Определение диоксида углерода, как санитарного показателя чистоты воздуха жилых помещений и общественных зданий. Стандарты на чистоту воздуха в лечебных учреждениях Гигиенический контроль чистоты воздуха жилых помещений

Столица России - один из самых больших городов на планете. Разумеется, в ней присутствуют все проблемы мегаполисов. Главная из них - это загрязнение воздуха в появилась больше десятилетия назад и с каждым годом только усугубляется. Это может стать причиной настоящей техногенной

Норма чистого атмосферного воздуха

Естественный атмосферный воздух - это смесь газов, основными из которых считаются азот и кислород. Их объем составляет 97-99 % в зависимости от местности и атмосферного давления. Также в небольших количествах в воздухе содержатся водород, инертные газы, пары воды. Такой состав считается оптимальным для жизнедеятельности. В результате этого происходит постоянный круговорот газов в природе.

Но деятельность человека вносит в него существенные изменения. К примеру, просто в закрытом помещении без растений один человек за несколько часов может изменить процентное соотношение кислорода, углекислого газа и паров воды только за счет того, что он будет там дышать. Представьте только, каким может быть загрязнение воздуха в Москве сегодня, где живут миллионы людей, ездят тысячи машин и работают огромные промышленные предприятия?

Главные вредные примеси

По данным исследований, больше всего концентрация в атмосфере над городом у фенола, углекислого и бензапирена, формальдегида, диоксидов азота. Следовательно, увеличение процентного количества этих газов влечет за собой снижение концентрации кислорода. На сегодня можно констатировать, что уровень загрязнения воздуха в Москве превысил допустимые нормы в 1,5-2 раза, что становится крайне опасно для проживающих на этой территории людей. Ведь мало того, что они недополучают необходимый им кислород, так еще и травят организм опасными ядовитыми и канцерогенными газами, которые имеют огромную концентрацию в московском воздухе даже в закрытых помещениях.

Источники загрязнения воздуха в Москве

Почему же с каждым годом в столице России становится все труднее дышать? По данным последних исследований, главной причиной загрязнения воздуха в Москве выступают автомобили. Они заполнили столицу на каждой большой автостраде и маленькой улочке, на проспектах и во дворах. 83 % поступает в атмосферу именно вследствие работы двигателей внутреннего сгорания.

На территории столицы есть несколько крупных промышленных предприятий, которые также выступают источниками, вызывающими загрязнение воздуха в Москве. Хотя на большинстве из них и стоят современные очистительные системы, в атмосферу все же попадают опасные для жизни газы.

Третьим по величине загрязняющим источником являются большие ТЭС и котельные, которые работают на угле и мазуте. Они обогащают воздух мегаполиса большим количеством продуктов сгорания, таких как угарный и углекислый газы.

Факторы, повышающие концентрацию вредных веществ

Примечательно то, что количество вредных газов в воздухе столицы России не всегда и не всюду одинаково. Есть несколько факторов, которые способствуют его очищению или большему загрязнению.

По статистическим данным, на одного человека в Москве приходится примерно 7 квадратных метров зеленых насаждений. Это очень мало в сравнении с другими большими городами. В тех регионах, где концентрация парков больше, воздух намного чище, чем во всем остальном городе. Во время облачной погоды воздух не может сам очищаться, и у земли собирается большое количество газов, которые вызывают жалобы местного населения на плохое самочувствие. Повышенная влажность также удерживает у земли газы, вызывая загрязнение атмосферного воздуха в Москве. А вот морозная погода, наоборот, способна его временно очистить.

Самые загрязненные регионы

В столице самыми грязными регионами считаются промышленные Южный и Юго-Восточный округи. Особенно плохой воздух в Капотне, Люблино, Марьино, Бирюлево. Здесь располагаются крупные промышленные заводы.

Высок уровень загрязнения воздуха в Москве и непосредственно в центре. Здесь нет огромных предприятий, зато самая большая концентрация автомобилей. К тому же все помнят о знаменитых московских пробках. Именно в них машины вырабатывают больше всего вредных газов, поскольку двигатели работают не на полную мощность, и нефтепродукты не успевают сгореть полностью, образуя угарный газ.

ТЭС также больше всего в центральной части Москвы. Они сжигают уголь и мазут, обогащая воздух все теми же угарным и углекислым газами. Кроме того, они дают еще и опасные канцерогены, существенно влияющие на здоровье москвичей.

Чистый воздух в Москве

Есть в столице и относительно чистые регионы, в которых уровень вредных газов приближается к норме. Конечно, автомобили и небольшая промышленность оставляют и здесь свой негативный след, но по сравнению с промышленными регионами здесь довольно чисто и свежо. Географически это западные районы, особенно расположенные за МКАД. В Ясенево, Теплом Стане и Северном Бутово можно без опасений дышать полной грудью. В северной части города также есть несколько районов, которые относительно благоприятны для нормальной жизни, - это Митино, Строгино и Крылатское. Во всем остальном загрязнение воздуха в Москве сегодня можно назвать близким к критическому. Это особенно настораживает потому, что с каждым годом ситуация только ухудшается. Есть опасения, что скоро в городе не останется районов, где воздух будет более-менее чистым.

Болезни

Невозможность нормально дышать вызывает целый ряд неприятных ощущений и хронических заболеваний. Особенно к этому чувствительны дети и люди пожилого возраста.

Ученые констатируют, что загрязнение воздуха в Москве сейчас стало причиной наличия у каждого пятого астмы или астматического фактора. Дети в пять раз чаще болеют пневмонией, бронхитом, аденоидами и полипами верхних дыхательных путей.

Недостаток кислорода вызывает кислородное голодание мозга. Вследствие этого развиваются частые головные боли, мигрени, пониженный уровень Опасный угарный газ становится причиной сонливости и общей усталости. На фоне всего этого развиваются сердечно-сосудистые заболевания, диабет, неврозы.

Наличие большого количества пыли в воздухе не позволяет естественным фильтрам в носу всю ее задержать. Она попадает в легкие, оседает в них и сокращает их объем. Кроме того, пыль может содержать очень опасные вещества, которые, накапливаясь, вызывают раковые опухоли.

Когда москвичи попадают за город или в лес, у них начинается головокружение и мигрень. Так организм реагирует на непривычно большое количество кислорода, который поступает в кровь. Это ненормальное явление показывает реальное влияние загрязнения воздуха в Москве на здоровье человека.

Борьба за очищение воздуха

Ученые каждый год внимательно изучают причины, факторы и темпы загрязнения воздуха в Москве. 2014 год показал, что наблюдается тенденция к ухудшению, хотя постоянно принимаются меры по уменьшению вредных примесей в воздухе.

На заводах и ТЭС устанавливают фильтры, которые удерживают самые опасные продукты их деятельности. Для разгрузки автомобильного потока строятся новые развязки, мосты и тоннели. Чтобы воздух стал намного чище, постоянно увеличиваются площади зеленых насаждений. Ведь ничто так не очищает атмосферу, как деревья. Принимаются и административные меры наказания. За нарушение режима газообмена и выброс большего количества вредных газов штрафуются как владельцы частных автомобилей, так и крупные предприятия.

Но все равно результаты прогнозов неутешительные. Скоро в Москве чистый воздух может стать дефицитом, как это уже произошло в самых Чтобы этого не случилось завтра, нужно уже сегодня думать о том, стоит ли оставлять автомобиль с включенным двигателем на длительное время, пока вы ждете кого-то у подъезда.

Климатическая техника давно перестала быть экзотикой, но все еще вызывает много вопросов. Какие именно приборы нужны (и нужны ли вообще) для комфортного микроклимата? И, кстати, что такое вообще микроклимат? Гид от эксперта по воздуху в студию 🙂

Что такое микроклимат

Существует межгосударственный стандарт ГОСТ 30494-2011, устанавливающий строительные требования к микроклимату общественных и жилых зданий. Этот ГОСТ определяет микроклимат помещения как «состояние внутренней среды помещения, оказывающее воздействие на человека». Внутренняя среда – это, по большей части, воздух внутри помещения. Недаром далее следует уточнение, что микроклимат помещения характеризуется в основном температурой, влажностью и подвижностью воздуха.

Микроклимат, в самом деле, оказывает прямое воздействие на человека. Если он хороший («оптимальный», как выражается строгий ГОСТ), то человек испытывает ощущение комфорта, а организм не тратит силы на адаптацию к внешним условиям. Например, хороший микроклимат исключает жару, при которой человеческому телу пришлось бы активизировать механизмы теплорегуляции.

Микроклимат жилых и общественных зданий складывается из многих параметров, но первоочередными будут:

  • Температура воздуха;
  • Влажность воздуха;
  • Свежесть воздуха.

Температура воздуха

Требования. Все тот же ГОСТ для микроклимата нормирует температуру воздуха в помещениях. В теплый период рекомендуется диапазон 22–25°С. В холодное время года чуть ниже: 20–23°С для жилых комнат, 24–26°С для ванной, 23–24°С для детских и около 20°С для всех остальных помещений. Подробнее мы писали об этом .
Кстати, кроме указанного ГОСТа, существует еще СанПиН 2.1.2.2645-10. Он устанавливает гигиенические требования к микроклимату помещений. Однако нормы температуры и влажности воздуха в этих документах полностью совпадают.

Измерения. Температура измеряется при помощи термометра или датчиков в специализированных устройствах, таких как базовая станция системы умного микроклимата .
Регуляция. Если температура ниже комфортной, то понадобится . А если батареи, наоборот, топят слишком сильно, то Вам пригодится , благодаря которому температуру в комнате можно существенно снизить. В летнее время охладить комнату можно кондиционером. Кстати, кондиционер с функцией обогрева заменит обогреватель зимой.

Влажность воздуха

Требования. Рекомендуемая для человека влажность – 40-60%. Превышение этой отметки – уже сырость, которая чревата порчей имущества и появлением . Влажность ниже указанной может негативно воздействовать на самочувствие: Вы можете почувствовать в горле, глазах. Кожа тоже может пересохнуть и загрубеть – в первую очередь, это касается кожи лица и рук.
Кстати, упомянутые ГОСТ и СанПиН для микроклимата помещений указывают другие цифры оптимальной влажности: 30-45% зимой и 30-60% летом. Однако далеко не каждый при таких показателях будет чувствовать себя комфортно. Между прочим, дети в более влажном воздухе, чем взрослые.
Измерения. Влажность можно измерить бытовым гигрометром, домашней метеостанцией или многофункциональным устройством MagicAir (которое заслуживает отдельного разговора – он будет ниже).
Регуляция. С низкой влажностью борются при помощи увлажнителя. Высокую влажность победить сложнее, но вполне реально. Понадобится устранить протечки, утеплить промерзающие конструкции и – пожалуй, самое главное – наладить (подробнее можно почитать ).

Требования. Воздух в квартире содержит загрязнения из различных источников. Во-первых, это частицы, поступающие в помещение снаружи – через открытые окна или систему вентиляции без очистки. Это может быть как пыль и пыльца, так и выхлопные газы и заводские выбросы. Во-вторых, это испарения от мебели, отделочных материалов, предметов. Нередко в воздухе квартир можно обнаружить формальдегид. В-третьих, это биологические загрязнения от людей – так называемые антропотоксины. Организм человека выделяет ацетон, аммиак, фенолы, амины, углекислый газ CO2.
Разумеется, приведенные категории загрязнителей отличаются по степени опасности. Скажем, концентрированные выбросы сероводорода с соседнего завода причинят больше вреда, чем любой из антропотоксинов. В любом случае, хороший микроклимат в квартире подразумевает минимальное содержание загрязнителей в воздухе.

Измерения. Глубокий анализ состава и чистоты воздуха в квартире невозможен без специального оборудования. Такой анализ может провести . Косвенным показателем чистоты воздуха служит концентрация СО2. Чем она выше, тем хуже вентиляция. А чем хуже вентиляция, тем больше загрязнений накапливается в воздухе квартиры.
Регуляция. Очищать воздух можно при помощи , например, компактного . Его фильтры задерживают как частицы пыли, пыльцу, микроорганизмы, газы и запахи. Бризер может также работать в качестве очистителя воздуха – фильтровать загрязнения, источники которых находятся не снаружи, а внутри квартиры. Или можно использовать бризер в паре с воздуха, который не просто удерживает инфекции и вирусы, но и уничтожает их, тем самым снижая риск заболеть.

Свежесть воздуха

Требования. На свежесть воздуха напрямую указывает содержание углекислого газа, которое измеряется в единицах ppm. Как и в случае с влажностью, требования ГОСТа и рекомендации физиологов касательно оптимальной концентрации СО2 значительно . ГОСТ «Параметры микроклимата» считает приемлемым уровнем 800 – 1 400 ppm, а врачи рекомендуют поддерживать около 800 ppm. На этой отметке большинство людей чувствуют себя комфортно. С ростом уровня CO2 появляется ощущение духоты, вялость, усталость, снижается концентрация и работоспособность.
Измерения. Уровень CO2 измеряется датчиками. Такой есть, например, в базовой станции MagicAir.
Регуляция. Свежесть воздуха зависит от качества работы вентиляции. Необходимо обеспечить постоянный приток свежего воздуха с улицы и вытяжку душного воздуха, наполненного углекислым газом и загрязнениями. Правильная вентиляция решает сразу несколько задач: обеспечивает Вас свежим воздухом, устраняет загрязнения из квартиры, помогает регулировать влажность.
В пункте выше мы уже сказали несколько слов о компактном вентиляционном устройстве – бризере. Так вот, его основная функция – обеспечить приток воздуха. Бризер подает воздух на 4-5 человек, при этом очищая и подогревая его при необходимости.
Для оттока воздуха служит вытяжка в кухне, ванной, санузле. Если хочется ее усилить, то стоит подобрать .

Итоговая по гигиене №1

Химический состав атмосферного воздуха. Значение кислорода.

кислород=20.93%, СО2=0,03-0,04%, N=78,1%, аргон, криптон, гелий и др.

Кислород (Охуgenum) - важнейший биогенный химический элемент, беспечиваю щий дыхание большинства живых организмов на Земле. Кислород используется клетками и тканями для окисления органических веществ с освобождением содержащейся в них энергии, необходимой для жизнедеятельности. Физиологическое действие кислорода крайне многообразно, но решающее значение в его лечебном эффекте имеет способность возмещать дефицит кислорода в тканях организма при гипоксии.

Химический состав атмосферного воздуха. (в первом) Значение азота.

Азот является элементом, необходимым для существования животных и растений. Он входит в состав белков (16-18% по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. в составе живых клеток по числу атомов азота около 2%, по массовой доле - около 2,5% (четвертое место после водорода, углерода и кислорода). В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образовываться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитра» (нитрат натрия с примесями других соединений), норвежская, индийская селитры.

Химический состав атмосферного воздуха. (в первом) Значение озона.

Озон. Это химически неустойчивый изомер кислорода. Общебиологическое значение озона состоит в его способности поглощать коротковолновую ультрафиолетовую солнечную радиацию, губительно действующую на все живое. Наряду с этим озон поглощает и длинноволновую инфракрасную радиацию, исходящую от Земли, и тем самым препятствует ее чрезмерному охлаждению (озоновый слой Земли). Под воздействием ультрафиолетовых лучей озон разлагается на молекулу и атом кислорода. Озон используется в качестве бактерицидного средства при обеззараживании воды. В природе он образуется при электрических разрядах, в процессе испарения воды, при действии ультрафиолетовых лучей. В свободной атмосфере наиболее высокие его концентрации наблюдаются во время грозы, в горах и в хвойных лесах.

Углекислый газ- косвенный показатель загрязнения воздуха в помещении.

изменение свойств воздуха закрытых помещений, происходящее за счет жизнедеятельности людей, идет параллельно с нарастанием в воздухе двуокиси углерода, поэтому содержание в воздухе двуокиси углерода считают косвенным санитарным показателем загрязнения воздуха помещений.

воздух считается достаточно чистым, если в нем содержится не более 0.07% углекислого газа. предельно допустимое содержание углекислого газа = 0.1% или 1 промилле.

Чистый атмосферный воздух у поверхности Земли - это ме­ханическая смесь различных газов, среди которых в порядке их убывания по объему содержатся азот, кислород, аргон, диоксид углерода и ряд других газов, суммарное количество которых не превышает 1 %.

Состав чистого сухого атмосферного воздуха в объемных процентах представлен на рис. 1,2,

За сутки в состоянии покоя взрослый человек пропускает че­рез легкие 13-14 м3 воздуха - значительный объем, увеличи­вающийся при выполнении физических нагрузок. Это значит, что для организма небезразлично, воздухом какого химическо­го состава он дышит.

Кислород - самый важный для жизнедеятельности газ воз­духа. Он расходуется в организме на окислительные процессы, поступая через легкие в кровь, и доставляется тканям и клеткам организма в составе оксигемоглобина,

Рис. 1.2. Химический состав атмосферного воздуха при нормальных условиях.

В окружающей природе кислород также необходим для окис­ления органических веществ, находящихся в воде, воздухе и почве, а также для поддержания процессов горения.

Источником кислорода в атмосфере являются зеленые рас­тения, образующие его под действием солнечной радиации в процессе фотосинтеза и выделяющие в воздух в процессе ды­хания, Речь идет о фитопланктоне морей и океанов, а также растениях тропических лесов и вечнозеленой тайги, которые образно называют "легкими планеты".

Зеленые растения образуют кислород в очень больших коли­чествах, и вследствие постоянного перемешивания слоев ат­мосферного воздуха его содержание в атмосферном воздухе повсюду остается практически постоянным - около 21 %. Низ­кие концентрации кислорода, существенные для жизнедеятель­ности организма человека, наблюдаются при подъеме на высоту и при пребывании людей в герметически замкнутых помеще­ниях в случае аварийных ситуаций, когда нарушены техничес­кие средства поддержания жизнедеятельности. Повышенное содержание кислорода отмечается в условиях высокого атмос­ферного давления (в кессонах). При парциальном давлении свыше 600 мм рт.ст. он ведет себя как токсичное вещество, вы­зывая отек легких и пневмонию.

В атмосферном воздухе содержится динамический изомер кислорода - трехатомный кислород озон, являющийся силь­нейшим окислителем. Он образуется в природных условиях в верхних слоях атмосферы под влиянием коротковолнового ультрафиолетового излучения Солнца, при грозовых разрядах, в процессе испарения воды.

Озон играет важнейшую роль в защите биологических объ­ектов планеты от губительного воздействия жесткого ультрафи­олета, задерживая его в стратосфере на высоте 20-30 км.

Озон обладает своеобразным приятным запахом свежести, и его присутствие можно легко обнаружить в лесу после грозы, в горах, в чистой природной среде, где он считается показате­лем чистоты воздуха. Однако избыток озона неблагоприятен для жизнедеятельности организма, и начиная с концентрации 0,1 мг/м3 он действует как раздражающий газ.

Присутствие же озона в воздухе крупных промышленных горо­дов, загрязненном выбросами автотранспорта и промышленных объектов, в свете последних научных данных считается неблаго­приятным признаком, поскольку в этих условиях он образуется в результате фотохимических реакций при формировании смога.

Высокая окислительная способность озона используется при обеззараживании воды.

Диоксид углерода, или углекислый газ, поступает в воздух в процессе дыхания людей, животных, растений (в ночное вре­мя), окисления органических веществ при горении, брожении, гниении, находясь в окружающей среде в свободном и связан­ном состояниях.

Постоянство содержания этого газа на уровне 0,03 % в ат­мосфере обеспечивается его поглощением на свету зелеными растениями, растворением в воде морей и океанов, удалением с атмосферными осадками.

Значительные количества СО2 образуются в результате работы промышленных предприятий и автотранспорта, сжигающих ог­ромные количества топлива, вследствие чего в последние годы появились данные о том, что содержание углекислого газа в воздухе крупных современных городов приближается к 0,04 %, что вызывает тревогу у экологов по поводу образования "пар­никового эффекта", о котором более подробно будет сказано дальше.

Диоксид углерода участвует в обменных процессах организма, являясь физиологическим возбудителем дыхательного центра.

Вдыхание больших концентраций СОг нарушает окислительно­восстановительные процессы, и его накопление в крови и тканях ведет к тканевой аноксии. Длительное пребывание людей в за­крытых помещениях (жилых, производственных, общественных) сопровождается выделением в воздух продуктов их жизнеде­ятельности: углекислоты с выдыхаемым воздухом и летучих ор­ганических соединений (аммиак, сероводород, индол, меркап­тан), называемых антропотоксинами, с поверхности кожных покровов, грязной обуви и одежды. Происходит и некоторое снижение содержания в воздухе кислорода. В этих условиях у людей могут появиться жалобы на ухудшение самочувствия, снижение работоспособности, сонливость, головную боль и дру­гие функциональные симптомы. Чем же объясняется этот симптомокомплекс? Можно предположить, что причина лежит в не­хватке кислорода, количество которого, как уже говорилось, несколько снижается по сравнению с его содержанием в атмос­ферном воздухе. Однако было установлено, что его снижение в самых неблагоприятных условиях не превышает I %, так как вследствие негерметичности этих помещений кислород легко проникает из атмосферы в воздух помещений, пополняя его за­пас. Организм человека не реагирует на такое снижение содер­жания кислорода. Больные люди отмечают снижение кислорода в воздухе, если оно составляет 18 %, здоровые - 16 %. Жизнь не­возможна при концентрации кислорода в воздухе, равной 7-8 %. Однако названных концентраций кислорода в негерметичных помещениях никогда не бывает, но они могут быть в затонувшей подводной лодке, обрушившейся шахте и других герметичных пространствах. Следовательно, в негерметичных помещениях снижение содержания кислорода не может стать причиной ухуд­шения самочувствия людей. Тогда не заключается ли эта причи­на в накоплении избытка углекислоты в воздухе помещений? Однако известно, что неблагоприятная концентрация СО2 для здоровья человека составляет 4-5 %, когда появляются голо­вная боль, шум в ушах, сердцебиение и т.д. При содержании в воздухе 8 % углекислоты наступает смерть. Указанные же концентрации характерны только для герметичных помещений с неисправной системой жизнеобеспечения. В обычных закры­тых помещениях таких концентраций углекислого газа быть не может вследствие имеющегося постоянного воздухообмена с окружающей средой.

И все же содержание С02 в воздухе закрытых помещений имеет санитарное значение, являясь косвенным показателем чистоты воздуха. Дело в том, что параллельно с накоплением С02, обычно не выше 0,2 %, ухудшаются другие свойства воз­духа: повышаются температура и влажность, запыленность, со­держание микроорганизмов, число тяжелых ионов, появляются антропотоксины. Вот этот комплекс изменившихся физичес­ких свойств воздуха наряду с химическим загрязнением и вы­зывает ухудшение самочувствия людей. Такому изменению свойств воздуха соответствует содержание углекислоты, равное ОД %, и поэтому данная концентрация считается предельно до­пустимой для воздуха закрытых помещений.

В последние годы было установлено, что для оценки санитар­ного состояния воздуха закрытых помещений этого показателя недостаточно, так как требуется определение содержания неко­торых токсичных химических веществ, выделяющихся в воздух из полимерных строительных материалов, широко приме­няемых для внутренней отделки помещений (фенол, аммиак, формальдегид и др.).

Азот и другие инертные газы. Азот по количественному со­держанию является наиболее существенной частью атмосфер­ного воздуха, составляя 78,1 % и разбавляя другие газы, в пер­вую очередь кислород. Азот физиологически индифферентен, не поддерживает процессы дыхания и горения, содержание его в атмосфере постоянное, одинаково его количество во вдыха­емом и выдыхаемом воздухе. В условиях повышенного атмос­ферного давления азот может оказать наркотическое действие, а также известна его роль в патогенезе кессонной болезни.

Известен круговорот азота в природе, осуществляемый с по­мощью определенных видов почвенной микрофлоры, растений и животных, а также электрических разрядов в атмосфере, в ре­зультате чего азот связывается биологическими объектами, а за­тем вновь поступает в атмосферу.

МЕТОДИКА ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СО2 И ОКИСЛЯЕМОСТИ ВОЗДУХА КАК ПОКАЗАТЕЛЕЙ АНТРОПОГЕННОГО ЗАГРЯЗНЕНИЯ ВОЗДУХА И ВЕНТИЛЯЦИИ ПОМЕЩЕНИЙ

1. Учебная цель

1.1. Ознакомиться с факторами и показателями загрязнения воздуха помещений коммунально-бытового, общественного и производственного назначения.

1.2. Овладеть методикой гигиенической оценки чистоты воздуха и эффективности вентиляции помещений.

2. Исходные знания и умения

2.1. Знать:

2.1.1. Физиолого-гигиеничное значение составных компонентов воздуха и их влияние на здоровье и санитарные условия жизни.

2.1.2. Источники и показатели загрязнения воздуха помещений коммунального, бытового, общественного и производственного назначения, их гигиеническое нормирование.

2.1.3. Обмен воздуха в помещениях. Виды и классификация вентиляции помещений, основные параметры, которые характеризуют ее эффективность.

2.2. Уметь:

2.2.1. Определять концентрацию углекислого газа в воздухе и оценивать степень чистоты воздушной среды помещений.

2.2.2. Рассчитывать необходимый и фактический объем и кратность вентиляции помещений.

3. Вопросы для самоподготовки

3.1. Химический состав атмосферного и выдыхаемого воздуха.

3.2. Основные источники загрязнения воздуха помещений коммунально-бытового, общественного и производственного назначения. Критерии и показатели загрязнения воздуха (физические, химические, бактериологические).

3.3. Источники загрязнения воздуха жилых помещений. Окисляемость воздуха и диоксид углерода как косвенные показатели загрязнения воздуха.

3.4. Влияние разных концентраций диоксида углерода на организм человека.

3.5. Экспрессные методы определения концентрации диоксида углерода в воздухе (метод Лунге-Цеккендорфа, Прохорова).

3.6. Гигиеническое значение вентиляции помещений. Виды, классификация вентиляции помещений коммунально-бытового и производственного назначения.

3.7. Показатели эффективности вентиляции. Необходимый и фактический объем и кратность вентиляции, методы их определения.

3.8. Кондиционирование воздуха. Принципы построения кондиционеров.

4. Задания (задачи) для самоподготовки

4.1. Рассчитайте, сколько углекислого газа выделяет человек за один час в покое и при выполнении физической работы.

4.2. Рассчитайте необходимый объем вентиляции для больного в палате и для хирурга в операционной (см. приложение).

4.3. Рассчитайте необходимую кратность вентиляции палаты на 4 койки площадью 30 м2 и высотой 3,2 м.

5. Структура и содержание занятия

Занятие лабораторное. После проверки исходного уровня знаний и подготовки к занятию студенты получают индивидуальные задачи и, пользуясь инструкциями приложений и рекомендованной литературой, определяют концентрацию диоксида углерода в помещении учебной лаборатории и за ее пределами (на улице), ведут необходимые расчеты, составляют выводы; рассчитывают необходимые объем и кратность вентиляции для лаборатории с учетом количества людей и характера выполняемой работы ; измеряют объем воздуха, который поступает или удаляется из помещения, рассчитывают фактические объем и кратность вентиляции, составляют выводы и рекомендации. Работу оформляют протоколом.

6. Литература

6.1. Основная:

6.1.1. Общая гигиена. Пропедевтика гигиены. /, / Под ред. . - К.: Высшая школа, 1995. - С. 118-137.

6.1.2. Общая гигиена. Пропедевтика гигиены. / , и др. - К.: Высшая школа, 2000. - С. 140-142.

6.1.3. Минх гигиенических исследований. - М., 1971. - С.73-77, 267-273.

6.1.4. Общая гигиена. Пособие к практическим занятиям. /, и др. / Под ред. . - Львов: Мир, 1992. - С. 43-48.

6.1.5. , Шахбазян. К.: Высшая школа, 1983. - С. 45-52, 123-129.

6.1.6. Лекция.

6.2. Дополнительная:

6.2.1. , Габович медицина. Общая гигиена с основами экологии. - К.: Здоровье, 1999. - С. 6-21, 74-79, 498-519, 608-658.

6.2.2. СНиП П-33-75. Отопление, вентиляция и кондинционирование воздуха. Нормы проектирования. - М., 1975.

7. Оснащение занятия

1. Шприц Жанне (50-100 мл).

2. Раствор безводной соды NaСО3 (5,3 г на 100 мл дистиллированной воды) с 0,1% раствором фенол-фталеина.

3. Пипетка на 10 мл.

4. Дистиллированная вода в флаконе свежекипяченая и охлажденная.

5. Формулы для расчета необходимого объема и кратности вентиляции помещений.

6. Рулетка или сантиметровая лента.

7. Задача студенту по определению концентрации СО2 в воздухе и показателей вентиляции помещения.

Приложение 1

Гигиенические показатели санитарного состояния и вентиляции помещений

1. Химический состав атмосферного воздуха: азота - 78,08%; кислорода - 20,95%; углекислого газа - 0,03-0,04%; инертных газов (аргон, неон, гелий, криптон, ксенон) - 0,93%; влаги, как правило, от 40-60% до насыщения; пыль, микроорганизмы, естественные и техногенные загрязнения - в зависимости от промышленного развития региона, типа поверхности (пустыня, горы, наличие зеленых насаждений и др.)

2. Основные источники загрязнения воздуха населенных мест, производственных помещений - выбросы промышленных предприятий, автотранспорта; пиле-, газообразование промышленных предприятий; метеорологические факторы (ветры) и тип поверхности регионов (пылевые бури пустынных мест без зеленых насаждений).

3. Источники загрязнения воздуха жилых помещений, помещений коммунально-бытового назначения и общественных помещений - продукты жизнедеятельности организма людей, которые выделяются кожей и при дыхании (продукты распада пота, кожного сала, омертвелого эпидермиса, другие продукты жизнедеятельности, которые выделяются в воздух помещения пропорционально количеству людей, срока их пребывания в помещении и количества углекислого газа, который накапливается в воздухе пропорционально перечисленным загрязнителям), и поэтому используется как показатель (индикатор) степени загрязнения этими веществами воздуха помещений различного назначения.

4. Учитывая, что через кожу и при дыхании выделяются, в основном, органические продукты обмена веществ, для оценки степени загрязнения воздуха помещений людьми было предложено определять другой показатель этого загрязнения – окисляемость воздуха, т. е. измерять количество миллиграммов кислорода, необходимого для окисления органических соединений в 1 м3 воздуха с помощью титрованного раствора бихромата калия К2Сr2О7.

Окисляемость атмосферного воздуха обычно не превышает 3-4 мг/м3, в хорошо проветриваемых помещениях окисляемость находится на уровне 4-6 мг/м3, а в помещениях с неблагоприятным санитарным состоянием окисляемость воздуха может достигать 20 и более мг/м3.

5. Концентрация углекислого газа отображает степень загрязнения воздуха другими продуктами жизнедеятельности организма. Концентрация углекислого газа в помещениях увеличивается пропорционально количеству людей и времени их пребывания в помещении, но как правило, не достигает вредных для организма уровней. Только в замкнутых, недостаточно вентилируемых помещениях (хранилищах, подводных лодках, подземных выработках, производственных помещениях, канализационных системах и т. п.) за счет брожения , горения, гниения количество углекислого газа может достигать концентраций, опасных для здоровья и даже жизни человека.

Бресткина и ряда других авторов установлено, что повышение концентрации СО2 до 2-2,5% не вызывает заметных отклонений в самочувствии человека, его трудоспособности. Концентрации СО2 до 4% вызывают повышение интенсивности дыхания, сердечной деятельности, снижение трудоспособности. Концентрации СО2 до 5% сопровождаются одышкой, усилением сердечной деятельности, снижением трудоспособности, а 6% - способствуют снижению умственной деятельности, возникновению головной боли, умопомрачению, 7% - может вызвать неспособность контролировать свои действия, потерю сознания и даже смерть, 10% - вызывает быструю, а 15-20% мгновенную смерть из-за паралича дыхания.

Для определения концентрации СО2 в воздухе разработано несколько методов, среди которых метод Субботина-Нагорского с гидроокисью бария, методы Реберга-Винокурова, Калмыкова, интерферометрический. Вместе с тем в санитарной практике наиболее широко используется портативный экспрессный метод Лунге-Цеккендорфа в модификации (приложение 2).

Приложение 2

Определение диоксида углерода в воздухе экспресс-методом Лунге-Цеккендорфа в модификации

Принцип метода основан на пропускании исследуемого воздуха через титрованный раствор углекислого натрия (или аммиака) в присутствии фенолфталеина. При этом происходит реакция Na2CO3+H2O+CO2=2NaHCO3. Раствор фенолфталеина, который имеет розовую окраску в щелочной среде, после связывания CO2 обесцвечивается (кислая среда).

Разведением 5,3 г химически чистого Na2CO3 в 100 мл дистиллированной воды готовят исходный раствор, к которому прибавляют 0,1% раствор фенолфталеина. Перед анализом готовят рабочий раствор разведением исходного раствора 2 мл до 10 мл дистиллированной водой.

Раствор переносят в склянку Дрекселя по Лунге-Цеккендорфу (рис. 11.1а) или в шприц Жанне по Прохорову (рис. 11.1б). В первом случае к длинной трубке склянки Дрекселя с утонченным носиком присоединяют резиновую грушу с клапаном или небольшим отверстием. Медленно сжимая и быстро отпуская грушу, продувают через раствор исследуемый воздух. После каждой продувки склянку встряхивают для полного поглощения CO2 из порции воздуха. Во втором случае (по Прохорову) в шприц, наполненный 10 мл рабочего раствора соды с фенолфталеином, держа его вертикально, набирают порцию исследуемого воздуха. Затем энергичным встряхиванием (7-8 раз) воздух приводят в контакт с поглотителем, после чего воздух выталкивается и вместо него набирается одна за другой порции исследуемого воздуха до полного обесцвечивания раствора в шприце. Считают количество объемов (порций) воздуха, пошедших на обесцвечивание раствора. Анализ воздуха проводят в помещении и за пределами помещения (атмосферный воздух).

Результат рассчитывают по обратной пропорции на основании сопоставления количества израсходованных объемов (порций) груш или шприцев и концентрации CO2 в атмосферном воздухе (0,04%) и в конкретном исследуемом помещении, где определяется концентрация СО2. Например, в помещении израсходовано 10 объемов груш, или шприцев, на улице – 50 объемов. Отсюда, концентрация CO2 в помещении = (0,04 x 50) : 10 = 0,2%.

Предельно допустимая концентрация (ПДК) CO2 в жилых помещениях разного назначения установленная в пределах 0,07-0,1%, в производственных помещениях, где CO2 накапливается от технологического процесса, до 1-1,5%.

Рис.11.1а. Прибор для определения концентрации СО2 по Лунге-Цеккендорфу

(а - резиновая груша для продувки воздуха с клапаном; б - склянка Дрекселя с раствором соды и фенол-фталеина)

Рис. 11.1б. Шприц Жанне для определения концентрации СО2

Приложение 3

Методика определения и гигиенической оценки показателей воздухообмена и вентиляции помещений

Воздух жилых помещений считается чистым, если концентрация CO2 не превышает предельно допустимых концентраций – 0,07% (0,7‰) по Петтенкоферу или 0,1% (1,0‰) по Флюге.

На этом основании рассчитывается необходимый объем вентиляции – количество воздуха (в м3), которое должно поступать в помещение в течение 1 ч, чтобы концентрация CO2 в воздухе не превысила предельно допустимых концентраций для данного вида помещений. Его рассчитывают по формуле:

где: V – объем вентиляции, м3/час;

К – количество СО2, выделяемое одним человеком за один час (в покое 21,6 л/ч; во сне – 16 л/ч; при выполнении работы разной тяжести – 30-40 л/ч);

n - количество людей в помещении;

Р – предельно допустимая концентрация СО2 в промилле (0,7 или 1,0‰);

Р1 – концентрация СО2 в атмосферном воздухе в промилле (0,4‰).

При расчете количества СО2, которое выделяет один человек за один час, выходят из того, что взрослый человек при легкой физической работе производит в течение 1 минуты 18 дыхательных движений с объемом каждого вдоха (выдоха) 0,5 л и, следовательно, в течение часа выдыхает 540 л воздуха (18 х 60 х 0,5 = 540).

Учитывая, что концентрация углекислого газа в выдыхаемом воздухе примерно 4% (3,4-4,7%), то общее количество выдыхаемого углекислого газа за пропорцией составит:

х = = 21,6 л/час

При физических нагрузках пропорционально их тяжести и интенсивности возрастает количество дыхательных движений, а потому возрастает и количество выдыхаемого СО2 и необходимый объем вентиляции.

Необходимая кратность вентиляции – число, которое показывает, сколько раз в течение часа меняется воздух помещения, чтобы концентрация СО2 не превышала предельно допустимых уровней.

Необходимую кратность вентиляции находят путем деления рассчитанного необходимого объема вентиляции на кубатуру помещения.

Фактический объем вентиляции находят путем определения площади вентиляционного отверстия и скорости движения воздуха в нем (фрамуга, форточка). При этом учитывают, что через поры стен, щели в окнах и двери в помещение проникает объем воздуха, близкий к кубатуре помещения и его нужно прибавить к объему, который проникает через вентиляционное отверстие.

Фактическую кратность вентиляции рассчитывают делением фактического объема вентиляции на кубатуру помещения.

Сопоставляя необходимые и фактические объемы и кратность вентиляции, оценивают эффективность обмена воздуха в помещении.

Приложение 4

Нормативы кратности обмена воздуха в помещениях разного назначения

Помещение

Кратность обмена воздуха, ч

СНиП 2.08. 02-89 – больничные помещения

Палата взрослых

80 м3 на 1 койку

Предродовая, перевязочная

Родовая, операционная, предоперационная

Послеродовая палата

80 м3 на 1 кровать

Палата для детей

80 м3 на 1 кровать

Бокс, полубокс

2,5 раза/ч в коридор

Кабинет врача

СНиП 2.08. 01-89 – жилые помещения

Жилая комната

3 м3/ч на 1 м2 площади

Кухня газифицирована

Туалет, ванная комната

ДБН В. 2.2-3-97 – дома и сооружения учебных заведений

Класс, кабинет

16 м3 на 1 человека

Мастерская

20 м3 на 1 человека

Спортзал

80 м3 на 1 человека

Учительская

Необходимый объем и кратность вентиляции положены также в основу научного обоснования норм жилой площади. Учитывая, что при закрытых окнах и двери, как сказано выше, через поры стен, щели в окнах и двери в помещение проникает объем воздух, близкий к кубатуре помещения (т. е., его кратность равняется ~ 1 раз/час), а высота помещения в среднем равняется 3 м, норма площади на 1 человека составляет:

По Флюге (ПДК СО2=1‰)

S = = = 12 м2/человека.

По Петтенкоферу (ПДК СО2=0,7‰)

S = = 24 м2/человека.