Приборы для измерения углов и конусов. Средства измерения углов и конусов. Угловые меры и угольники. Угломеры. Механический измеритель углов – что это

Как пользоваться угломером самого простого вида, мы знаем еще со школы, но видов, областей назначения и конструкций этого инструмента намного больше, иногда принцип его действия даже не совсем понятен, хотя задача все та же – замерить угол наклона в плоскости или пространстве. Постараемся устранить пробелы в ходе прочтения данной статьи.

Угломер – устройство и назначение

Данный инструмент, как не сложно догадаться, существует для измерения углов, причем это могут быть не только плоскостные изображения, как в школьных тетрадках или производственных чертежах, но и наклон деталей по отношению друг к другу в каких-либо конструкциях. Имеется возможность измерять показатели даже в удаленных предметах, для чего успешно применяется оптический вариант прибора.

Мы привыкли, что для надежности лучше осязать то, что измеряем, то есть предназначенный для операции прибор прикладывается к исследуемой поверхности, но контактный способ хоть и превалирует, но является не единственным. Оптический метод позволяет вычислять углы, находясь относительно далеко от исследуемых объектов . Результат измерений всегда представлен в хорошо знакомых нам градусах, которые приходится считать самостоятельно или наблюдать на дисплеях, которыми обладает, например, угломер цифровой. Отличаются инструменты и шкалой, с которой следует снимать показания.

Она может быть линейчатой, а также включать в себя еще дополнительную круговую составляющую, ориентирование по которой облегчается с помощью стрелки. Шкала бывает представлена нониусом, этот отдельный вид приборов мы рассмотрим подробнее чуть ниже, а самой передовой можно считать электронную.

Устройство самого простого измерителя углов довольно примитивное: две линейки со шкалами, которые выставляются по углу и дают искомое значение. Другие же более замысловатые. Перед работой замерщик фиксирует некоторые углы прибора с известным значением, своего рода настройка инструмента. А вот, например, столярный угломер уже продается с намертво зафиксированным и измеренным углом, что удобно для быстрой оценки наклона поверхности, с которой работает мастер.

Виды инструмента для измерения углов

Самый актуальный для нас с вами – угломер строительный. Без него и его верных спутников (отвес и ) не обошлась бы ни одна площадка. Все оборудование устанавливается с четкой оценкой местности в трех измерениях, все монтажные работы, любая разметка – все это требует правильного ориентирования в пространстве, а человеческий глаз далеко не совершенен, поэтому даже горизонтальность плоскости взвесить тяжело, а что уже говорить об углах.

Угломер слесарный и столярный все время сопровождают специалистов, потому что их изделия служат потом в различных областях деятельности человека, и малейшие отклонения в осях или углах иногда могут стоить жизни. Для составления достоверных топографических схем также нельзя пользоваться нашим природным оптическим прибором, собственно, как невозможно им оценить и тонкие медицинские показатели. Поэтому топографу и ортопеду без такого инструмента работать нельзя.

Романтическая профессия астронома также не обходится без такого прибора. Школьники осваивают первые азы геометрии с таким приспособлением в руках, чаще это обычные угольники с уже фиксированными углами известной величины. Инженер, горняк, мореход – профессии, которые используют почти всю линейку возможных приборов для измерения углов. В каждой области нужны такие данные с различной степенью точности и достоверности. Все чаще применение находит высокотехнологичный лазерный угломер, особенно актуально это в военной промышленности (прицелы).

Если сферы применения почти безграничны, то классификация инструмента по устройству несколько скромнее: оптика, механика, лазер и электроника. Уже внутри этой классификации можно найти множество других параметров, которые влияют на выбор заказчика, например, допустимые погрешности. Также влияют на цену товара мобильность, функциональность, размеры самого прибора, его комплектация.

Механический измеритель углов – что это?

Привычным и доступным пока что считается механический прибор. Такой угломер универсальный, потому что позволяет приладить его практически к любой поверхности и снять показания внешнего и внутреннего угла. Бывает оптического типа и нониусного. Второй более распространен и удобен для контактного измерения. Нониус – это вспомогательная уточняющая шкала, которая комбинируется с основной и повышает точность значения на порядки. Ее роль может быть вам знакома из обращения со штангенциркулем, и другими механическими измерительными приборами.

При покупке прибора важно поинтересоваться, по какому нормативному документу (стандарту) изготавливался товар, потому что критическим параметром будет точность, а если нет никакого регламентирующего документа для ее проверки и настройки, то ваши измерения могут быть далеки от истины. Поэтому лучше всего избегать китайских производителей, которые редко настолько серьезно подходят к калибровке, но зато дешевле любых российских или европейских аналогов.

Механические виды приборов обладают самым замысловатым строением. Нониусный тип включает в себя следующие узлы: корпус, к которому прикреплен диск с помощью гайки, основание с основной шкалой и нониусом, а также имеется линейка и хвостовик, передвигающийся по ней в процессе фиксирования значения углов. Оптический вид состоит из корпуса, в котором находится диск со шкалой, к нему прикреплена неподвижная линейка, а на диске установлена лупа, подвижная линейка и ее рычаг. Под диском есть пластинка с указателем, который видим через окуляр. Вся эта система приводится в движение, потом фиксируется в выбранном месте, а через лупу снимается показание.

Как пользоваться угломером – примерный принцип действий

Чем более автоматизированный прибор, тем меньше нам нужно совершать работы. Например, угломер электронный требует лишь зафиксировать линейки в нужном положении и выдает результат на дисплей. Оптика уже потребует установки инструмента на ровную поверхность, чтобы избежать колебаний относительно горизонта. А механика потребует еще и минимального понимания самого устройства, чтобы найти способ правильно снять показания. Поэтому разберем самые капризные случаи, которые нас могут ожидать.

Нониусный прибор

На искомый угол на плоскости прикладывается прибор, его линейка и корпус должны совпасть со сторонами угла. Теперь считаем градусы по основной шкале, пока не достигнем уровня нуля на нониусе, так находят градусы. Теперь двигаемся по шкале нониуса, пока не найдем деление, которое совпадает с делением основной шкалы, как бы продлевая его в одну прямую. Так определяются минуты. В зависимости от точности прибора значения шкал могут отличаться, изучайте паспорт своего инструмента.

Оптический прибор

Подвижную линейку следует перемещать так, чтобы она и ее неподвижная партнерша образовали искомый угол. Затем фиксируется зажимное кольцо. Теперь следует вспомнить, что диск и лупа данного механизма зависимы в своем положении от подвижной линейки, значит, они и составляют своеобразный индикатор искомого значения. Через лупу можно наблюдать разметку на диске, которую соотносят с отметкой на пластине, и вычисляют показания прибора.

Существует несколько способов измерения горизонтальных углов: способ приемов, способ круговых приемов, способ повторений, способ всех комбинаций. Наиболее простым и распространенным является способ приемов. Способ круговых приемов используется тогда, когда на одной точке требуется измерить несколько углов. Способ повторений рекомендуется использовать, если точность теодолита недостаточна и требуется измерить угол с более высокой точностью. Измерение горизонтального угла способом повторений может быть выполнено только повторительным теодолитом. Способ комбинаций характеризуется трудоемкостью и применяется только при высокоточных измерениях нескольких углов в одной точке, когда ошибки измерения углов должны находиться в пределах 1".

Измерение угла способом приемов состоит в его измерении двумя полуприемами. Каждый полуприем заключается в выполнении следующих действий:

  • 1) наведение вертикальной нити сетки нитей на правую визирную цель;
  • 2) взятие отсчета я, по горизонтальному кругу;
  • 3) запись в журнал отсчета я,;
  • 4) наведение вертикальной нити сетки нитей на левую визирную цель;
  • 5) взятие отсчета Ь ] по горизонтальному кругу;
  • 6) запись в журнал отсчета Ь{,
  • 7) вычисление значения горизонтального угла = а { - Ь { .

Визирные цели представляют собой

Вид сверху

Рис. 5.11. Визирный цилиндр

предмет или устройство, на которое наводят зрительную трубу. При наблюдении на пункты триангуляции визирной целью обычно является малофазный визирный цилиндр (рис. 5.11) геодезического знака. На данном рисунке представлено изображение, видимое в поле зрения трубы теодолита с прямым изображением. Вертикальную нить сетки нитей при этом наводят на воображаемую ось симметрии визирного цилиндра. При наблюдении на точки теодолитного хода в качестве визирных целей используют вертикально устанавливаемые на этих точках вехи или шпильки из комплекта мерного прибора для измерения расстояний.

После измерения угла первым полуприемом изменяют положение лимба. Изменить положение лимба горизонтального угломерного круга можно двумя способами:

  • 1) сделать 2-3 оборота наводящим винтом лимба, положение лимба при этом может измениться на 2-3°;
  • 2) при закрепленном закрепительном винте алидады открепить закрепительный винт лимба, повернуть лимб на произвольный угол (рекомендуется примерно на 90°), закрепить закрепительный винт лимба.

После выполнения описанных действий трубу переводят через зенит и выполняют измерение угла вторым полуприемом (при другом положении вертикального круга). Вычисление значения горизонтального угла из второго полуприема осуществляется аналогичным образом:

Р2 = я2 - Ь2.

Таким образом, угол будет измерен дважды. Результаты измерения угла двумя полуприемами соответственно равны р| и р 2 . Р ас_

хождение значений угла из двух полуприемов не должно превышать удвоенной погрешности измерения угла данным теодолитом, т.е. должно выполняться условие

где t - среднеквадратическая погрешность измерения угла одним приемом. Для теодолита 2Т30 данный допуск составляет Г.

Измерение углов двумя полуприемами осуществляется в целях:

  • 1) контроля измерений ;
  • 2) повышения точности измерений: ошибка среднего значения из нескольких измерений всегда меньше ошибки отдельного измерения.

Результаты измерения горизонтальных углов фиксируются в соответствующем журнале (табл. 5.1).

Таблица 5.1

Журнал измерения горизонтальных углов

по горизонтальному

Значение

в полуприеме

значение

При измерении горизонтальных углов важно понимать различие между наводящими винтами лимба и алидады. При вращении любого из этих винтов зрительная труба поворачивается в горизонтальной плоскости, или, как говорят, «по горизонту». Хотя со стороны действия наблюдателя при этом кажутся совершенно одинаковыми, различие между ними принципиальное. Если лимб закреплен и наведение зрительной трубы на различные точки осуществляется только с помощью винтов алидады, то отсчеты будут различаться, так как лимб при этом остается неподвижным. Если действовать противоположным образом, т.е. закрепить алидаду, и при наведении трубы на различные точки использовать только винты лимба, отсчет на любые точки будет один и тот же, так как лимб и находящаяся на нем алидада со зрительной трубой будут поворачиваться вместе с лимбом как единое целое. Отсюда следует, что если при измерении горизонтального угла трубу навели на правую точку и взяли отсчет, а при наведении на левую точку случайным образом повернули наводящий или закрепительный винт лимба, то дальнейшие действия выполнять не имеет смысла, так как нулевой диаметр горизонтального круга изменит свое положение. И в таком случае необходимо начинать выполнение полуприема заново. Путаница между винтами лимба и винтами алидады является наиболее распространенной ошибкой начинающих изучение теодолита.

Если точность измерения углов одним приемом с помощью имеющегося теодолита несколько ниже требуемой, то возможны два варианта действий:

  • воспользоваться теодолитом более высокой точности;
  • измерять угол не одним приемом, а п приемами. Тогда в качестве окончательного значения угла берется среднее из п приемов, среднеквадратическая погрешность М измерения угла при этом будет равна

где т - среднеквадратическая погрешность измерения угла одним приемом.

Следует обратить внимание, что погрешность многократного измерения угла убывает пропорционально квадратному корню из числа измерений. Например, чтобы уменьшить ошибку измерения угла в 3 раза, необходимо измерить угол девятью приемами. Поэтому многократное измерение угла в целях повышения точности измерений оправдано только тогда, когда требуемая точность незначительно отличается от точности используемого прибора.

Существуют следующие методы измерений и контроля углов и конусов:


- метод сравнения с жесткими контрольными инструментами - угловыми мерами, угольниками, конусными калибрами и шаблонами;


- абсолютный гониометрический метод , основанный на использовании приборов с угломерной шкалой (нониусные, индикаторные и оптические угломеры);


- косвенный тригонометрический метод , основанный на определении линейных размеров, связанных с измеряемым углом тригонометрической функцией (синусные линейки, конусомеры).

Таблица 2.14. Средства измерений и контроля углов и конусов

Название

Точность измерений

Пределы измерений

Назначение

Синусная линейка (ГОСТ 4046 - 80)

±1,5" для угла 4°

Расстояние между осями 100... 150 мм. Измерение наружных углов 0...45°

Измерение углов калибров, линеек и точных деталей

Линейка поверочная (ГОСТ 8026-92)

Контроль отклонения деталей от плоскостности, прямолинейности, при разметке ИТ.Д.

Уровни (ГОСТ 9392-89, ГОСТ 11196-74)

0,02...0,2 мм/м

Цена деления 0,01...0,15 мм/м. Рабочая длина 100...250 мм

Измерение малых угловых отклонений от горизонтального и вертикального положения приборов, устройств, элементов конструкций и т. д.

Мера угловая призматическая (плитка) (ГОСТ 2875-88)

Тип I: 1"... 9° Тип II: 10...75°50"

Проверка угломерных средств измерений, точной разметки, ! точного измерения углов

Угломер с нониусом типов УН и УМ (ГОСТ 5378-88)

0... 180° (наружных углов),

40... 180° (внутренних углов)

Тип УН для измерения наружных и внутренних углов, тип УМ - для наружных

Угольники поверочные 90 (ГОСТ 3749-77)

Проверка перпендикулярно сти

Краткая характеристика средств измерений и контроля углов и конусов представлена в табл. 2.14. Рассмотрим некоторые из них.


Угловые меры и угольники .


Меры угловые призматические предназначены для передачи единицы плоского утла от эталонов к изделию. Они чаще всего применяются при лекальных работах, а также для поверки и калибровки средств измерений и контроля. Угловые меры (рис. 2.51) могут быть однозначными и многозначными, они представляют собой геометрическую фигуру в виде прямой призмы с доведенными поверхностями, являющимися сторонами рабочего утла.


В соответствии с ГОСТ 2875 - 88 призматические угловые меры изготавливают пяти типов: I, II, III, IV, V с рабочими углами α, β, γ, δ.


Плитки типа I имеют следующие номинальные размеры угла а: от 1 до 29" с градацией через 2" и от 1 по 9° с градацией через Г. Плитки типа II имеют следующие номинальные размеры угла α: от 10 до 75°50" с градацией значений угла 15", Т, 10", 1°, 15°10". Соответствующим ГОСТом установлены номинальные размеры рабочих углов α, β, γ, δ для плиток типа III, призм типа IV и призм типа V.


По точности изготовления различают угловые меры трех классов: 0, 1,2. Допускаемые отклонения рабочих углов, а также допускаемые отклонения от плоскостности и расположения измерительных поверхностей регламентируются в зависимости от типа мер и класса точности. Так, допускаемые отклонения рабочих углов находятся в пределах от +3 до +5" для мер 0-го класса и в пределах ±30" - для мер 2-го класса. Допускаемые отклонения от плоскостности установлены в пределах от 0,10 до 0,30 мкм.


Угловые меры комплектуются в наборы и могут поставляться в виде отдельных мер всех классов.


Рабочие поверхности угловых мер обладают свойством притираемости, т. е. из них могут создаваться блоки. С этой целью, а также для получения внутренних углов предусмотрены специальные принадлежности и лекальные линейки, которые комплектуются в набор принадлежностей. При составлении блоков угловых мер необходимо соблюдать те же правила, что и при составлении блоков из плоскопараллельных концевых мер длины (см. подразд. 2.2.1).


Это угловая мера с рабочим углом 90°. При контроле с помощью угольников оценивают величину просвета между угольником и контролируемой деталью. Просвет определяют на глаз или сравнением с просветом, созданным при помощи концевых мер длины и лекальной линейкой, а также набором щупов.



Рис. 2.51.


В соответствии с ГОСТ 3749 - 77 угольники различаются: по конструктивным признакам - шесть типов (рис. 2.52), по точности- три класса (0, 1, 2). Лекальные угольники (типы УЛ, УЛП, УЛШ, УЛЦ) изготавливают закаленными классов 0 и 1 и применяют для лекальных и инструментальны работ (рис. 2.52, а, б). Слесарные угольники типов УП и УШ (рис. 2.52, в, г) применяют для нормальных работ в машиностроении и приборостроении.





Рис. 2.52. :


а и б - лекальные угольники; в и г - слесарные угольники


Допускаемые отклонения угольников установлены в зависимости от их класса и высоты Н. Так, для угольника 1-го класса с высотой 160 мм отклонение от перпендикулярности измерительных поверхностей к опорам не должно превышать 7 мкм, отклонение от плосткостности и прямолинейности измерительных поверхностей должно находиться в пределах 3 мкм. Для угольника с высотой 400 мм эти значения составляют соответственно 12 и 5 мкм, а для аналогичных угольников 2-го класса 30 и 10 мкм.



Рис. 2.53. :


а и б - угломеры типа УН; в - порядок отсчета по нониусу; гид- угломеры типа УМ; 1 - полудиск; 2 - ось; 3 - винт зажима угольника; 4 - добавочный угольник; 5 - подвижная линейка; 6 - неподвижная линейка; 7 и 8 - устройства для микрометрической подачи; 9 - стопорный винт; 10 - нониус



Рис. 2.54. :


а - тип I; б - тип II; в - тип III: 7 - стол; 2 - роликовые опоры; 3 - боковые планки; 4 - резьбовые отверстия; 5 - передняя планка


Угломерные приборы .


Эти приборы основаны на прямом измерении углов с помощью угломерной шкалы. Наиболее известными средствами измерений из этого ряда являются утломеры с нониусом, оптические делительные головки (см. подразд. 2.2.4), оптические утломеры, уровни, гониометры и др.


(ГОСТ 5378 - 88) предназначены для измерения угловых размеров и разметки деталей. Угломеры выпускаются двух типов. Угломеры типа УН (рис. 2.53, а, б) предназначены для измерения наружных углов от 0 до 180°, внутренних углов от 40 до 180° и имеют величину отсчета по нониусу 2 и 5". Угломер состоит из следующих основных деталей: полудиска (сектора) 1, неподвижной линейки 6, подвижной линейки 5, зажимного винта угольника 3, нониуса 10, стопорного винта 9, устройств для микрометрической подачи 7 и 8, добавочного угольника 4, винта зажима добавочного угольника 3. Для измерения углов от нуля до 90° на неподвижную линейку 6 устанавливают добавочный угольник 4. Измерение углов от 90 до 180° производится без добавочного угольника 4. Порядок отсчета на угловом нониусе угломера аналогичен отсчету на линейном нониусе штангенциркуля (рис. 2.53, в).


Угломеры типа УМ предназначены для измерения наружных углов от 0 до 180° и имеют величину отсчета по нониусу 2 и 5" (рис. 2.53, г) и 15" (рис. 2.53, д). Предел допускаемой погрешности угломера равен величине отсчета по нониусу.





Рис. 2.55. :


1 - измеряемый конус; 2 - индикатор; 3- стол; 4 - блок концевых мер длины; 5 - поверочная плита

Для косвенных измерений углов при контрольно-измерительных работах, а также в процессе механической обработки применяют синусные линейки. Линейки выпускают трех типов:


Тип I (рис. 2.54, а) без опорной плиты с одним наклоном;


Тип II (рис. 2.54, б) с опорной плитой с одним наклоном;


Тип III (рис. 2.54, в) с двумя опорными плитами с двойным наклоном.


Синусная линейка типа I представляет собой стол 1, установленный на двух роликовых опорах 2. Боковые планки 3 и передняя планка 5 служат упорами для деталей, которые прикрепляются к поверхности стола прижимами с помощью резьбовых отверстий 4.


Синусные линейки выпускаются классов точности 1 и 2. Расстояние L между осями роликов может составлять 100, 200, 300 и 500 мм.


Измерение углов конусов на синусной линейке представлено на рис. 2.55. Стол 3, на котором закреплен измеряемый конус 1, устанавливают на требуемый номинальный угол а к плоскости поверочной плиты 5 с помощью блока концевых мер длины 4. Размер блока концевых мер определяют по формуле



где h - размер установочного блока концевых мер, мм; L - расстояние между осями роликов линейки, мм; α - угол поворота линейки.


Индикатором 2, установленным на штативе, определяют разность положений δh поверхности конуса на длине 1. Отклонение угла, ", при вершине конуса рассчитывают по формуле


δα = 2*10 5 δh/l.


Действительный угол проверяемого конуса ак определяют по формуле


αк = α ± δα ± Δл,


где Δл - погрешность измерения синусной линейкой, которая зависит от угла α, погрешности блока концевых мер длины и погрешности расстояния между осями роликов L.


Так, погрешности измерения углов синусными линейками с расстоянием между осями роликов 200 мм для измеряемых углов до 15 ° составляют 3", при измерении углов до 45° - 10", при измерении углов до 600 - 17", при измерении углов до 80° - 52".


Пределы допускаемой погрешности линеек при установке их на углы до 45 ° не должны превышать для 1-го класса ±10", а для 2-го класса - ±15".

Углы изделий измеряют тремя основными методами: методом сравнения с жёсткими контрольными инструментами – угловыми мерами, угольниками, конусными калибрами и шаблонами; абсолютным гониометрическим методом, основанным на использовании приборов с угломерной шкалой; косвенным тригонометрическим методом, который заключается в определении линейных размеров, связанных с измеряемым углом тригонометрической функцией.

К универсальным средствам измерения углов относятся нониусные, оптические и индикаторные угломеры, а также другие приборы. Углы наклона поверхностей изделий измеряют уровнями и оптическими квадратами.

Конец работы -

Эта тема принадлежит разделу:

Метрология, стандартизация и сертификация

Федеральное государственное бюджетное образовательное учреждение.. высшего профессионального образования.. пермский национальный исследовательский политехнический университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Метрология, стандартизация и сертификация
Методические указания по организации самостоятельной работы студентов Направления: 150900.62 «Технология, оборудование и автоматизация машинострои

Перечень лабораторных занятий
1. Измерение деталей с применением плоскопараллельных концевых мер длины; 2. Измерение размеров деталей с применением штангенинструментов; 3. Определение шероховатости поверхности

Развитие и роль метрологии, стандартизации и сертификации в обеспечении высокого качества продукции
Переход России к рыночной экономике определил новые условия для деятельности отечественных фирм, предприятий и организаций не только на внутреннем рынке, но и на внешнем. Право предприятий

Метрологическое обеспечение. Технические основы метрологического обеспечения
Метрологическое обеспечение– это комплекс работ, направленных на обеспечение единства измерений, при котором результаты измерений выражены в узаконенных единицах величин и погрешно

Основные виды работ по метрологическому обеспечению
1)Проведение анализа состояния с измерением. Постоянный анализ – основной вид работ метрологического обеспечения, т. к. изготовитель должен знать, с какой достоверностью выявляются значени

Единство, достоверность, точность измерений. Единообразие средств измерений
Единство измерений – состояние измерений, при котором их результаты выражены в узаконенных единицах, а погрешности известны с заданной вероятностью и не выходят за установленные пр

Государственный метрологический контроль. Утверждение типа средств измерений
Закон «Об обеспечении единства измерений» устанавливает следующие виды государственного метрологического контроля: 1) утверждение типа средств измерений; 2) поверка средств измере

Поверка средств измерений
Поверка средств измерений – совокупность операций, выполняемых органами Государственной метрологической службы или другими уполномоченными на то органами и организациями с целью определения и подтв

Калибровка средств измерений. Калибровочная служба России (РСК)
Калибровка СИ – это совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодности к применению ср

Государственный метрологический надзор (ГМН)
ГМН – процедуры проверок соблюдения метрологических правил и норм, требований закона, нормативных документов системы ГСИ, принятых в связи с введением Закона, а также действующих ранее и противореч

Метрологический контроль и надзор на предприятиях и в организациях (у юридических лиц)
В соответствии с законом «Об обеспечении единства измерений» на предприятиях, организациях, учреждениях, являющихся юридическими лицами, создаются в необходимых случаях метрологические службы для в

Физические величины как объект измерений
Объектом измерений являются физические величины, которые принято делить на основные и производные. Основные величиныне зависимы друг от друга, но они могут служить основой

Виды средств измерений
Для практического измерения единицы величины применяются технические средства, которые имеют нормированные погрешности и называются средствами измерений. К средствам измерений отно

Измерение. Виды измерений
Измерение –Совокупность операций, выполняемых с помощью технического средства, хранящего единицу величины и позволяющего сопоставить с нею измеряемую величину. Полученное

Основные параметры средств измерений
Длина деления шкалы –расстояние между осями (центрами) двух соседних отметок шкалы, измеренное вдоль воображаемой линии, проходящей через середины самых коротких отметок шкалы.

Погрешности измерения
Под погрешностью измерения подразумевают отклонение результата измерения от истинного значения измеряемой величины. Точность измерений –качество измерения

Выбор средств измерений
При выборе средств измерений учитываются их метрологические параметры, эксплуатационные факторы (организационная форма контроля, особенности конструкции и размеры изделий, производительность оборуд

Метрологические показатели средств измерений
Меры характеризуются номинальным и действительным значениями. Номинальное значение меры –значение величины, указанное на мере или приписываемое ей. Действ

Штриховые меры длины. Плоскопараллельные концевые меры длины
Штриховые меры длины изготовляют в виде брусков четырёх типов с различными формами поперечного сечения. Однозначные меры имеют два штриха на краях бруса. Шкалы многозначных мер мог

Угловые призматические меры
Угловые призматические меры являются наиболее точным средством измерения углов в машиностроении. Они предназначены для передачи размера единицы плоского угла от эталонов образцовым и рабочим угловы

Штангенинструменты
Штангенинструменты представляют собой показывающие приборы прямого действия, у которых размер изделия определяется по положению измерительной рамки, перемещающейся вдоль штанги со штриховой шкалой.

Микрометры
Микрометрические инструменты относятся к группе универсальных измерительных инструментов. Они предназначены для измерения диаметров валов и отверстий, глубин и высот деталей. Конструкция м

Калибры. Профильные шаблоны
По методу контроля калибры делят на нормальные и предельные. Нормальные калибрыкопируют размеры и форму изделий. Предельные калибрывоспроизводят

Угольники и конусные калибры
Угольники поверочные 90° предназначены для проверки и разметки прямых углов изделий, для контроля изделий при сборке или монтаже и т. п. Угольники имеют измерительные и опорные пов

Точность геометрических параметров элементов деталей
В отношении элементов деталей в машиностроении нормирование точности, т.е. установление требований о степени приближения к заданному значению, состоянию или положению можно и нужно рассматривать в

Понятие о размере. Размеры номинальный, действительный, истинный, нормальный. Ряды нормальных линейных размеров
Размер – числовое значение линейной величины (диаметра, длины и т. п.) в выбранных единицах измерения. Из этого определения следует, что за размер принимается расстояние

Предельные размеры. Отклонения. Обозначения отклонений
Предельные размеры – это два предельно допустимых размера элемента, между которыми должен находиться (или которым может быть равен) действительный размер. Из этого следует

Система допусков и посадок. Принципы построения системы
Т. к. получить посадку (с зазором, с натягом или переходную) можно при любых соотношениях отклонений размеров элементов относительно номинального размера, поэтому с развитием различных отраслей про

Интервалы размеров
Номинальные размеры элементов деталей после их определения расчётом выбираются из рядов предпочтительных чисел, представляющих собой геометрическую прогрессию с определёнными знаменателями.

Единица допуска
При назначении допусков необходимо выбрать закономерность изменения допусков с учётом значения номинального размера. Поэтому в системе имеется так называемая единица допуска, которая является как б

Квалитеты размеров
В зависимости от места использования элементов деталей, имеющих одинаковый номинальный размер, к ним могут предъявляться различные требования в отношении точности размера.

Образование поля допуска. Основные отклонения
В ЕСДП для указания положения поля допуска относительно номинала нормируются значения основных отклонений, которые обозначаются латинскими буквами прописными (большими) для отверстия и строчными (м

Обозначение допусков и посадок на чертежах
Поле допуска с внутренней сопрягаемой поверхностью (отверстие) всегда указывается в числителе, а поле допуска с внешней сопрягаемой поверхностью (вал) – в знаменателе, например: 20H7/g6,

Нормальная температура
Температурный режим – один из важнейших элементов системы допусков и посадок; с ним связано суждение о годности изделий с точки зрения соответствия его размеров размерам, заданным чертежом, а такж

Задачи, решаемые при обеспечении точности размерных цепей. Проверочная
Задача 1. Определение предельных размеров замыкающего звена размерной цепи (точности этого звена), когда известны предельные размеры остальных составляющих звеньев (рис.2: А

Задачи, решаемые при обеспечении точности размерных цепей. Проектировочная
Известны допуск замыкающего звена (исходного звена) и номинальные размеры составляющих звеньев. Требуется определить допуски составляющих звеньев. Способ 1

Параметры для нормирования и обозначения шероховатости поверхности
Способы нормирования шероховатости поверхности установлены в ГОСТ 2789 – 73 и распространяются на поверхности изделий, изготовленных из любых материалов и любыми методами, кроме ворсистых поверхнос

Выбор шероховатости поверхности
Выбор параметров для нормирования шероховатости должен производиться с учётом назначения и эксплуатационных свойств поверхности. Основным во всех случаях является нормирование высотных параметров.

Измерение отклонений формы
Отклонения формы определяют с помощью универсальных и специальных средств измерения. При этом используют поверочные чугунные плиты и плиты из твёрдых каменных пород, поверочные линейки, угольники,

Измерение шероховатости поверхности
Качественный контроль шероховатости поверхности осуществляют путём сравнения с образцами или образцовыми деталями визуально или на ощупь. ГОСТ 9378-75 устанавливает образцы шерохов

Цели и задачи стандартизации
Стандартизация –это деятельность, направленная на разработку и установление требований, норм, правил, характеристик как обязательных для выполнения, так и рекомендуемых, обеспечива

Категории стандартов. Стандарты предприятий. Стандарты общественных объединений. Технические условия
Стандарты предприятий.разрабатываются и принимаются самим предприятием. Объектами стандартизации в этом случае обычно являются составляющие организации и управления производством,

Государственные органы и службы стандартизации, их задачи и направления работы. Национальный орган по стандартизации. Технические комитеты
Согласно Руководству 2 ИСО/МЭК деятельность по стандартизации осуществляют соответствующие органы и организации. Орган рассматривается как юридическая или административная единица, имеющая конкретн

Технические комитеты по стандартизации
Постоянными рабочими органами по стандартизации являются технические комитеты (ТК), но это не исключает разработку нормативных документов предприятиями, общественными объединениями, другими субъект

Государственный контроль и надзор за соблюдением требований государственных стандартов
Государственный контроль и надзор за соблюдением обязательных требований государственных стандартов осуществляются в России на основании Закона РФ «О стандартизации» и составляют часть государствен

Правовые основы стандартизации
Правовые основы стандартизации в России установлены Законом РФ «О стандартизации». Положения Закона обязательны к выполнению всеми государственными органами управления, субъектами хозяйственной дея

Унификация и агрегатирование
Унификация.Для рационального сокращения номенклатуры изготавливаемых изделий проводят их унификацию и разрабатывают стандарты на параметрические ряды изделий, что повышает серийнос

Международная организация по стандартизации (ИСО)
Основные цели и задачи.Международная организация по стандартизации создана в 1946г. двадцатью пятью национальными организациями по стандартизации. СССР был одним из основателей орг

Организационная структура ИСО
Организационно в ИСО входят руководящие и рабочие органы. Руководящие органы: Генеральная ассамблея (высший орган), Совет, Техническое руководящее бюро. Рабочие органы – технические комитеты (ТК),

Порядок разработки международных стандартов
Непосредственную работу по созданию международных стандартов ведут технические комитеты (ТК); подкомитеты (ПК, которые могут учреждать ТК) и рабочие группы (РГ) по конкретным направлениям деятельно

Перспективные задачи ИСО
ИСО определила свои задачи до конца столетия, выделив наиболее актуальные стратегические направления работ: 1. Установление более тесных связей деятельности организации с рынком, что прежд

Основные термины и понятия
Установление соответствия заданным требованиям сопряжено с испытанием. Испытание –техническая операция, заключающаяся в определении одной или нескольких характеристик данн

Национальный орган Совет по
По сертификации │----------------→сертификации (Госстандарт России) │ │ │ │

Исполнители)
Типовая структура взаимодействия участников системы сертификации. Испытательная лабораторияосуществляет испытания конкретной продукции или конкретные виды

Схемы сертификации
Сертификация проводится по установленным в системе сертификации схемам. Схема сертификации –это состав и последовательность действий третьей стороны при оценке соответстви

Обязательная сертификация
Обязательная сертификация осуществляется на основании законов и законодательных положений и обеспечивает доказательство соответствия товара (процесса, услуги) требованиям технических регламентов, о

Добровольная сертификация
Добровольная сертификация проводится по инициативе юридических или физических лиц на договорных условиях между заявителем и органом по сертификации в системах добровольной сертификации. Допускается

Правила по проведению сертификации
Правила по проведению сертификации устанавливают общие рекомендации, которые применяются при организации и проведении работ по обязательной и добровольной сертификации. Эти правила распрос

Порядок проведения сертификации продукции
Порядок проведения сертификации в России установлен постановлением Госстандарта РФ в 1994г. по отношению к обязательной сертификации (в том числе и импортируемой продукции), но может применяться и

Обязанности и основные функции органа по сертификации
Обязанности: 1. Проведение сертификации продукции по правилам и в пределах аккредитации. 2. Выдача лицензии на применение знака соответствия обладателю сертификата. 3. Пр

Требования к персоналу органа по сертификации
1. Руководитель органа по сертификации назначается по согласованию с аккредитующим органом. 2. Орган должен иметь постоянный персонал. Условия работы персонала должны полностью исключать в

Сертификация систем обеспечения качества
Сертификация систем обеспечения качества на соответствие стандартам ИСО серии 9000 широко развита в зарубежных странах, в России этим занимаются недавно. Зарубежные специалисты считают, чт

Сертификация услуг
Основные принципы систем сертификации услуг те же, что и для систем сертификации продукции: обязательность и добровольность, условие третьей стороны, аккредитация органов по сертификации, выдача се

Задачи, решаемые при обеспечении точности размерных цепей
Задача 1. Определение предельных размеров замыкающего звена размерной цепи (точности этого звена), когда известны предельные размеры остальных составляющих звеньев

Результаты расчета замыкающего звена
Размер номинальный, мм Допуск, мм Верхнее отклонение, мм Нижнее отклонение, мм

Для проектного расчета
Звено Номинальный размер, мм Допуск размера, мм Вид звена Аδ

Результаты расчета составляющих звеньев
Звено Номинальный диаметр, мм Допуск, мм Отклонение нижнее, мм Отклонение верхнее, мм

Учебно-методические материалы
Литература основная 1. Крылова Г.Д. Основы стандартизации, сертификации, метрологии: Учебник для вузов. – М.: Аудит-ЮНИТИ.1998. 2. Лифиц И.М. Основы стандартизации, метроло

Государственный стандарт ГОСТ 10529-86 выделяет три группы теодолитов: высокоточные, точные и технические.

Высокоточные теодолиты обеспечивают измерение углов с ошибкой не более 1"; типы Т1, Т05.

Точные теодолиты обеспечивают измерение углов с ошибкой от 2" до 7"; типы Т2, Т5.

Технические теодолиты обеспечивают измерение углов с ошибкой от 10" до 30"; типы Т15, Т30.

Дополнительная буква в шифре теодолита указывает на его модификацию или конструктивное решение: А - астрономический, М - маркшейдерский, К - с компенсатором при вертикальном круге,П - труба прямого изображения (земная).

Государственным стандартом на теодолиты предусмотрена, кроме того, унификация отдельных узлов и деталей теодолитов; вторая модификация имеет цифру 2 на первой позиции шифра - 2Т2, 2Т5 и т.д., третья модификация имеет цифру 3 - 3Т2, 3Т5КП и т.д.

Перед измерением угла необходимо привести теодолит в рабочее положение, то-есть, выполнить три операции: центрирование, горизонтирование и установку зрительной трубы.

Центрирование теодолита - это установка оси вращения алидады над вершиной измеряемого угла; операция выполняется с помощью отвеса, подвешиваемого на крючок станового винта, или с помощью оптического центрира.

Горизонтирование теодолита - это установка оси вращения алидады в вертикальное положение; операция выполняется с помощью подъемных винтов и уровня при алидаде горизонтального круга.

Установка трубы - это установка трубы по глазу и по предмету; операция выполняется с помощью подвижного окулярного кольца (установка по глазу - фокусирование сетки нитей) и винта фокусировки трубы на предмет (поз.15 на рис.4.4).

Измерения угла выполняется строго по методике, соответствующей способу измерения; известно несколько способов измерения горизонтальных углов: это способ отдельного угла (способ приемов), способ круговых приемов, способ во всех комбинациях и др.

Способ отдельного угла. Измерение отдельного угла складывается из следующих действий:

наведение трубы на точку, фиксирующую направление первой стороны угла (рис.4.16), при круге лево (КЛ), взятие отсчета L1;

поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета L2,

вычисление угла при КЛ (рис.4.16):

перестановка лимба на 1o - 2o для теодолитов с односторонним отсчитыванием и на 90o - для теодолитов с двухсторонним отсчитыванием,

переведение трубы через зенит и наведение ее на точку, фиксирующую направление первой стороны угла, при круге право (КП); взятие отсчета R1,

поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета R2,

вычисление угла при КП:

при выполнении условия |вл - вп| < 1.5 * t, где t - точность теодолита, вычисление среднего значения угла:

вср = 0.5 * (вл + вп).

Измерение угла при одном положении круга (КЛ или КП) составляет один полуприем; полный цикл измерения угла при двух положениях круга составляет один прием.

Запись отсчетов по лимбу и вычисление угла производятся в журналах установленной формы.

Способ круговых приемов. Если с одного пункта наблюдается более двух направлений, то часто применяют способ круговых приемов. Для измерения углов этим способом необходимо выполнить следующие операции (рис.4.17):

при КЛ установить на лимбе отсчет, близкий к нулю, и навести трубу на первый пункт; взять отсчет по лимбу.

вращая алидаду по ходу часовой стрелки, навести трубу последовательно на второй, третий и т.д. пункты и затем снова на первый пункт; каждый раз взять отсчеты по лимбу.

перевести трубу через зенит и при КП навести ее на первый пункт; взять отсчет по лимбу.

вращая алидаду против хода часовой стрелки, навести трубу последовательно на (n-1), ..., третий, второй пункты и снова на первый пункт; каждый раз взять отсчеты по лимбу.

Затем для каждого направления вычисляют средние из отсчетов при КЛ и КП и после этого - значения углов относительно первого (начального) направления.

Способ круговых приемов позволяет ослабить влияние ошибок, действующих пропорционально времени, так как средние отсчеты для всех направлений относятся к одному физическому моменту времени.

Влияние внецентренности теодолита на отсчеты по лимбу. Пусть на рис.4.18 ось вращения алидады пересекает горизонтальную плоскость в точке B", а точка B - проекция вершины измерямого угла на ту же плоскость. Расстояние между точками B и B" обозначим l, расстояние между пунктами B и A - S.


Если бы теодолит стоял в точке B, то при наведении трубы на точку A отсчет по лимбу был бы равен b. Перенесем теодолит в точку B", сохранив ориентировку лимба; при этом отсчет по лимбу при наведении трубы на точку A изменится и станет равным b"; различие этих отсчетов называется ошибкой центрировки теодолита и обозначается буквой c.

Из треугольника BB"A имеем:

или по малости угла c

Величина l называется линейным элементом центрировки, а угол Q - угловым элементом цетрировки; угол Q строится при проекции оси вращения теодолита и отсчитывается от линейного элемента по ходу часовой стрелки до направления на наблюдаемый пункт A.

Правильный отсчет по лимбу будет:

b = b" + c . (4.19)

Влияние редукции визирной цели на отсчеты по лимбу.

Если проекция визирной цели A" на горизонтальную плоскость не совпадает с проекцией центра наблюдаемого пункта A, то возникает ошибка редукции визирной цели (рис.4.19). Отрезок AA" называется линейным элементом редукции и обозначается l1; угол Q1 называется угловым элементом редукции; он строится при проекции визирной цели и отсчитывается от линейного элемента по ходу часовой стрелки до направления на пункт установки теодолита. Обозначим правильный отсчет по лимбу - b, фактический - b", ошибка в направлении BA равна r. Из треугольника BAA" можно написать:

или по малости угла r

Правильный отсчет по лимбу будет

b = b" + r . (4.21)

Наибольшего значения поправки c и r достигают при И = И1 = 90o (270o), когда.

В этом случае

В практике измерения углов применяют два способа учета внецентренности теодолита и визирной цели.

Первый способ заключается в том, что центрирование выполняют с такой точностью, которая позволяет не учитывать ошибку внецентренности. Например, при работе с техническими теодолитами допустимое влияние ошибок центрирования теодолита и визирной цели можно принять c = r = 10"; при среднем расстоянии между точками S = 150 м получается, что l = l1 = 0.9 см, то-есть, теодолит или визирную цель достаточно устанавливать над центром пункта с ошибкой около 1 см. Для центрирования с такой точностью можно применить обычный отвес. Центрирование теодолита или визирной цели с точностью 1-2 мм можно выполнить лишь с помощью оптического центрира. Второй способ заключается в непосредственном измерении элементов l и И, l1 и И1, вычислении поправок c и r по формулам (4.18) и (4.20) и исправлении результатов измерений этими поправками по формулам (4.19) и (4.21). Методика измерений элементов центрировки теодолита и визирной цели описана в .