При сравнении концентрации двуокиси азота, окиси азота, окиси углерода и пыли в жилых зданиях и в атмосферном воздухе обнаружено, что эти вещества находятся на уровне или ниже концентраций их в наружном воздухе. Концентрации двуокиси серы, озона и свинца обычно внутри ниже, чем снаружи. Концентрации ацетальдегида, ацетона, бензола, толуола, ксилола, фенола, ряда предельных углеводородов в воздушной среде помещений превышали концентра­ции в атмосферном воздухе более чем в 10 раз.

2. Продукты деструкции полимерных материалов.

3. Антропотоксины.

4. Продукты сгорания бытового газа и бытовой деятельности.

Одним из наиболее распространенных источников загрязнения воздушной среды закрытых помещений является курение. Сигаретный дым в доме - прямая угроза здоровью. Он содержит тяжелые металлы, окись углерода, окись азота, сернистый ангидрид, сти­рол, ксилол, бензол, этилбензол, никотин, формальде­гид, фенол, около 16 канцерогенных веществ.

Другой возможный источник загрязнения воздуха в квартире - это отстойники в водопроводно-канализационной сети. Мусоропровод также таит в себе опасность для здоровья, особенно если приемные люки установлены на кухне или в прихожей.

Показатели санитарного состояния воздуха помещений:

· Окисляемость(количество О2 необходимое для окисления органических соединений воздуха)

Критерии оценки санитарного состояния воздуха закрытых помещений .



1. ОБЩАЯ МИКРОБНАЯ ЗАГРЯЗНЕННОСТЬ.в 1м3 воздуха.

2. КОЛИЧЕСТВО САНИТАРНО-ПОКАЗАТЕЛЬНЫХ МИКРОБОВ ВОЗДУХА.В 250 ЛИТРАХ ВОЗДУХА.

Cанитарно-показательными микробами воздуха закрытых помещений являются:

1) золотистый стафилококк

2) a-зеленящий стрептококк

3) b-гемолитический стрептококк

Эти бактерии являются показателями орально-капельного загрязнения. Они имеют общий путь выделения в окружающую среду с патогенными микроорганизмами, передающимися воздушно-капельным путём. Сроки выживания их в окружающей среде не отличаются от сроков, характерных для большинства возбудителей воздушно-капельных инфекций.

Методы делятся на седиментационные и аспирационные.

Углекислый газ является косвенным показателем загрязнения, т.к.:

Антропотоксины в воздухе помещений. Санитарно-гигиеническое значение содержания углекислого газа.

В процессе своей жизнедеятельности человек выделяет около 400 химических соединений. Воздушная среда невентилируемых помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Химический анализ воздуха помещений позволил идентифицировать в них ряд токсических веществ, распределение которых по классам опасности представляется следующим образом:

второй класс опасности - высоко опасные вещества (диметиламин, сероводород, двуокись азота, окись этилена, бензол и др.);

третий класс опасности - малоопасные вещества (уксусная кислота, фенол, метилстирол, толуол, метанол, винилацетат и др.).

Даже двухчасовое пребывание в этих условиях отрицательно сказывается на умственной работоспособности. При большом скоплении людей в помещении (классы, аудитории) воздух становится тяжелым.

Значение СО2: косвенный показатель загрязнения воздушной среды закрытых помещений, где основной источник – человек.

Углекислый газ является косвенным показателем загрязнения, т.к.:

1. СО2 наилучшим образом характеризует человека как источника загрязнений воздуха закрытых помещений.

2. Существует корреляционная зависимость между накоплением СО2 и денатурацией воздушной среды (изменение физического, химического и микробного составов)

3. Существуют экспресс-методы определения СО2(доступные, надежные, дешевые).

Полимерные материалы и бытовой газ как источники загрязнения воздуха жилых и общественных зданий. Особенности действия загрязнителей воздушной среды на организм. Меры профилактики.

В настоящее время только в строительстве используется около 100 наименований полимерных материалов. Практически все полимерные материалы выделяют в воздушную среду те или иные токсические химические вещества, оказывающие вредное влияние на здоровье человека.

Стеклопластики на основе различных смесей, применяемые в строительстве, звуко - и теплоизоляции выделяют в воздушную среду значительные количества ацетона, метакриловой кислоты, толуола, бутанола, формальдегида, фенола и стирола. Лакокрасочные покрытия и клейсодержащие вещества также являются источниками загрязнения воздушной среды закрытых помещений.

Многие виды красивых синтетических отделочных материалов - пленок, клеенок, ламенатов и пр. - выделяют набор вредных веществ, например, метанол, дибутилфталат и др. Ковровые изделия из химических волокон выделяют в значительных концентрациях стирол, изофенол, сернистый ангидрид. Средства бытовой химии - моющие, чистящие средства, ядохимикаты для борьбы с насекомыми, грызунами, пестициды, разного рода клеи, средства автокосметики, полирующие вещества, лаки, краски и многие другие - способны вызвать различные заболевания у людей, особенно, если запасы таких веществ хранятся в плохо проветриваемом помещении.

Атмосферные загрязнения могут быть причиной возникновения неинфекционных заболеваний у человека, кроме того, они способны ухудшать санитарные условия жизни людей и причинять экономический ущерб.

Биологическое действие атмосферных загрязнений

Атмосферные загрязнения могут оказывать острое и хроническое воздействие.

Мероприятия по санитарной охране атмосферного воздуха

1. Законодательные

Существует большое количество нормативных документов, регламентирующих охрану атмосферного воздуха. В Федеральном законе «Об охране окружающей среды» говорится, что каждый гражданин имеет право на благоприятную окружающую среду, на ее защиту от негативного воздействия, вызванного хозяйственной и иной деятельностью. Закон «Об охране атмосферного воздуха» регламентирует разработку и проведение мероприятий по ликвидации и предупреждению загрязнения воздуха – строительство газоочистных и пылеулавливающих устройств на промышленных предприятиях и предприятиях теплоэнергетики.

2. Технологические

Технологические мероприятия являются основными мероприятиями по охране атмосферного воздуха, так как только они позволяют снизить или полностью исключить выброс вредных веществ в атмосферу на месте их образования. Данные мероприятия непосредственно направлены на источник выбросов.

3. Санитарно-технические.. Целью санитарно-технических мероприятий является извлечение или нейтрализация компонентов выбросов, находящихся в газообразной, жидкой или твердой форме, от организованных стационарных источников. Для этого используются различные газопылеулавливающие установки.

4. Архитектурно-планировочные

К данной группе мероприятий относятся:

Функциональное зонирование территории города, то есть выделение функциональных зон – промышленной, зоны внешнего транспорта, пригородной, коммунальной

Рациональная планировка территории

Запрещение строительства предприятий, загрязняющих воздух, в жилой зоне населенного пункта и размещение их в промышленной зоне с учетом господствующего направления ветра на данной территории;

Создание санитарно-защитных зон. СЗЗ – это территория вокруг промышленного предприятия или другого объекта, являющегося источником загрязнения окружающей среды, размеры которой обеспечивают снижение уровней воздействия производственных вредностей в жилой зоне до предельно допустимых значений.

Рациональная застройка улиц, устройство транспортных развязок на основных автомагистралях с сооружением тоннелей;

Озеленение территории города. Зеленые насаждения играют роль своеобразных фильтров, влияют на рассеивание промышленных выбросов в атмосфере, изменяя ветровой режим и циркуляцию воздушных масс.

Выбор для строительства предприятия земельного участка с учетом рельефа местности, аэроклиматических условий и других факторов.

5. Административные

Рациональное распределение транспортных потоков по их интенсивности, составу, времени и направлению движения;

Ограничение движения в пределах жилой зоны города большегрузного автотранспорта;

Наблюдение за состоянием дорожных покрытий и своевременностью их ремонта и уборки;

Система контроля технического состояния транспортных средств.

52. Особенности состава и свойства атм. Воздуха, производственных, жилых и обществ-х зданий. Атмосферный воздух имеет химические, физические и механические свойства , которые оказывают на организм человека как благоприятное, так и неблагоприятное воздействие.

· Химические свойства обусловлены нормальным газовым составом воздуха и вредными газообразными примесями;

· К физическим свойствам воздуха относятся:

Атмосферное давление,

Температура,

Влажность,

Подвижность,

Электрическое состояние,

Солнечная радиация,

Электромагнитные волны

от физических свойств воздуха зависят климат и погода ;

· Механические свойства воздуха зависят от содержания в нём примесей твёрдых частий в виде

И присутствия микроорганизмов.

Воздушная среда неоднородна по физическим параметрам и вредным примесям , что связано с условиями ее формирования и за­грязнения .

Следует различать:

1. Чистый атмосферный воздух;

2. Атмосферный воздух промышленых регионов;

3. воздух помещений жилых и общественных зданий;

4. воздух помещений промышлен­ных предприятий.

Эти виды воздуха отличаются друг от друга по составу и свойствам, а значит и по влиянию на организм человека

I.атмосферный воздух

Физические свойства атмосферного воздуха:

Температура,

Влаж­ность,

Подвижность,

Атмосферное давление,

Электрическое состояние

· Физические свойства атмосферного воздуха нестабильны и связаны с климатическими особенно­стями географического региона .· Наличие в воздухе газообразных твердых примесей (пыль и сажа ) зависит от характера выбросов в атмосферу, условий разбавления и процессов самоочищения.

На концентрацию вредных веществ в атмосфере влияют:

1. скорость и направление господствующих ветров,

2. температура, влажность воз­духа,

3. осадки, солнечная радиация,

4. количество, качество и высота вы­бросов в атмосферу.

Свойства воздуха жилых и общественных зданий более стабильны- в этих зданиях поддерживается оптимальный микроклимат за счет вентиляции и отопления. Газообразные примеси связаны с выделением в воздух продуктов жизнедеятельности людей, выделением токсических веществ из материалов и предметов обихода, выполненных из полимерных материалов, продуктов горения бытового газа и др. На свойства воздуха промышленных помещений существенное влияние оказывают особенности технологического процесса. В некоторых случаях физические свойства воздуха приобретают самостоятельное значение вредного профессионального фактора, а загрязнение воздуха токсичными веществами может привести к профессиональным болезням.

53. Солнечная радиация -испускаемый солнцем интегральный поток излучения. В гигиеническом отношении особый интерес представляет оптическая часть солнечного света, которая занимает диапазон от 280-2800 нм. Более длинные волны -- радиоволны, более короткие - гамма-лучи. И онизирующее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озоновом слое.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь который проходит солнечные лучи будет значительно короче, чем их путь если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интенсивность солнечной радиации зависит от массы воздуха через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше чем над уровнем моря, потому что слой воздуха через который проходят солнечные лучи будет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы,ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течении суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая -- зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

1. ультрафиолетовые лучи, от 280 до 400 нм

2. видимый спектр от 400 до 760 нм

3. инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Солнечная радиация является мощным оздоровительным и профилактическим фактором.

54 .Колличественная и качественная характеристика солнечной радиации. Вследствие поглощения, отражения и рассеяния лучистой энергии в мировом пространстве на поверхности Земли солнечный спектр ограничен,особенно в ее коротковолновой части. Если на границе земной атмосферы УФ часть-5%, видимая-52%, инфракрасная- 43%, то у поверхности Земли состав солнечной радиации иной: УФ часть-1%, видимая-40%, инфракрасная-59%. Это объясняется различной степенью чистоты атмосферного воздуха, большим разнообразием погодных условий, наличием облаков и тд. На большой высоте толща атмосферы,проходимая солнечными лучами, уменьшается, снижается степень их поглощения атмосферой, интенсивность солнечной радиации увеличивается. В зависимости от высоты стояния Солнца над горизонтом изменяется соотношение прямой солнечной радиации и рассеянной, что имеет существенное значение в оценке эффекта ее биологического действия.

55.Гигиеническая характеристика ультрафиолетовой части солнечной радиации . Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длиноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества -- гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту -- гистамин и другие биологически активные вещества способствуют расширению сосудов. Особенность этой эритемы -- она возникает несразу. Эритема имеет четко ограниченные границы. Ультрофиолетовая эритема всегда приводит к загару более или менее выраженному, в зависимости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого распада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом является проверкой защитных свойств организма (больной человек не загорает, загорает медленно).

Самый благоприятный загар возникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длиноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере -- длиноволновые УФЛ. Коротковолновые лучи наиболее подвержены рассеянию. А рассеивание лучше всего происходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере -- он более длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых -- остепороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голодания. Для профилактики солнечного голодания используется искусственный загар. При действии УФ в воздухе происходит образование озона, за концентрацией которого необходим контроль.

УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды.

Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившийся под действием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсивность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеряется в биодозах.

56. Физиолого-гигиеническое значение ультрафиолетового излучения. Мероприятия по профилактике УФ нед-ти. См 55.

Профилактика УФ-недостаточности

1. Архитектурно-планировочные мероприятия.

При проектировании и строительстве жилых зданий, детских, лечебно-профилактических и других учреждений необходимо учитывать инсоляционный режим.

2. Гелиотерапия (солнечные ванны). Может организовываться на пляжах, в соляриях. Солнечные ванны могут быть суммарными (общими и местными), ослабленными, тренирующими. Суммарные ванны используют для здоровых, закаленных детей. Общие солнечные ванны могут быть ослабленными за счет применения решетчатых тентов, марли.

3. Использование искусственных источников.

57. Биологическое действие ультрафиолетовых лучей (УФЛ) весьма и весьма разнообразно. Оно может носить как положительный, так и деструктивный характер. Наиболее опасны эффекты воздействия коротковолнового УФЛ (10-200 нм), подавляющая часть которых задерживается в верхних слоях атмосферы, в частности, в озоновом ее слое. Однако опасность поражения УФЛ имеет место при длительном пребывании человека на Солнце, а также в производственных условиях при работе с искусственными источниками УФЛ (электросварка), проведении физиопроцедур (лечебное, профилактическое ультрафиолетовое облучение). Повышение дозы УФЛ приводят к денатурации белка, чем, в первую очередь, обусловлено развитие катаракты, что требует при работе с УФЛ защиты зрительного анализатора. Деструктивный эффект УФЛ используется в практической деятельности человека. В частности, губительное действие их на микробные клетки (бактерицидный эффект при длине волн 180–280 нм, максимальный – при 254 нм) широко применяется для санации воздуха, поддержание антимикробного режима в помещениях лечебно-профилактических учреждений, обеззараживания воды. Способность различных сред люминесцировать под воздействием УФЛ используется в аналитической химии. Например, люминесцентный метод используется для определения витаминов в продовольственном сырье и продуктах питания.

Положительные аспекты действия УФЛ заключаются в следующем:

· УФЛ стимулируют выработку антител, фагоцитоз, накопление агглютининов в крови, повышая естественный иммунитет, резистентность организма к воздействию неблагоприятных факторов окружающей среды

· УФЛ обусловливают пигментообразование (длины волн в районе 340 нм) и эритемообразование

· УФЛ играют значительную роль в обеспечении организма витамином D3

В климатологии по уровню УФЛ выделяют «зону дефицита» (широта выше 57,5°), «зону комфорта» (42,5–57,5°), «зону избытка» (менее 42,5°), что необходимо учитывать при гигиеническом воспитании населения, проведении профилактических мероприятий.

С дефицитом УФЛ в первую очередь связано развитие синдрома светового голодания, который может наблюдаться у людей, живущих в «зоне дефицита», в городах с загрязненной атмосферой, работающих под землей, мало бывающих на открытом воздухе.

Для защиты от ультрафиолетового излучения применяются коллективные и индивидуальные способы и средства:экранирование источников излучения и рабочих мест; удаление обслуживающего персонала от источников ультрафиолетового излучения (защита расстоянием – дистанционное управление); рациональное размещение рабочих мест; специальная окраска помещений; СИЗ и предохранительные средства (пасты, мази).Для экранирования рабочих мест применяют ширмы, щитки или специальные кабины. Стены и ширмы окрашивают в светлые тона (серый, желтый, голубой), применяют цинковые и титановые белила для поглощения ультрафиолетового излучения.К средствам индивидуальной защиты от ультрафиолетовых излучений относятся: термозащитная спецодежда; рукавицы; спецобувь; защитные каски; защитные очки и щитки со светофильтрами в зависимости от выполняемой работы.Для защиты кожи от ультрафиолетового излучения применяются мази с содержанием веществ, служащих светофильтрами для этих излучений (салол, салицилово-метиловый эфир и др.).

3.4 Освещение. Ра­циональное освещение необходимо прежде всего для оптимальной функции зрительного анализатора. Свет обладает и психофизиологическим действием. Рациональное освещение положительно сказывается на функциональном состоянии коры большого мозга, улучшает функцию других анализаторов. В целом световой комфорт, улучшая функциональное состояние центральной нервной системы и повышая работоспособность глаза, приводит к повышению производительности и качества труда, отдаляет утомление, способствует уменьшению производственного травматизма. Изложенное относится как к естественному, так и к искусственному освещению. Но естественное освещение, помимо того, оказывает выраженное общебиологическое действие, является синхронизатором биологических ритмов, обладает тепловым и бактерицидным действием (см. главу III). Поэтому жилые, производственные и общественные здания должны быть обеспечены рациональным дневным освещением.

С другой стороны, с помощью искусственного освещения можно создать в любом месте помещения заданную и стабильную в течение дня освещенность. Роль искусственного освещения в настоящее время высока: вторые смены, ночной труд, подземные работы, вечерние домашние занятия, культурный досуг и др.

К основным показателям, характеризующим освещение, относятся: 1) спектральный состав света (от источника и отраженного), 2) освещенность, 3) яркость (источника света, отражающих поверхностей), 4) равномерность освещения.

Спектральный состав света. Наибольшая производительность труда и наименьшая утомляемость глаза бывает при освещении стандартным дневным светом. За стандарт дневного света в светотехнике принят спектр рассеянного света с голубого небосвода, т. е. поступающего в помещение, окна которого ориентированы на север. Наилучшее цветоразличение отмечается при дневном свете. Если размеры рассматриваемых деталей один миллиметр и более, то для зрительной работы примерно одинаково освещение источниками, генерирующими белый дневной свет и желтоватый.

Спектральный состав света важен и в психофизиологическом аспекте. Так, красный, оранжевый и желтый цвета по ассоциации с пламенем, солнцем вызывают ощущение теплоты. Красный цвет возбуждает, желтый - тонизирует, улучшает настроение и работоспособность. Голубой, синий и фио­летовый кажутся холодными. Так, окраска стен горячего цеха в синий цвет создает ощущение прохлады. Голубой цвет - успо­каивает, синий и фиолетовый - угнетают. Зеленый цвет - нейтральный - приятный по ассоциации с зеленой растительностью, он меньше других утомляет зрение. Окраска стен, машин, крышек парт в зеленые тона благоприятно сказывается на самочувствии, работоспособности и зрительной функции глаза.

Окраска стен и потолков в белый цвет издавна считается гигиенической, так как обеспечивает наилучшую освещенность помещения из-за высокого коэффициента отражения 0,8-0,85. Поверхности, окрашенные в другие цвета, имеют меньший коэффициент отражения: светло-желтый - 0,5-0,6, зеленый, серый - 0,3, темно-красный- 0,15, темно-синий - 0,1, черный -- 0,01. Но белый цвет (из-за ассоциации со снегом) вызывает ощущение холода, он как бы увеличивает размер помещения, де­лает его неуютным. Поэтому стены чаще окрашивают в светло-салатовый, светло-желтый и близкие к ним цвета.

Следующий показатель, характеризующий освещение,- освещенность. Освещенностью называют поверхностную плотность светового потока. Единицей освещенности является 1 люкс - освещенность поверх­ности 1 м 2 , на которую падает и равномерно распределяется световой поток в один люмен. Люмен - световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площади 0,53 мм 2 . Освещенность обратно пропорциональна квадрату расстояния между источ­ником света и освещаемой поверхностью. Поэтому, чтобы экономно создать высокую освещенность, приближают источник к освещаемой поверхности (местное освеще­ние). Освещенность определяют люксметром.

Гигиеническое нормирование освещенности сложно, так как она влияет на функцию центральной нервной системы и на функцию глаза. Эксперименты показали, что с увеличением освещенности до 600 лк значительно улучшается функциональное состояние центральной нервной системы; дальнейшее увеличение освещенности до 1200 лк в меньшей мере, но также улучшает ее функцию, освещенность выше 1200 лк почти не оказывает влияния. Таким образом, везде, где работают люди, желательна освещенность порядка 1200 лк, минимум 600 лк.

Освещенность влияет на зрительную функцию глаза при различной величине рассматриваемых предметов. Если рассматриваемые детали имеют размер менее 0,1 мм, при освещении лампами накаливания нужна освещенность 400-1500 лк", 0,1-0,3 мм -300- 1000 лк, 0,3-1 мм -200-500 лк, 1 - 10 мм - 100-150 лк, более 10 мм – 50- 100 лк. При этих нор­мативах освещенность достаточна для функции зрения, но в ряде случаев она ме­нее 600 лк, т. е. недостаточна с психофизиологической точки зрения. Поэтому при освещении люминесцентными лампами (поскольку они экономичней) все перечисленные нормы увеличиваются в 2 раза и тогда освещенность приближается к оптимальной и в психофизиологическом отношении.

При письме и чтении (школы, библиотеки, аудитории) освещенность на рабочем месте должна быть не менее 300 (150) лк, в жилых комнатах 100 (50), кухнях 100 (30).

Для характеристики освещения большое значение имеет яркость . Яркость - сила света, излучаемого с единицы поверхности. Фактически при рассматривании предмета мы видим не освещенность, а яркость. Единица яркости - кандела на квадратный метр (кд/м 2) - яркость равномерно светящей плоской поверхности, излучающей в перпендикулярном направлении с каждого квадратного метра силу света, равную одной канделе. Яркость определяют яркомером.

При рациональном освещении в поле зрения человека не должно быть ярких источников света или отражающих поверхностей. Если рассматриваемая поверхность чрезмерно яркая, то это негативно отразится на работе глаза: появляется ощущение зрительного дискомфорта (с 2000 кд/м 2), падает производительность зрительной работы (с 5000 кд/м 2), вызывает слепимость (с 32 000 кд/м 2) и даже болевое ощущение (с 160 000 кд/ м 2). Оптимальная яркость рабочих поверхностей - несколько сот кд/ м 2 . Допустимая яркость источников освещения, находящихся в поле зрения человека, желательна не более 1000-2000 кд/ м 2 , а яркость источников, редко попадающих в поле зрения человека, не более 3000-5000 кд/ м 2

Освещение должно быть равномерным и не создавать теней . Если в поле зрения человека часто меняется яркость, то наступает утомление мышц глаза, принимающих участие в адаптации (сужение и расширение зрачка) и синхронно с ней происходящей аккомодации (изменение кривизны хрусталика). Равномерной должна быть освещенность по помещению и на рабочем месте. На расстоянии 5 м пола помещения отношение наибольшей освещенности к наименьшей не должно превышать 3:1, на расстоянии 0,75 м рабочего места - не больше 2:1. Яркость двух соседних поверхностей (например, тетрадь - парта, школьная доска - стена, рана - операционное белье) не должна отличаться больше, чем 2:1-3:1.

Освещенность, создаваемая общим освещением, должна быть не менее 10% величины, нормируемой при комбинированном, но не менее 50 лк при лампах накаливания и 150 лк при люминесцентных лампах.

Естественное освещение. Солнце создает освещенность вне помещений обычно порядка де­сятков тысяч люкс. Естественное освещение помещений зависит от светового климата местности, ориентации окон зданий, наличия затеняющих объектов (здания, деревья), устройства и размеров окон, ширины межоконных простенков, отражающей способности стен, потолка, пола, чистоты стекол и др.

Для хорошего дневного освещения площадь окон должна соответствовать площади помещений. Поэтому распространенным способом оценки естественного освещения помещений является геометрический, при котором вычисляют так называемый световой коэффициент , т. е. отношение застекленной площади окон к площади пола. Чем больше величина светового коэффициента, тем лучше освещение. Для жилых помещений световой коэффициент должен быть не меньше 1/8-1/10, для классов и больничных палат 1/5- 1/6, для операционных 1/4-1/5, для подсобных помещений 1/10-1/12.

Оценка естественного освещения только по световому коэффициенту может оказаться неточной, так как на освещенность оказывает влияние наклон световых лучей к освещаемой поверхности (угол падения лучей). В том случае если из-за противостоящего здания или деревьев в комнату попадает не прямой солнечный свет, а только отраженные лучи, их спектр лишен коротковолновой, самой эффективной в биологическом отношении части – ультрафиолетовых лучей. Угол, в пределах которого в определенную точку помещения попадают прямые лучи с небосвода, носит название угла отверстия.

Угол падения образован двумя линиями, одна из которых идет от верхнего края окна к точке, где определяются условия освещения, вторая – линия на горизонтальной плоскости, соединяющая точку измерения со стеной, на которой расположено окно.

Угол отверстия образуется двумя линиями, идущими от рабочего места: одна – к верхнему краю окна, другая – к самой верхней точке противостоящего здания или какого-либо ограждения (забор, деревья и т.п.). Угол падения должен быть не менее 27º, а угол отверстия – не менее 5 º. Освещенность у внутренней стены помещения зависит также от глубины помещения, в связи с чем для оценки условий дневного освещения определяют также коэффициент заглубления - отношение расстояния от верхнего края окна до пола к глубине комнаты. Коэффициент заглубления должен быть не менее 1:2.

Ни один из геометрических показателей не отражает полноту влияния на естественное освещение всех факторов. Влияние всех факторов учитывается светоте­ническми показателем- коэффициентом естественной освещенности (КЕО). КЕО = Е п: Е 0 *100%, где Е п - освещенность (в лк) точки, находящейся внутри помещения в 1 м от стены, противоположной окну, : Е 0 - освещенность (в лк) точки, расположенной вне помещения, при условии ее освещения рассеянным светом (сплошная облачность) всего небосвода. Таким образом, КЕО определяется как отношение освещенности внутри помещения к одновременной освещенности вне помещения, выраженное в процентах.

Для жилых помещений КЕО должен быть не менее 0,5%, для больничных палат- не менее 1%, для школьных классов- не менее 1,5%, для операционных - не менее 2,5%.

Искусственное освещение должно отвечать следующим требованиям: быть достаточно интенсивным, равномерным; обеспечивать правильное тенеобразование; не ослеплять и не искажать цвета: не нагревать; по спектральному составу приближаться к дневному.

Существует две системы искусственного освещения: общее и комбинированное , когда общее дополняют местным, концентрирующим свет непосредственно на рабочих местах..

Основными источниками искусственного освещения являются лампы накаливания и люминесцентные. Лампа накаливания- - удобный и без­отказный источник света. Одними из ее недостатков являются небольшая светоотдача, преобладание в спектре желтых и красных лучей и меньшее содержание синего и фиолетового. Хотя в психофизиологическом отношении такой спектральный состав делает излучение приятным, теплым. В отношении зрительной работы свет лампы накаливания уступает дневному лишь при необходимости рассматривания очень мелких деталей. Он непригоден в тех случаях, когда требуется хорошее цветоразличение. Поскольку поверхность нити накала ничтожно мала, я­кость ламп накаливания значительно превышает ту, которая слепит . Для борьбы с яркостью применяют защищающую от ослепляющего действия прямых лучей света осветительную арматуру и подвешивают светильники вне поля зрения людей.

Различают осветительную арматуру прямого света, отраженного, полуотраженного и рассеянного . Арматура прямого света направляет свыше 90% света лампы на освещаемое место, обеспечивая его высокую освещенность. В то же время создается значительный контраст между освещенными и неосвещенными участками помещения. Образуются резкие тени, и не исключено ослепляющее действие. Эта арматура применяется для освещения вспомогательных помещений и санитарных узлов. Арматура отраженного света характеризуется тем, что лучи от лампы направляются на потолок и на верхнюю часть стен. Отсюда они отражаются и равномерно, без образования теней, распределяются по помещению, освещая его мягким рассеянным светом. Этот вид арматуры создает наиболее приемлемое с ги­гиенической точки зрения освещение, но оно не экономично, так как при этом теряется свыше 50% света. Поэтому для освещения жилищ, классов, палат часто применяют более экономную арматуру полуотраженного и рассеянного света. При этом часть лучей освещает помещение, пройдя через молочное или матовое стекло, а часть - после отражения от потолка и стен. Подобная арматура создает удовлетворительные условия освещения, она не слепит глаза и при ней не образуется резких теней.

Люминесцентные лампы отвечают большинству требований, приведенных выше. Люминесцентная лампа представляет собой трубку из обычного стекла, внутренняя поверхность которой покрыта люминофором. Трубка заполнена парами ртути, с обеих концов ее впаяны электроды. При включении лампы в электрическую сеть между электродами возникает электрический ток («газовый разряд»), генерирующий ультрафиолетовое излучение. Под воздействием ультрафиолетовых лучей начинает светиться люминофор. Путем подбора люминофоров изготавливают люминесцентные лампы с различным спектром видимого излучения. Наиболее часто применяют лампы дневного света (ЛД), лампы белого света (ЛБ) и тепло-белого света (ЛТБ). Спектр излучения лампы ЛД приближается к спектру естественного освещения помещений северной ориентации. При нем глаза утомляются наименьше даже при рассматривании деталей небольшого размера. Лампа ЛД незаменима в помещениях, где требуется правильное цветоразличение. Недостатком лампы является то, что кожа лица людей выглядит при этом свете, богатом голубыми лучами, нездоровой, цианотичной, из-за чего эти светильники не применяют в больницах, школьных классах и ряде подобных помещений. По сравнению с лампами ЛД спектр ламп ЛБ богаче желтыми лучами. При освеще­нии этими лампами сохраняется высокая работоспособность глаза и лучше выглядит цвет кожи лица. Поэтому лампы ЛБ применяют в школах, аудиториях, жилищах, палатах больниц и т. п. Спектр ламп ЛТБ богаче желтыми и розовыми лучами, что несколько снижает работоспособность глаза, но значительно оживляет цвет кожи лица. Эти лампы применяют для освещения вокзалов, вестибюлей ки­нотеатров, помещений метро и т. п.

Разнообразие спектра является одним из гигиенических п реимуществ этих ламп. Светоотдача люминесцентных ламп в 3-4 раза больше ламп накаливания (с 1 Вт 30-80 лм), поэтому они экономичней . Яркость люминесцентных ламп 4000- 8000 кд/м 2 , т. е. выше допустимой. Поэтому и их применяют с защитной арматурой. При многочисленных сравнительных испытаниях с лампами накаливания на производстве, в школах, аудиториях объективные показатели, характеризующие состояние нервной системы, утомление глаза, работоспособность, почти всегда свидетельствовали о гигиеническом преимуществе люминесцентных ламп. Однако для этого требуется квалифицированное применение их. Необходим правильный выбор ламп по спектру в зависимости от назначения помещения. Так как чувствительность зрения к свету люминесцентных ламп, так же, как и к дневному свету, ниже, чем к свету ламп накаливания, нормы освещенности для них устанавливают в 2-3 раза выше, чем для ламп накаливания (табл. 7.6.).

Если при люминесцентных лампах освещенность ниже 75-150 лк, то наблюдается «сумеречный эффект», т.е. освещенность воспринимается как недостаточная даже при рассматривании крупных деталей. Поэтому при люминесцентных лампах освещенность должна быть не ниже 75-150 лк.