Тема санитарная оценка чистоты воздуха (антропотоксины. Бакте­риальная обсемененность). Гигиенические требования к вентиляции. Оценка вентиляционного режима больниц. Углекислый газ- косвенный показатель загрязнения воздуха в помещении Углекислый газ как и

Нормативная основа предупреждения внутрибольничных инфекций

А. Е. Федотов,
д-р техн. наук, президент АСИНКОМ

Пребывание человека в больнице опасно для здоровья.

Причина - внутрибольничные инфекции, в том числе вызываемые микроорганизмами, приспособившими ся к традиционным мерам гигиены и устойчивые к антибиотикам*.

Красноречивые данные об этом приведены в статье Fabrice Dorchies в настоящем номере журнала (стр. 28) . Что делается у нас, не знает никто. Картина в наших больницах наверняка много хуже. Судя по уровню действующих отраслевых нормативных документов, наше здравоохранение еще не подошло к пониманию проблемы.

А проблема ясна. Она ставилась в журнале «Технология чистоты» №1/9 еще 10 лет назад. В 1998 г. АСИНКОМ были разработаны «Нормы на чистоту воздуха в больницах», основанные на зарубежном опыте. В том же году они были направлены в ЦНИИ эпидемиологии. В 2002 г. этот документ был представлен в Госсанэпиднадзор. Реакции не последовало в обоих случаях.

Зато в 2003 г. был утвержден СанПиН 2.1.3.137503 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров» - отсталый документ, требования которого порой противоречат законам физики (см. ниже).

Основное возражение против введения западных стандартов - «нет денег». Это не правда. Деньги есть. Но идут они не туда, куда надо. Десятилетний опыт аттестации по мещений больниц силами Центра сертификации чистых помещений и Лаборатории испытаний чистых помещений показал, что фактическая стоимость операционных и палат интенсивной терапии превышает порой в несколько раз затраты на объекты, выполненные по Европейским нормам и оснащенные западным оборудованием. При этом объекты не соответствуют современному уровню.

Одна из причин - отсутствие должной нормативной базы.

Существующие стандарты и нормы

Техника чистых помещений в больницах запада применяется давно. Еще в 1961 г. в Великобритании профессор сэр Джон Чарнлей (John Charnley) оборудовал первую операционную «greenhouse» со скоростью нисходящего с потолка потока воздуха 0,3 м/с. Это явилось радикальным средством снижения риска инфицирования больных при трансплантации тазобедренных суставов. До этого у 9 % больных происходило инфицирование во время операции, и требовалась повторная трансплантация. Это была истинная трагедия для больных.

В 70-80-е годы технология чистоты на основе систем вентиляции и кондиционирования воздуха и применения высокоэффективных фильтров стала неотъемлемым элементом в больницах Европы и Америки. Тогда же в Германии, Франции и Швейцарии появились первые стандарты на чистоту воздуха в больницах.

В настоящее время выходит второе поколение стандартов, основанных на современном уровне знаний.

Швейцария

В 1987 г. Швейцарским институтом здравоохранения и лечебных учреждений (SKI - Schweizerisches Institut fur Gesundheits- und Krankenhauswesen) было принято «Руководство по строительству, эксплуатации и обслуживанию систем подготовки воздуха в больницах» - SKI, Band 35, «Richtlinien fur Bau, Betrieb und Uberwachung von raumlufttechnischen Anlagen in Spitalern».

Руководство различает три группы помещений:

В 2003 г. Швейцарским обществом инженеров по отоплению и кондиционированию было принято руководство SWKI 9963 «Системы отопления, вентиляции и кондиционирования воздуха в больницах (проектирование, строительство и эксплуатация)».

Его существенным отличием является отказ от нормирования чистоты воздуха по микробным загрязнениям (КОЕ) для оценки работы системы вентиляции и кондиционирования.

Критерием оценки является концентрация частиц в воздухе (не микроорганизмов). Руководство устанавливает четкие требования к подготовке воздуха для операционных и дает оригинальную методику оценки эффективности мер по обеспечению чистоты с помощью генератора аэрозолей.

Подробный анализ руководства дан в статье А. Бруннера в настоящем номере журнала.

Германия

В 1989 г. в Германии был принят стандарт DIN 1946, часть 4 «Техника чистых помещений. Системы обеспечения чистоты воздуха в больницах» - DIN 1946, Teil 4. Raumlufttechik. Raumlufttechishe Anlagen in Krankenhausern, Dezember, 1989 (пересмотрен в 1999 г.).

В настоящее время подготовлен проект стандарта DIN, содержащий показатели чистоты как по микроорганизмам (метод седиментации), так и по частицам.

Стандарт детально регламентирует требования к гигиене и методам обеспечения чистоты.

Установлены классы помещений Iа (высокоасептические операционные), Ib (другие операционные) и II. Для классов Iа и Ib даны требования к максимально допустимому загрязнению воздуха микроорганизмами (метод седиментации):

Установлены требования к фильтрам для различных ступеней очистки воздуха: F5 (F7) + F9 + H13.

Обществом немецких инженеров VDI подготовлен проект стандарта VDI 2167, часть: Оборудование зданий больниц - отопление, вентиляция и кондиционирование воздуха. Проект идентичен Швейцарскому руководству SWKI 9963 и содержит лишь редакционные правки, вы званные некоторыми различиями между «швейцарским» немецким и «немецким» немецким языками.

Франция

Стандарт на чистоту воздуха AFNOR NFX 906351, 1987 в больницах был принят во Франции в 1987 г. и пересмотрен в 2003 г.

Стандарт установил предельно допустимые концентрации частиц и микроорганизмов в воздухе. Концентрация частиц определяется по двум размерам: ≥0,5 мкм и ≥5,0 мкм.

Важным фактором является проверка чистоты только в оснащенном состоянии чистых помещений. Более подробно требования французского стандарта приведены в статье Fabrice Dorchies «Франция: стандарт на чистоту воздуха в больницах» этого номера журнала.

Перечисленные стандарты детализируют требования к операционным, устанавливают число ступеней фильтрации, типы фильтров, размеры ламинарных зон и т. д.

Проектирование чистых помещений больниц ведется на основе стандартов серии ИСО 14644 (ранее велось на основе Fed. Std. 209D).

Россия

В 2003 г. принят СанПиН 2.1.3.1375603 «Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров».

Ряд требований этого документа вызывает недоумение. Например, приложение 7 устанавливает санитарно-микробиологические показатели для помещений разных классов чистоты (*оснащенное состояние):

В России классы чистоты чистых помещений были установлены ГОСТ Р 50766695, затем ГОСТ Р ИСО 14644616 2001. В 2002 г. последний стандарт стал стандартом СНГ ГОСТ ИСО 146446162002 «Чистые помещения и связанные с ними контролируемые среды, Часть 1. Классификация чистоты воздуха». Логично ожидать, что отраслевые документы должны соответствовать национальному стандарту, не говоря уже о том, что определения «условно чистые», «условно грязные» для классов чистоты, «грязный потолок» для потолков выглядят странно.

СанПиН 2.1.3.1375603 устанавливает для «особо чистых» помещений (операционные, асептические боксы для гематологических, ожоговых пациентов) показатель общего числа микроорганизмов в воздухе (КОЕ/м 3) до начала работы (оснащенное состояние) «не более 200».

А стандарт Франции NFX 906351 - не более 5. Эти больные должны находиться под однонаправленным (ламинарным) потоком воздуха. При наличии 200 КОЕ/м 3 , больной в состоянии иммунодефицита (асептический бокс гематологического отделения) неизбежно погибнет.

По данным ООО «Криоцентр» (А. Н. Громыко) микробная загрязненность воздуха в роддомах Москвы колеблется от 104 до 105 КОЕ/м 3 , причем последняя цифра относится к роддому, куда привозят бомжей.

Воздух московского метро содержит примерно 700 КОЕ/м 3 . Это лучше, чем в «условно чистых» помещениях больниц по СанПиНу.

В п. 6.20 вышеуказанного СанПиНа сказано: «В стерильные помещения воздух подается ламинарными или слабо турбулентными струями (скорость воздуха менее 0,15 м/с)» .

Это противоречит законам физики: при скорости менее 0,2 м/с поток воздуха не может быть ламинарным (однонаправленным), а при менее 0,15 м/с он становится не «слабо», а сильно турбулентным (неоднонаправленным).

Цифры СанПиНа - не безобидные, именно по ним ведется контроль объектов и экспертиза проектов органами санитарно-эпидемиологического надзора. Можно выпускать сколь угодно передовые стандарты, но пока существует СанПиН 2.1.3.1375603 дело с места не сдвинется.

Речь идет не просто об ошибках. Речь идет об общественной опасности таких документов.

В чем причина их появления?

  • Незнание европейских норм и основ физики?
  • Знание, но:
    • намеренное ухудшение условий в наших больницах?
    • лоббирование чьих-то интересов (например, производителей малоэффективных средств очистки воздуха)?

Как это увязать с защитой здоровья населения и правами потребителей?

Для нас, потребителей услуг здравоохранения, такая картина абсолютно неприемлема.

Тяжелыми и ранее неизлечимыми болезнями являлись лейкемия и другие заболевания крови.


Постель больного находится в зоне однонаправленного потока воздуха (класс 5 ИСО)

Сейчас решение есть, причем решение единственное: трансплантация костного мозга, затем подавление иммунитета организма на период адаптации (1-2 месяца). Чтобы человек, находясь в состоянии иммунодефицита, не погиб, его помещают в условия стерильного воздуха (под ламинарный поток).

В мире эта практика известна десятки лет. Пришла она и в Россию. В 2005 г. в Нижегородской областной детской клинической больнице были оборудованы две палаты интенсивной терапии для трансплантации костного мозга.

Палаты выполнены на уровне современной мировой практики. Это - единственное средство спасения обреченных детей.

А вот в ФГУЗ «Центр гигиены и эпидемиологии Нижегородской области» устроили безграмотную и амбициозную писчебумажную волокиту, задержав ввод объекта на полгода. Понимают ли эти служащие, что на их совести могут быть неспасенные детские жизни? Ответ нужно дать матерям, глядя им в глаза.

Разработка национального стандарта России

Анализ опыта зарубежных коллег позволил выделить несколько ключевых вопросов, некоторые из которых вызвали бурную дискуссию при обсуждении стандарта.

Группы помещений

Зарубежные стандарты в основном рассматривают операционные. Некоторые стандарты рассматривают изоляторы и другие помещения. Комплексная систематизация помещений всех назначений с ориентацией на классифика цию чистоты по ИСО отсутствует.

В принятом стандарте введены пять групп помещений в зависимости от риска инфицирования больного. Отдельно (группа 5) выделены изоляторы и гнойные операционные.

Классификация помещений выполнена с учетом факторов риска.

Критерий оценки чистоты воздуха

Что взять за основу оценки чистоты воздуха?:

  • частицы?
  • микроорганизмы?
  • то и другое?

Развитие норм в западных странах по этому критерию имеет свою логику.

На первых этапах чистота воздуха в больницах оценивалась только по концентрации микроорганизмов. Затем стал применяться и счет частиц. Еще в 1987 г. стандарт Франции NFX 906351 ввел контроль чистоты воздуха как по частицам, так и по микроорганизмам (см. выше) . Счет частиц с помощью лазерного счетчика частиц позволяет оперативно в режиме реального времени определять концентрацию частиц, в то время как для инкубации микроорганизмов на питательней среде требуется несколько дней.

Следующий вопрос: а что, собственно, проверяется при аттестации чистых помещений и систем вентиляции?

Проверяется качество их работы и правильность проект ных решений. Эти факторы однозначно оцениваются концентрацией частиц, от которой зависит число микроорганизмов.

Конечно, микробная обсемененность зависит от чистоты стен, оборудования, персонала и пр. Но эти факторы относятся к текущей работе, к эксплуатации, а не к оценке инженерных систем.

В связи с этим в Швейцарии (SWKI 9963) и Германии (VDI 2167) сделан логичный шаг вперед: установлен контроль воздуха только по частицам.

Учет микроорганизмов остается функцией эпидемиологической службы больницы и направлен на текущий контроль чистоты.

Эта мысль была заложена и в проект российского стандарта. На данном этапе от нее пришлось отказаться, ввиду категорически отрицательной позиции представителей санэпиднадзора.

Предельно допустимые нормы по частицам и микроорганизмам для различных групп помещений взяты по аналогам с западными стандартами и на основе собственного опыта.

Классификация по частицам соответствует ГОСТ ИСО 1464461.

Состояние чистого помещения

ГОСТ ИСО 1464461 различает три состояния чистых помещений.

В построенном состоянии проверяется выполнение ряда технических требований. Концентрация загрязнений как правило не нормируется.

В оснащенном состоянии помещение полностью укомплектовано оборудованием, но отсутствует персонал и не проводится технологический процесс (для больниц - отсутствует медперсонал и больной).

В эксплуатируемом состоянии в помещении выполняются все процессы, предусмотренные назначением помещения.

Правила производства лекарственных средств - GMP (ГОСТ Р 5224962004) предусматривают контроль загрязнений частицами как в оснащенном состоянии, так и в эксплуатируемом состоянии, а микрорганизмами - только в эксплуатируемом состоянии. В этом есть логика. Выделения загрязнений от оборудования и персонала при производстве лекарственных средств можно нормировать и обеспечивать соответствие нормам техническими и организационными мерами.

В лечебном учреждении есть ненормируемый элемент - больной. Его и медперсонал невозможно одеть в комбинезон для класса 5 ИСО и полностью закрыть всю поверхность тела. Из6за того, что источниками загрязнений в эксплуатируемом состоянии больничного помещения управлять нельзя, устанавливать нормы и проводить аттестацию помещений в эксплуатируемом состоянии бессмысленно, по крайней мере, по частицам.

Это понимали разработчики всех зарубежных стандартов. Нами также включен в ГОСТ контроль помещений только в оснащенном состоянии.

Размеры частиц

Изначально в чистых помещениях контролировалось загрязнение частицами с размерами, равными и большими 0,5 мкм (≥0,5 мкм). Затем, исходя из конкретных областей применения, стали появляться требования к концентрации частиц ≥0,1 мкм и ≥0,3 мкм (микроэлектроника), ≥0,5 мкм (производство лекарственных средств в дополнение к частицам ≥0,5 мкм) и пр.

Анализ показал, что в больницах нет смысла следовать шаблону «0,5 и 5,0 мкм», а достаточно ограничиваться контролем частиц ≥0,5 мкм.

Скорость однонаправленного потока


Рис. 1. Распределение модуля скорости

Выше уже отмечалось, что СанПиН 2.1.3.3175603, установив предельно допустимые значения скорости однонаправленного (ламинарного) потока 0,15 м/с, нарушил законы физики.

С другой стороны, вводить в медицине норму GMP 0,45 м/с ±20 % нельзя. Это приведет к дискомфорту, поверхостному обезвоживанию раны, может травмировать ее и пр. Поэтому для зон с однонаправленным потоком (операционные, палаты интенсивной терапии) установлена скорость от 0,24 до 0,3 м/с. Это грань допустимого, уходить от которой нельзя.

На рис. 1 показано распределение модуля скорости потока воздуха в зоне операционного стола для реальной операционной одной из больниц, полученное методом компьютерного моделирования.

Видно, что при малой скорости исходящего потока он быстро турбулируется и не выполняет полезной функции.

Размеры зоны с однонаправленным потоком воздуха

Из рис. 1 видно, что ламинарная зона с «глухой» плоскостью внутри бесполезна. А на рис. 2 и 3 показан принцип организации однонаправленного потока операционной Центрального института травматологии и ортопедии (ЦИТО). В этой операционной автор шесть лет назад оперировался по поводу полученной травмы. Известно, что однонаправленный поток воздуха сужается под углом примерно 15 % и то, что было в ЦИТО, смысла не имеет.

Правильная схема показана на рис. 4 (фирма «Klimed»).

Не случайно западные стандарты предусматривают размеры потолочного диффузора, создающего однонаправленный поток 3x3 м, без «глухих» поверхностей внутри. Исключения допускаются для менее ответственных операций.

Решения по вентиляции и кондиционированию

Эти решения соответствуют западным стандартам, экономичны и эффективны.

Сделаны некоторые изменения и упрощения без потери смысла. Например, в качестве финишных фильтров в операционных и палатах интенсивной терапии применены фильтры Н14 (вместо Н13), имеющие ту же стоимость, но значительно более эффективные.

Автономные устройства очистки воздуха

Автономные воздухоочистители являются эффективным средством обеспечения чистоты воздуха (кроме помещений групп 1 и 2). Они не требуют больших затрат, позволяют принимать гибкие решения и могут использоваться в массовом порядке, особенно в действующих больницах.

На рынке представлен широкий выбор воздухоочистителей. Не все они эффективны, некоторые из них вредны (выделяют озон). Основная опасность - неудачный вы6ор воздухоочистителя.

Лаборатория испытаний чистых помещений проводит экспериментальную оценку воздухоочистителей по показателям назначения. Опора на достоверные результаты - важное условие выполнения требований ГОСТ.

Методы испытаний

В руководстве SWKI 9963 и проекте стандарта VDI 2167 дана методика испытаний операционных с использованием манекенов и генераторов аэрозолей (). Применение этой методики в России вряд ли оправданно.

В условиях небольшой по территории страны одна специализированная лаборатория может обслужить все больницы. Для России это нереально.

С нашей точки зрения, и не нужно. С помощью манекенов отрабатываются типовые решения, которые закладываются в стандарт, а затем служат основой проектирования. Эти типовые решения отрабатываются в условиях института, что и сделано в г. Люцерн (Швейцария).

В массовой практике типовые решения применяются непосредственно. На готовом объекте проводятся испытания на соответствие стандартам и проекту.

ГОСТ Р 5253962006 дает систематизированную программу испытаний чистых помещений больниц по всем необходимым параметрам.

Болезнь легионеров - спутник старых инженерных систем

В 1976 г. в одном из отелей Филадельфии проходил конгресс Американского легиона. Из 4000 участников - 200 заболели, а 30 человек погибли. Причиной явился вид микроорганизмов, названный Legionella pneumophila в связи с упомянутым событием и насчитывающий более 40 разновидностей. Сама болезнь была названа болезнью легионеров.

Симптомы заболевания проявляются через 2-10 дней после инфицирования в виде головной боли, болей в конечностях и горле, сопровождаемых лихорадкой. Течение болезни сходно с обычной пневмонией, в связи с чем ее часто ошибочно диагностируют как пневмонию.

По официальной оценке в Германии с населением около 80 млн человек ежегодно страдают от болезни легионеров около 10 тыс. человек, но большинство случаев остаются нераскрытыми.

Инфекция передается воздушно6капельным путем. Возбудитель попадает в воздух помещения из старых систем вентиляции и кондиционирования, систем обеспечения горячей водой, душевых и пр. Legionella размножается особенно быстро в стоячей воде при температуре от 20 до 45 °С. При 50 °С происходит пастеризация, а при 70 °С - дезинфекция.

Опасными источниками являются старые большие здания (в т. ч. больницы и роддома), имеющие системы вентиляции и горячее водоснабжение.

Средства борьбы с болезнью - применение современных систем вентиляции с достаточно эффективными фильтрами и современных систем подготовки воды, включая циркуляцию воды, ультрафиолетовое облучение потока воды и пр.**

* Особую опасность представляют аспергиллы - широко распространенные плесневые грибы, обычно безвредные для людей. Но они представляют опасность для здоровья иммунодефицитных больных (например медикаментозная иммуносупрессия после трансплантации органов и тканей или больные с агранулоцитозом). Для таких больных ингаляция даже малых доз спор аспергилл может быть причиной тяжелых инфекционных заболеваний. На первом месте здесь находится легочная инфекция (пневмония). В больницах часто наблюдаются случаи инфицирования, связанные с проведением строительных работ или реконструкцией. Эти случаи вызваны выделением спор аспергилл из строительных материалов во время проведения строительных работ, что требует принятия специальных защитных мер (SWKI 99.3).

** Использованы материалы статьи M. Hartmann «Keep Legionella bugs at bay», Cleanroom Technology, March, 2006.

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ ТЕМЫ:

Воздух плохо вентилируемых палат и других закрытых помещений боль­ниц вследствие изменений в химическом и бактериальном составе, фи­зических и других свойств способен оказать вредное влияние на состоя­ние здоровья, вызывая или ухудшая течение заболеваний легких, сердца, почек и др. Все это говорит о большом гигиеническом значении со­стояния воздушной среды, так как чистый воздух составляет, по мнению Ф.Ф. Эрисмана, одну из первых эстетических потребностей человече­ского организма.

ЦЕЛЬ ЗАНЯТИЯ:

    Закрепить теоретические знания о гигиеническом значении чистоты воздуха (СО 2 . антропотоксины, бакобсемененность).

    Научить студентов методам определения углекислоты и бакобсемененности воздуха и оценке степени загрязнения воздуха в соот­ветствии с гигиеническими нормативами.

    Изучить гигиенические требования к вентиляции различных поме­щений больниц.

    Научить студентов методам оценки вентиляционного режима (расчет кратности воздухообмена при естественной вентиляции).

ВОПРОСЫ ТЕОРИИ:

      Показатели загрязнения воздуха (органолептические, физические, химические, бактериологические).

      Физиолого-гигиепическое значение углекислоты.

      Методы определения углекислоты в закрытых помещениях.

      Расчет и оценка кратности воздухообмепа по углекислоте.

      Методы определения бактериальной загрязненности воздуха больничных помещений и их гигиеническая оценка.

ПРАКТИЧЕСКИЕ НАВЫКИ:

Студенты должны:

        Освоить методику определения углекислоты экспресс-методом.

        Изучить устройство и правила работы с прибором Кротова.

        Научиться оценке состояния воздушной среды и обоснованию режи­мов проветривания (на примере решения ситуационных задач).

Литература:

А) основная:

1.Гигиена с основами экологии человека [Текст] : учебник для студентов высшего профессионального образования, обучающихся по специальностям 060101.65 "Лечебное дело", 0601040.65 "Медико-профилактическое дело" по дисциплине "Гигиена с основами экологии человека. ВГ" / [П. И. Мельниченко и др.] ; под ред. П. И. Мельниченко.- М. : ГЭОТАР-Медиа, 2011 .- 751 с.

2. Пивоваров, Юрий Петрович. Гигиена и основы экологии человека [Текст] : учебник для студентов медицинских вузов, обучающихся по специальности 040100 "Лечебное дело", 040200 "Педиатрия" / Ю. П. Пивоваров, В. В. Королик, Л. С. Зиневич; под ред. Ю. П. Пивоварова.- 4-е изд., испр. и доп. - М. : Академия, 2008 .- 526 с.

3. Кича, Дмитрий Иванович. Общая гигиена [Текст] : руководство к лабораторным занятиям: учебное пособие / Д. И. Кича, Н. А. Дрожжина, А. В. Фомина.- М. : ГЭОТАР-Медиа, 2010 .- 276 с.

Б) дополнительная литература:

1. Мазаев, В.Т. Коммунальная гигиена [[Текст]] : учебное пособие для вузов: [В 2 ч.] / В. Т. Мазаев, А. А. Королев, Т. Г. Шлепнина; под ред. В. Т. Мазаева.- М. : ГЭОТАР-Медиа, 2005.

2. Щербо, А. П. Больничная гигиена / А. П. Щербо.- СПб. : Изд-во СПбМАПО, 2000 .- 482с.

УЧЕБНЫЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОЙ ПОДГОТОВКИ

Санитарная оценка чистоты воздуха

Присутствие в закрытых помещениях людей или животных приводит к загрязнению воздуха продуктами метаболизма (антропотоксины и другие химические вещества).Известно, что человек в процессе жизнедеятель­ности выделяет более 400 различных соединений - аммиак, аммонийные соединения сероводород, летучие жирные кислоты, индол, меркаптан, акролеин, ацетон, фенол, бутан, окись этилена и др. Выдыхаемый воздух содержит всего 15-16% кислорода и 3,4-4,7% углекислого газа, насыщен водяными парами и имеет температуру около 37. В воздух поступают патогенные микроорганизмы (стафилококки, стрептококки и др.), уменьшается количество легких ионов и накапливаются тяжелые. Кро­ме того, в процессе эксплуатации лечебных учреждений в воздух палат­ных, приемных, лечебно-диагностических отделений могут поступать неприятные запахи, обусловленные повышением содержания недоокисленных веществ, применением строительных материалов (древесина, по­лимерные материалы), использованием различных медикаментов (эфира, кислорода, газообразных анестетических веществ, испарением лекар­ственных средств). Все это оказывает неблагоприятное воздействие как на персонал, так и, в особенности, на больных. Поэтому контроль за химическим составом воздуха и его бактериальной обсемененностью имеет важное гигиеническое значение.

Для оценки чистоты воздуха используют ряд показателей:

1. Органолептические.

Органолептические свойства воздуха основных помещений ЛПУ (при применении 6-балыюй шкалы Райта) должны соответствовать следую­щим параметрам: оценке 0 (отсутствие запаха), воздух подсобных поме­щений - оценке 1 (едва заметный запах).

2. Химические.

    Концентрация кислорода - 20-21%.

    Концентрация углекислоты до 0,05% (очень чистый воздух), до 0,07% (воздух хорошей чистоты), до 0,17с (воздух удовлетворительной чистоты).

    Концентрации химических веществ соответствуют ПДК для атмо­сферного воздуха.

    Окисляемость воздуха (количество кислорода в мг, необходимых для окисления органических веществ в 1 м 3 воздуха): чистый воздух - до 6 мг/м 3 , умеренно загрязненный - до 10 мг/м 3 ; воздух плохо проветри­ваемых помещений - более 12 мг/м 3 .

3.Физические

    Изменение температуры воздуха и относительной влажности.

    Коэффициент униполярности - отношение концентрации тяжелых ио­нов. Чистый атмосферный воздух имеет коэффициент униполярности 1,1-1.3. При загрязнении воздуха коэффициент униполярности увеличи­вается.

    Показателем электрического состояния воздуха является концентра­ция легких ионов (сумма отрицательных и положительных.) порядка 1000-3000 ионов в 1 см 3 воздуха (±500).

    Бактериологические ("Методические указания по микробиологи­ческому контролю за санитарио-гигиеническим состоянием больниц и родильных домов" номер 132-11):

    1. Хирургические операционные: общая обсемененность воздуха до на­чала операции не должна превышать 500 микробов в 1 м 3 , после операции - 1000; патогенные стафилококки и стрептококки не должны определяться в 250 л воздуха.

      Предоперационные и перевязочные: общая обсемененность воздуха до начала работы не должна превышать 750 микробов В 1 м 3 , после работы - 1500; патогенные стафилококки и стрептококки не долж­ны обнаруживаться в 250 л воздуха.

      Родильные залы: общая обсемененность воздуха - менее 2000 микробов в 1 м3 , количество гемолитических стафилококков и стрептококков - не более 24 в 1 м 3 .

      Манипуляционные комнаты: общая обсемененность воздуха - менее 2500 микробов в 1 м 3 .; число гемолитических стафилококков и стрептококков - не более 32 в 1 м 3 воздуха.

      Палаты для больных скарлатиной: общая обсемененность - менее 3500 микробов в 1 м 3 ; число гемолитических стафилококков и стрептококков - до 72-100 в 1 м 3 воздуха.

      Палата для новорожденных: общая обсемененность воздуха - менее 3000 микробов в 1 м 3 ; количество гемолитических стафилококков и стрептококков - менее 44 в 1 м 3 воздуха.

В остальных больничных помещениях чистым воздухом для летнего режима микроорганизмов в 1 м 3 – 3500,

гемолитического стафилококка - 24, зеленящего и гемолитического стрептококка - 16; для зимнего режима эти показатели составляют) соответственно 5000, 52 и 36.

Оценка загрязнения воздуха помещений продуктами метаболизма по содержанию двуокиси углерода.

Обнаружение в воздухе всех многочисленных продуктов метаболизма связано с большими трудностями, поэтому принято качество воздушной среды в помещениях оценивать косвенно по интегральному показателю - содержанию углекислого газа. Экспресс-метод определения СО2 в воз­духе основан на реакции углекислоты с раствором соды. Принцип мето­да заключается в том, что окрашенный в розовый цвет раствор соды с индикатором фенолфталеином обесцвечивается, когда весь углекислый натрий взаимодействует с СО2 воздуха и превращается в двууглекислую соду. В шприц объемом 100 мл набирают 20 мл 0,005%) раствора соды с фенолфталеином, а затем засасывают 80 мл воздуха и встряхивают в течение 1 минуты. Если не произошло обесцвечивание раствора, воздух из шприца осторожно выжимают, оставив в нем раствор, вновь набирают порцию воздуха и встряхивают еще 1 мин. Эту операцию повторяют 3-4 раза, после чего добавляют воздух небольшими порциями, по 10-20 мл, каждый раз встряхивая шприц в течение 1 мин до обесцвечивания рас­твора. Подсчитав общий объем воздуха, прошедшего через шприц опре­деляют концентрацию СО2 в воздухе по таблице

Зависимость содержания СО 2 в воздухе от объема воздуха, обеспечи­вающего 20 мл 0,005% раствора соды

Объем возду­ха, мл

Конц. С0 2 %

Объем возду­ха, мл

Конц. С0 2 %

Объем возду­ха, мл

Конц. С0 2 %

Санитарно-бактериологическое исследование воздуха

Различают следующие методы:

    седиментационный - основан на принципе самопроизвольного осаж­дения микроорганизмов;

    фильтрационные методы - заключаются в просасывании определенн­ого объема воздуха через стерильную среду, после чего фильтрующий материал используется для выращивания бактерий на питательных средах (мясопептонном агаре - для определения микробного числа и агаре с кровью - для подсчета количества гемолитических стрептококков);

    основанные на принципе ударного действия воздушной среды.

Одним из наиболее совершенных считается последний, поскольку он обеспечивает лучшее улавливание высокодисперсных фаз микробного аэрозоля. Наиболее распространенным в санитарной практике является седиментационно-аспирационный забор воздуха с помощью прибора Кротова. Прибор Кротова представляет собой цилиндр со съемной крышкой, в которой находится мотор с центробежным вентиляторам. Исследуемый воздух всасывается со скоростью 20-25 л/мин через клино­видную щель в крышке прибора и ударяется о поверхность плотной пи­тательной среды. Для равномерного посева микробов чашка Петри с пи­тательной средой вращается со скоростью 1 оборот в 1 сек. Общий объем воздуха при значительном загрязнении воздуха должен составлять 40-50 л, при незначительном - более 100 л. Чашку Петри закрывают крышкой, надписывают и ставят в термостат на 2 суток при температуре 37° С, после чего подсчитывают количество выросших колоний. Учитывая объем взятой пробы воздуха, вычисляют количество микробов в 1 м 3

Пример подсчета: Через прибор пропустили 60 л воздуха в течение 2 мин (30 л/мин). Число выросших колоний 510. Количество микроорга­низмов в 1 м 3 воздуха равно: 510/60 х1000 = 8500 в 1 м 3 .

Гигиенические требования к вентиляции больниц

В современном типовом проектировании лечебно-профилактических уч­реждений отмечается тенденция к увеличению этажности и коечности стационаров, а также числа диагностических отделений и служб. Это дает возможность сократить площадь застройки, протяженность комму­никаций, избавиться от дублирования вспомогательных служб, позволяет создать более мощные лечебно-диагностические отделения. Вместе с тем большее уплотнение палатных отделений, расположение их по вер­тикали увеличивает возможность перетекания воздушных потоков по палатным секциям и этажам. Эти особенности современного больнич­ного строительства предъявляют повышенные требования к организации воздухообмена с целью предупреждения вспышек внутрибольничных инфекций и послеоперационных осложнений. Особенно это относится к операционным блокам, хирургическим стационарам, учреждениям родо­вспоможения, детским и инфекционным отделениям больниц. Так, при проведении операций в операционных с вентиляционными установками, обеспечивающими 5-6-кратный воздухообмен и 100 % очистку воздуха от микроорганизмов, число гнойно-воспалительных осложнений не пре­вышает 0,7-1,0%, а в операционных - при отсутствии приточно- . вытяжной вентиляции возрастает до 20-30% и более. Требования к вентиляции изложены в СниП-2.04.05-80 «Отопление, вентиляция и конди­ционирование воздуха». Для работы систем отопления и вентиляции устанавливают два режима: режим холодного и переходного периодов года (температура воздуха ниже +10° С), режим тепловою периода года (температура выше 10 С). Для создания изолированного воздушного режима палат следует их проектировать со шлюзом, имеющим сообще­ние с санузлом. Вытяжная вентиляция палат должна осуществляться по­средством индивидуальных каналов, что исключает перетекание воздуха по вертикали. В инфекционных отделениях вытяжная вентиляция пред­усматривается во всех боксах и полубоксах отдельно гравитационным побуждением (за счет теплового напора), путем устройства самостоя­тельных каналов и шахт, а также установкой дефлекторов для каждого из перечисленных помещений. Приток воздуха в боксы, полубоксы, фильтры-боксы должен осуществляться за счет инфильтрации из кори­дора, через неплотности строительных конструкций. Для обеспечения рационального обмена воздуха операционного блока следует обеспечить движение воздушных потоков из операционных в прилегающие к ней помещения (предоперационные, наркозные), а также из этих помеще­ний в коридор. В коридоре операционных блоков оборудуют вытяжную вентиляцию. Наибольшее распространение в операционных получила схема подачи воздуха через приточные устройства, расположенные под потолком под углом в 15.С вертикальной плоскости и удаление ею из двух зон помещения (верхней и нижней.). Такая схема обеспечивает ламинарность движения воздушного потока и улучшает гигиенические условия помещений. Другая схема заключается в подаче воздуха в опе­рационную через потолок, через перфорированную панель и боковые приточные щели, которые создают стерильную зону и воздушную завесу. Кратность воздухообмена в центральной части операционной при этом достигает до 60-80 в 1 час. Во всех помещениях лечебных учреждений, кроме операционных, помимо организованной системы вентиляции должны устраиваться в окнах откидные фрамуги. Наружный воздух, по­даваемый приточными установками в операционные, наркозные, родо­вые, реанимационные, послеоперационные палаты, палаты интенсивной терапии, в 1-2-коечные палаты для больных с ожогами кожи, палаты для новорожденных, недоношенных и травмированных детей, очищают до­полнительно в бактериологических фильтрах. Для снижения микробной обсемененности воздуха в помещения малого объема рекомендуются воздухоочистители передвижные, рециркулярные, обеспечивающие быструю и высокоэффективную очистку воздуха. Запыленность и бакте­риальная обсемененность после 15 мин непрерывной работы при этом уменьшается в 7-10 раз. Работа воздухоочистителей основана на непре­рывной циркуляции воздуха через фильтр из ультратонких волокон. Они работают в режиме как полной рециркуляции, так и с забором воздуха из смежных помещений или с улицы. Воздухоочистители используют для очистки воздуха во время операции. Они не вызывают неприятных ощу­щений и не влияют на окружающих.

Кондиционирование воздуха - это комплекс мероприятий для создания и автоматического поддержания в помещениях лечебных учреждений оптимального искусственного микроклимата и воздушной среды в операционных, наркозных, родовых, послеоперационных палатах, реанимационных, палатах интенсивной терапии, кардиологических и эндокри­нологических отделениях, в 1-2-коечных палатах больных с ожогами Кожи, для 50% коек в отделениями для грудных и новорожденных детей, а также во всех палатах отделений недоношенных и травмированных де­тей. Автоматическая система регулировки микроклимата должна обес­печивать требуемые ею параметры: температура воздуха - 17-25 С 0 , от­носительная влажность - 40-70%, подвижность - 0,1-0,5 м/сек.

Санитарная оценка эффективности вентиляции производится на основа­ние:

    санитарного обследования вентиляционной системы и режима ее эксплуатации;

    расчета фактического объема вентиляции и кратности воздухообме­на по данным инструментальных замеров;

    объективного исследования воздушной среды и микроклимата вен­тилируемых помещений.

Оценив режим естественной вентиляции (инфильтрация наружного воз­духа через различные щели и неплотности в окнах, дверях и отчасти через поры строительных материалов в помещения), а также проветри­вание их с помощью открытых окон, форточек и других отверстий, устраиваемых для усиления естественного воздухообмена, рассматривают устройство аэрационных приспособлений (фрамуги, форточки, аэрационные каналы) и режим проветривания. При наличии искусственной вентиляции (механическая вентиляция, которая не зависит от наружной температуры и давления ветра и обеспечивает при известных условиях подогрев, охлаждение и очистку наружного воздуха) уточняют время ее функционирования в течение суток, условия содержания воздухозаборных и воздухоочистительных камер. Далее необходимо определить эф­фективность вентиляции, находя ее из фактического объема и кратности воздухообмена. Следует различать необходимые и фактические величины объема и кратности воздухообмена.

Необходимый объем вентиляции - это количество свежего воздуха, ко­торое следует подать в помещение на 1 человека в час, чтобы содержание СО 2 не превысило допустимого уровня (0,07% или 0,1%).

Под необходимой кратностью вентиляции понимают число, показы­вающее сколько раз в течение 1 часа воздух помещения должен сме­ниться наружным, чтобы содержание СО 2 не превысило допустимого уровня.

Вентиляция может быть естественной и искусственной

Под естественной вентиляций подразумевается обмен воздуха помещения с наружным через различные щели и неплотности, имеющиеся в оконных проемах и пр. и отчасти через поры строительных материалов (так называемая инфильтрация), а также через форточки и другие отверстия, устраиваемые для усиления естественного воздухообмена. В том и другом случае обмен воздуха происходит главным образом вследствие разницы температуры наружного и комнатного воздуха и давления ветра.

Лучшим приспособлением для проветривания помещения являются фрамуги устраиваемые в- верхней части окон, они уменьшают напор ветра и токи холодного воздуха, проходящего через них, попадают в зону пребывания людей уже перемещенный с теплым воздухом комнаты. Минимальным отношением площади форточки и площади пола, необходимы для обеспечения достаточного проветривания является 1: 50, т.е. при площади комнаты 50м2. ПЛОЩАДЬ ФОРТОЧЕК ДОЛЖНА быть не менее 1м 2 .

В зданиях общественного назначения с большим скоплением людей, а также в помещениях с повышением загрязнением воздуха одной, естественной вентиляции бывает недостаточно и кроме того в холодное время года ею не всегда можно широко пользоваться ввиду опасности образования холодных потоков воздуха. Поэтому в ряде помещений устраивает искусственную механическую вентиляцию, не зависящую от температурных колебаний наружного воздуха и давлении ветра, обеспечивают возможность подогрева наружного воздуха. Она может быть местной - для одного помещения и центральной - для всего здания. При местной вентиляции вредные примеси удаляются непосредственно с места их образования, а при общеообменной обменивается воздух всего помещения.

Воздух, поступающий в помещение, называется приточным, а удаляемый - вытяжным. Система вентиляции, которая обеспечивает только подачу чистого воздуха, называется приточной, а та, что только удаляет загрязненный воздух - вытяжной.

Приточно-вытяжная вентиляция одновременно подает чистый воздух и удаляет загрязненный. Обычно воздух по притоку обозначается знаком (+), по вытяжке - знаком (-).

Приток и вытяжка могут быть сбалансированными: либо с преобладанием притока, либо вытяжки.

Для борьбы с парообразованием вентиляция устраивается с преобладанием вытяжки над притоком. В операционных и родильных приток преобладает над вытяжкой. Этим достигается большая гарантия сохранения воздуха в операционных и родильных залах в чистоте, так как при такой организации воздух из них поступает в соседние помещения, а не наоборот,

К вентиляционным системам и установкам предъявляют следующие гигиенические требования:

    Обеспечить необходимую чистоту воздуха;

    Не создавать высоких и неприятных скоростей движения воздуха;

    Поддерживать вместе с системами отопления физические параметры воздуха - необходимую температуру и влажность;

    Быть безотказными и простыми в эксплуатации;

    Бесперебойно работать;

    Быть бесшумными и безопасными.

Критерии, определяющие необходимый воздухообмен, меняются в зависимости от назначения помещения. Например, для расчета вентиляции бань, душевых, прачечных пользуются допустимыми температурными величинами и содержанием влаги в воздухе. Для расчета вентиляции жилищ пользуются величинами углекислоты в воздухе, а также антропотоксинов, но они широкого применения не нашли, из-за трудности их определения.

М. Петтенкофер предложил считать гигиенической нормой содержания СО 2 - 0,07%, К.Флугге - -0,1%, О.Б.Елисова-0,05%. Величина СО 2 в воздухе жилых помещений 0,1% до сих пор является общепризнанной для оценки степени, загрязнения воздуха от присутствия людей. Углекислый газ накапливается в помещениях в результате жизнедеятельности организма в количествах, находящихся в прямой зависимости от степени загрязнения воздуха другими показателями обмена веществ человека(продукты разложения зубного налета, водяные пары и др., которые делают воздух "спертым, жилым" и неблагоприятно влияют на людей на их самочувствие).

Отмечено, что такие качества воздух приобретает при концентрации С0 2 более 0,1%,хотя данные концентрации СО 2 сами по себе не оказывают вредное воздействие на организм.

Так как концентрации СО 2 в воздухе определить значительно легче, чем наличие летучих соединений (антропотоксинов), поэтому в санитарной практике принято оценивать степень загрязнения воздуха жилых и общественных зданий по концентрации СО 2 .

Особое внимание уделяется организации вентиляции в кухнях и санитарных узлах. Недостаточный воздухообмен или неправильно работающая вытяжная вентиляция часто приводит к ухудшению состава воздуха не только в этих помещениях, но и в жилых комнатах.

При проверке эффективности вентиляции прежде всего необходимо оценить:

Состояние воздуха температура, влажность, наличие вредных паров, микроорганизмов, накоплении двуокиси углерода в обследуемых помещениях;

Объем вентиляции - т.е. количество подаваемого или удаляемого воздуха вентиляционными устройствами в м 3 за час. Этот показатель оценивается с учетом количества людей в помещениях, его объема, источника загрязнения воздуха и зависит от скорости движения воздуха и площади сечения канала.

3. Кратность вентиляции - показатель указывающий во сколько раз обменивается воздух обследуемых помещений в течении часа. Для жилых помещений коэффициент кратности должен составлять 2-3 , т.к. менее 2-х раз не будет обеспечиваться потребность воздушного куба на 1 человека, а более 3-х раз создает избыточную скорость движения воздуха.

ВИДЫ ВЕНТИЛЯЦИИ

ИСКУССТВЕННАЯ

1.Местная - а) Приточная(+)

б) Вытяжная(-)

2.Общеообменная - а) Вытяжная (-)

б) Приточно-вытяжная (+ -)

в) Приточная (+)

3. Кондиционирование - а) Центральное

б) Местное

ЕСТЕСТВЕННАЯ

1. Неорганизованная(инфильтрация)

2. Организованная(аэрация)

Кратность обмена воздуха в больничных помещениях (СНиП-П-69-78)

Помещения

Кратность воздухообмена в ч.

приток вытяжка

Палаты для взрослых

80 м 3 на одну койку 80 м 3 на одну хойку

Палаты предродовые, перевязочные, манипу- ляционные, предоперационные, процедурные

Родовые, операционные, послеоперационные палаты, палаты интенсивной терапии

По расчету, но не менее десятикратного обмена

Палаты послеродовые

80 м 3 на одну койку

Палаты для детей

80 м 3 на одну койку

Палаты для недоношенных, грудных и ново­рожденных детей

По расчету, но не менее 80 м 3 на кровать

Б оксы и полубоксы, палатные секции ин­фекционного отделения

2.5 2,5

Кабинеты врачей, комнаты персонала

Помещения для санитарной обработки боль­ных, душевые, кабины личной гигиены

Помещения для хранения трупов

Для определения кратности воздухообмена в помещении при естествен­ной вентиляции необходимо учитывать кубатуру помещения, число находящихся в нем людей и характер проводимой в нем работы. С исполь­зованием перечисленных выше данных кратность естественного возду­хообмена можно рассчитать по следующим трем методам:

1. В жилых и общественных домах, где изменения качества воздуха про­исходит в зависимости от количества присутствующих людей и бытовых процессов, связанных с ними, расчет необходимого воздухообмена про­изводят обычно по углекислоте, выделяемой одним человеком. Расчет объема вентиляции по углекислоте производят по формуле:

L = К х n / (Р - Ps) (м 3 /ч)

L - искомый объем вентиляции, м3 ; К - объем углекислоты, выделяемой 1 человеком в час (22,6 л); n - количество людей в помещении; Р - мак­симально допустимое содержание углекислоты в воздухе помещений в промиллях (1% или 1,0 л/м кубического воздуха); Ps - содержание уг­лекислоты в атмосферном воздухе (0,4 промилли или 0,4 л/ м3)

В расчете на 1 человека объем потребного вентиляционного воздуха составляет в расчете на 1 человека 37,7м3 в час. Исходя из нормы вентиляционного воздуха, устанавливают размеры воздушного куба, который в обычных жилых помещениях должен быть не менее 25 м 3 при расчете на взрослого человека. Необходимая вентиляция при этом достигается при 1.5-кратном обмене воздуха в час (37,7:25=1,5).

помещений:

2. углекислый газ

3. угарный газ

4. сернистый газ

5. Предельно допустимое содержание углекислого газа в воздухе

помещений составляет:

6. Воды, наиболее часто подвергающиеся бактериальному загрязнению:

1. грунтовые

2. поверхностные

3. межпластовые напорные

4. межпластовые не напорные

7. Зона санитарной охраны водоисточника:

1. территория, на которой запрещено строительство предприятий

2. территория около водоисточника

3. территория, на которой установлен специальный режим, направленный на охрану водоисточника от загрязнений

4. территория населенного пункта

8. Централизованное водоснабжение:

1. подвоз воды автотранспортом

2. подача воды по водопроводу

3. забор воды из колодца

4. забор воды непосредственно из родника

9. Общая жесткость воды обусловлена содержанием:

2. йода, фтора

3. кальция, магния

4. сульфатов, хлоридов

10. Повышенное содержание фтора в почве и воде может привести к:

1. флюорозу

2. кариесу

3. эндемическому зобу

4. метгемоглобинемии

11. Заболевание, причина которого связана с недостатком йода во внешней среде и в том числе в воде:

1. гигиантизм

2. эндемический зоб

3. флюороз

4. эндемический энцефалит

12. Недостаток, какого микроэлемента в воде вызывает кариес зубов:

13. Избыток химических соединений в воде, вызывающих расстройство

желудочно-кишечного тракта:

2. сульфатов

3. нитратов

4. хлоридов

14. Заболевание, к возможному возникновению которого предрасполагает

повышенная жесткость воды:

1. хронический колит

2. панкреатит

3. мочекаменная болезнь

4. хронический холецистит

15. Заболевание, передающееся через воду:

1. дифтерия

2. газовая гангрена

16. Из перечисленных заболеваний к эндемическим относят:

1. флюороз

3. дизентерия

17. Дезинфекция воды – это:

3. коагуляция воды

4. фильтрация воды

18. Предупреждение загрязнения почвы твердыми и жидкими отбросами достигается:

4. организации субботников один раз в год

Часть 2

Инструкция: Дополните ответ.

Питание, являющееся элементом комплексного лечения больных, называется _____________________.

Питание, компенсирующее неблагоприятное действие факторов внешней и производственной среды, называется _____________________.

24. Укажите основной источник белка в пище _____________________.

25. Укажите основной источник углеводов в пище _____________________.

26. Рахит может развиваться при недостатке в организме витамина _____________________.

27. Кровоточивость десен и низкая заживляемость ран связаны с дефицитом витамина_____________________.

Часть 3.

Инструкция: Решите задачу.

28. У пациента отмечаются признаки недостаточности витамина А. Перечислите эти признаки.

29. В производственных условиях рассматривался вопрос по внедрению мероприятий, наиболее эффективных с точки зрения снижения действия неблагоприятных факторов производственной среды на природу и человека. Укажите эти мероприятия.

30. В отношении медицинских работников технологические и технические мероприятия по снижения неблагоприятного действия на организм оказываются малоэффективными. Укажите, какие мероприятия применяются в отношении медицинских работников.

Вариант № 2

Часть 1

Инструкция: Выберите один правильный ответ.

1. Повышенное содержание фтора в почве и воде может привести к:

1. флюорозу

2. кариесу

3. эндемическому зобу

4. метгемоглобинемии

2. Заболевание, причина которого связана с недостатком йода во внешней среде и в том числе в воде:

1. гигиантизм

2. эндемический зоб

3. флюороз

4. эндемический энцефалит

3. Недостаток, какого микроэлемента в воде вызывает кариес зубов:

4. Избыток химических соединений в воде, вызывающих расстройство

желудочно-кишечного тракта:

2. сульфатов

3. нитратов

4. хлоридов

5. Заболевание, к возможному возникновению которого предрасполагает

повышенная жесткость воды:

1. хронический колит

2. панкреатит

3. мочекаменная болезнь

4. хронический холецистит

6. Заболевание, передающееся через воду:

1. дифтерия

2. газовая гангрена

7. Из перечисленных заболеваний к эндемическим относят:

1. флюороз

3. дизентерия

8. Дезинфекция воды – это:

1. уничтожение патогенных микроорганизмов и вирусов

2. освобождение воды от мути и взвеси

3. коагуляция воды

4. фильтрация воды

9. Предупреждение загрязнения почвы твердыми и жидкими отбросами достигается:

1. складированием мусора на определенной территории домовладения

2. сбором отбросов в ямах, вырытых на территориях домовладения

3. санитарной очисткой населенных мест

4. организации субботников один раз в год

10. Наука, изучающая влияние факторов окружающей среды на организм

человека, называется:

1. биология

2. гигиена

3. санитария

4. экология

11. Воздействие человеческой деятельности на природу:

1. абиотическое

2. биотическое

Современный человек проводит в помещениях жилых и об­щественных зданий в зависимости от образа жизни и условий трудовой деятельности от 52 до 85 % суточного времени. По­этому внутренняя среда помещений даже при относительно невысоких концентрациях большого количества токсических веществ небезразлична для человека и может влиять на его са­мочувствие, работоспособность и здоровье.

Кроме этого, в зданиях токсичные вещества действуют не изолированно, а в сочетании с такими факторами, как тем­пература и влажность воздуха, ионный режим, радиоактивный фон и др.

Химическое загрязнение воздуха помещений. Основными источниками загрязнения воздуха закрытых помещений явля­ются атмосферный воздух, строительные и отделочные поли­мерные материалы, жизнедеятельность организма самого чело­века и бытовая деятельность.

Качество воздушной среды закрытых помещений по хими­ческому составу в значительной степени зависит от качества ок­ружающего атмосферного воздуха, так как здания имеют пос­тоянный обмен и не защищают жителей от загрязненного атмосферного воздуха. Миграция пыли и токсичных веществ, содержащихся в атмосфере, обусловлена их естественной и ис­кусственной вентиляцией, и поэтому вещества, присутствую­щие в наружном воздухе, обнаруживаются и в помещениях, причем даже в тех, в которые подается кондиционированный воздух.

Степень проникновения различных химических загрязните­лей атмосферного воздуха в помещения различна: концентра­ции диоксида серы, озона и свинца обычно ниже, чем снаружи; концентрации оксидов азота, углерода и пыли близки внутри и снаружи; концентрации же ацетальдегида, ацетона, бензола, этилового спирта, толуола, этилбензола, ксилола и других органических соединений в воздухе помещений превышают их концентрации в атмосфере более чем в 10 раз, что, видимо, связано с внутренними источниками загрязнений.

Одним из самых мощных внутренних источников загрязне­ния воздушной среды закрытых помещений являются полимер­ные строительные и отделочные материалы. Номенклатура по­лимерных материалов насчитывает около 100 наименований. Их используют для покрытия полов, отделки стен, теплоизоляции наружных кровли и стен, гидроизоляции, герметизации и об­лицовки панелей, изготовления оконных блоков и дверей и т.д.

Масштабы и целесообразность применения полимеров в стро­ительстве жилых и общественных зданий определяются нали­чием ряда положительных свойств, облегчающих их использо­вание, улучшающих качество строительства и удешевляющих его. Однако установлено, что все полимерные материалы выде­ляют разнообразные токсичные для организма человека вещест­ва: поливинилхлоридные материалы выделяют в воздушную среду бензол, толуол, этилбензол, циклогексан, ксилол, бути­ловый спирт; древесно-стружечные плиты на фенолформальде­гидной и мочевино-формальдегидной основах - фенол, фор­мальдегид и аммиак; стеклопластики - ацетон, метакриловую кислоту, толуол, бутанол, формальдегид, фенол, стирол; лако­красочные покрытия и кленсодержащие вещества - толуол, бутилметакрилат, бутилацетат, ксилол, стирол, ацетон, бутанол, этиленгликоль; ковровые изделия из химических волокон - стирол, изофенол, сернистый ангидрид.

Интенсивность выделения летучих веществ зависит от усло­вий эксплуатации полимерных материалов - температуры, влажности, кратности воздухообмена, времени эксплуатации. Даже в небольших концентрациях эти химические вещества могут стать причиной сенсибилизации организма. Установле­но, что в помещениях, насыщенных полимерными материала­ми, наблюдается большая подверженность населения аллерги­ческим и простудным заболеваниям, гипертонии, неврастении, вегетососудистой дистонии. Наиболее чувствительными явля­ются организмы детей и больных людей.

Следующим внутренним источником загрязнения воздуш­ной среды помещений являются продукты жизнедеятельности организма человека - антропотоксины. Установлено, что чело­век в процессе своей жизнедеятельности вьщеляет около 400 хи­мических соединений, названных антропотоксинами, причем пятая часть из них относится к числу высокоопасных веществ (2-й класс опасности), это диметиламин, сероводород, диоксид азота, окись этилена, бензол.

Концентрации диметиламина и сероводорода превышали ПДК для атмосферного воздуха; превышали ПДК или находи­лись на их уровне концентрации диоксида и оксида углерода, аммиака.

К 3-му классу - малоопасным веществам - относятся ук­сусная кислота, фенол, метилстирол, толуол, метанол, винил­ацетат.

Остальные вещества составляли десятые и меньшие доли ПДК, но взятые вместе они свидетельствовали о неблагополу­чии воздушной среды, поскольку даже 2-4-часовое пребыва­ние в этих условиях отрицательно сказывалось на состоянии умственной работоспособности испытуемых. Воздушная среда невентилируемых помещений ухудшается пропорционально числу людей и времени их пребывания в помещении.

Источником загрязнения воздушной среды являются и бы­товые процессы. Газификация квартир повышает уровень их благоустройства, но результаты многочисленных исследова­ний показали, что открытое сжигание газа ухудшает состояние воздушной среды газифицированных жилищ в плане загрязне­ния разнообразными химическими веществами и ухудшения микроклимата помещений.

Было установлено, что при часовом горении газа в воздухе помещений концентрации веществ составляли (мг/м3): оксид углерода - 15; формальдегид - 0,037; оксид азота - 0,62; ди­оксид углерода - 0,44; бензол - 0,07, причем высокие кон­центрации этих веществ обнаруживались не только на кухне, но и в жилых помещениях.

Температура воздуха в помещении во время горения газа по­вышалась на 3-6 "С, влажность - на 10-15 %. После выклю­чения газа концентрации химических веществ снижались, но к исходным величинам иногда не возвращались и через 1,5-2,5 ч.

Источником бытового загрязнения воздуха является и куре­ние. При курении воздух загрязняется, по данным хроматомасс-спектрометрического анализа, 186 химическими соедине­ниями, в числе которых оксиды углерода и азота, серы, стирол, ксилол, лимонен, бензол, этилбензол, никотин, формальдегид, сероводород, фенол, акролеин, ацетилен, бенз(а)пирен, причем в достаточно высоких концентрациях.

У пассивных курильщиков (некурящих людей, находящихся рядом с курящими), компоненты табачного дыма вызывали раздражение слизистых оболочек глаз, увеличение содержания в крови карбоксигемоглобина, учащение пульса, повышение уровней артериального давления. С табакокурением напрямую связывают развитие рака бронхолегочной системы. Подсчита­но, что 40 выкуренных сигарет в день поставляют в легкие око­ло 150 мг бенз(а)пирена дополнительно к бенз(а)пирену атмос­ферного воздуха.

Микробное загрязнение воздуха помещений. В воздухе обна­руживаются различные микроорганизмы, из которых наиболь­ший гигиенический интерес представляют бактерии и вирусы. Атмосферный воздух не является благоприятной средой для жизнедеятельности микроорганизмов, и поэтому, попав в нее, они сравнительно быстро погибают вследствие высыхания, от­сутствия питательного материала и бактерицидного действия ультрафиолетового излучения Солнца. Бактерии, содержащие­ся в атмосфере, являются сапрофитами, которые отличаются большей устойчивостью в окружающей среде, чем патогенные микробы.

В воздухе же закрытых, плохо проветриваемых и перенаселен­ных людьми помещений содержится значительное количество микробов, среди которых могут быть и патогенные (возбудите­ли вирусных заболеваний - гриппа, кори, ветряной спы и др., бактериальных - коклюша, дифтерии, скарлатины, туберкуле­за и других инфекций, которые могут иметь даже массовый, эпидемический характер распространения).

П.Н, Лащенков установил, что существуют два пути переда­чи инфекции через воздух, воздушно-капельный и воздушно­-пылевой.

При воздушно-капельном пути передачи заражение проис­ходит в результате вдыхания мельчайших капелек слюны, мок­роты, слизи, выделяемых больным или носителем микро­бов во время кашля, чиханья и даже разговора. Известно, что мельчайшие капельки могут разбрызгиваться на расстояние от I до 1,5 м, перемещаясь дальше с воздушными течениями на несколько метров, сохраняясь во взвешенном состоянии до 1 ч. При этом пути передачи в воздух, а затем и в организм воспри­имчивого человека поступают вирулентные возбудители. К то­му же они лучше защищены от высыхания, легко и быстро пос­тупая в организм людей через дыхательные пути. Все это делает воздушно-капельный путь передачи инфекций более опасным в эпидемиологическом отношении. Действительно, все эпиде­мические инфекции распространяются этим путем.

При воздушно-пылевом пути передачи инфекции заражение происходит через взвешенную в воздухе пыль, содержащую па­тогенные микроорганизмы, вирулентность которых ослаблена за счет высыхания инфицированных капелек выделений боль­ного. Пылевые частицы с осевшими на них микробами могут держаться в виде бактериального аэрозоля от нескольких минут до 2-4 ч. Между содержанием в воздухе помещений пыли и ко­личеством микробов существует прямая зависимость: чем боль­ше пыли, тем обильнее микрофлора. Поэтому борьба с пылью в закрытых помещениях одновременно является и борьбой с бактериальным загрязнением воздуха.

Мерами предупреждения передачи инфекций воздушным путем являются элементарные правила поведения при кашле и чиханье (закрывать нос и рот носовым платком, повернув­шись в сторону от рядом находящихся людей, очень эффектив­но ношение марлевых масок всеми людьми в период эпиде­мий); соблюдение чистоты в помещениях путем регулярной влажной их уборки, соблюдение установленных норм площади и кубатуры жилых и общественных зданий; санация воздуха и помещений ЛПУ с помощью дезинфектантов и бактерицид­ных ламп.

3.4 Освещение. Ра­циональное освещение необходимо прежде всего для оптимальной функции зрительного анализатора. Свет обладает и психофизиологическим действием. Рациональное освещение положительно сказывается на функциональном состоянии коры большого мозга, улучшает функцию других анализаторов. В целом световой комфорт, улучшая функциональное состояние центральной нервной системы и повышая работоспособность глаза, приводит к повышению производительности и качества труда, отдаляет утомление, способствует уменьшению производственного травматизма. Изложенное относится как к естественному, так и к искусственному освещению. Но естественное освещение, помимо того, оказывает выраженное общебиологическое действие, является синхронизатором биологических ритмов, обладает тепловым и бактерицидным действием (см. главу III). Поэтому жилые, производственные и общественные здания должны быть обеспечены рациональным дневным освещением.

С другой стороны, с помощью искусственного освещения можно создать в любом месте помещения заданную и стабильную в течение дня освещенность. Роль искусственного освещения в настоящее время высока: вторые смены, ночной труд, подземные работы, вечерние домашние занятия, культурный досуг и др.

К основным показателям, характеризующим освещение, относятся: 1) спектральный состав света (от источника и отраженного), 2) освещенность, 3) яркость (источника света, отражающих поверхностей), 4) равномерность освещения.

Спектральный состав света. Наибольшая производительность труда и наименьшая утомляемость глаза бывает при освещении стандартным дневным светом. За стандарт дневного света в светотехнике принят спектр рассеянного света с голубого небосвода, т. е. поступающего в помещение, окна которого ориентированы на север. Наилучшее цветоразличение отмечается при дневном свете. Если размеры рассматриваемых деталей один миллиметр и более, то для зрительной работы примерно одинаково освещение источниками, генерирующими белый дневной свет и желтоватый.

Спектральный состав света важен и в психофизиологическом аспекте. Так, красный, оранжевый и желтый цвета по ассоциации с пламенем, солнцем вызывают ощущение теплоты. Красный цвет возбуждает, желтый - тонизирует, улучшает настроение и работоспособность. Голубой, синий и фио­летовый кажутся холодными. Так, окраска стен горячего цеха в синий цвет создает ощущение прохлады. Голубой цвет - успо­каивает, синий и фиолетовый - угнетают. Зеленый цвет - нейтральный - приятный по ассоциации с зеленой растительностью, он меньше других утомляет зрение. Окраска стен, машин, крышек парт в зеленые тона благоприятно сказывается на самочувствии, работоспособности и зрительной функции глаза.

Окраска стен и потолков в белый цвет издавна считается гигиенической, так как обеспечивает наилучшую освещенность помещения из-за высокого коэффициента отражения 0,8-0,85. Поверхности, окрашенные в другие цвета, имеют меньший коэффициент отражения: светло-желтый - 0,5-0,6, зеленый, серый - 0,3, темно-красный- 0,15, темно-синий - 0,1, черный -- 0,01. Но белый цвет (из-за ассоциации со снегом) вызывает ощущение холода, он как бы увеличивает размер помещения, де­лает его неуютным. Поэтому стены чаще окрашивают в светло-салатовый, светло-желтый и близкие к ним цвета.

Следующий показатель, характеризующий освещение,- освещенность. Освещенностью называют поверхностную плотность светового потока. Единицей освещенности является 1 люкс - освещенность поверх­ности 1 м 2 , на которую падает и равномерно распределяется световой поток в один люмен. Люмен - световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площади 0,53 мм 2 . Освещенность обратно пропорциональна квадрату расстояния между источ­ником света и освещаемой поверхностью. Поэтому, чтобы экономно создать высокую освещенность, приближают источник к освещаемой поверхности (местное освеще­ние). Освещенность определяют люксметром.

Гигиеническое нормирование освещенности сложно, так как она влияет на функцию центральной нервной системы и на функцию глаза. Эксперименты показали, что с увеличением освещенности до 600 лк значительно улучшается функциональное состояние центральной нервной системы; дальнейшее увеличение освещенности до 1200 лк в меньшей мере, но также улучшает ее функцию, освещенность выше 1200 лк почти не оказывает влияния. Таким образом, везде, где работают люди, желательна освещенность порядка 1200 лк, минимум 600 лк.

Освещенность влияет на зрительную функцию глаза при различной величине рассматриваемых предметов. Если рассматриваемые детали имеют размер менее 0,1 мм, при освещении лампами накаливания нужна освещенность 400-1500 лк", 0,1-0,3 мм -300- 1000 лк, 0,3-1 мм -200-500 лк, 1 - 10 мм - 100-150 лк, более 10 мм – 50- 100 лк. При этих нор­мативах освещенность достаточна для функции зрения, но в ряде случаев она ме­нее 600 лк, т. е. недостаточна с психофизиологической точки зрения. Поэтому при освещении люминесцентными лампами (поскольку они экономичней) все перечисленные нормы увеличиваются в 2 раза и тогда освещенность приближается к оптимальной и в психофизиологическом отношении.

При письме и чтении (школы, библиотеки, аудитории) освещенность на рабочем месте должна быть не менее 300 (150) лк, в жилых комнатах 100 (50), кухнях 100 (30).

Для характеристики освещения большое значение имеет яркость . Яркость - сила света, излучаемого с единицы поверхности. Фактически при рассматривании предмета мы видим не освещенность, а яркость. Единица яркости - кандела на квадратный метр (кд/м 2) - яркость равномерно светящей плоской поверхности, излучающей в перпендикулярном направлении с каждого квадратного метра силу света, равную одной канделе. Яркость определяют яркомером.

При рациональном освещении в поле зрения человека не должно быть ярких источников света или отражающих поверхностей. Если рассматриваемая поверхность чрезмерно яркая, то это негативно отразится на работе глаза: появляется ощущение зрительного дискомфорта (с 2000 кд/м 2), падает производительность зрительной работы (с 5000 кд/м 2), вызывает слепимость (с 32 000 кд/м 2) и даже болевое ощущение (с 160 000 кд/ м 2). Оптимальная яркость рабочих поверхностей - несколько сот кд/ м 2 . Допустимая яркость источников освещения, находящихся в поле зрения человека, желательна не более 1000-2000 кд/ м 2 , а яркость источников, редко попадающих в поле зрения человека, не более 3000-5000 кд/ м 2

Освещение должно быть равномерным и не создавать теней . Если в поле зрения человека часто меняется яркость, то наступает утомление мышц глаза, принимающих участие в адаптации (сужение и расширение зрачка) и синхронно с ней происходящей аккомодации (изменение кривизны хрусталика). Равномерной должна быть освещенность по помещению и на рабочем месте. На расстоянии 5 м пола помещения отношение наибольшей освещенности к наименьшей не должно превышать 3:1, на расстоянии 0,75 м рабочего места - не больше 2:1. Яркость двух соседних поверхностей (например, тетрадь - парта, школьная доска - стена, рана - операционное белье) не должна отличаться больше, чем 2:1-3:1.

Освещенность, создаваемая общим освещением, должна быть не менее 10% величины, нормируемой при комбинированном, но не менее 50 лк при лампах накаливания и 150 лк при люминесцентных лампах.

Естественное освещение. Солнце создает освещенность вне помещений обычно порядка де­сятков тысяч люкс. Естественное освещение помещений зависит от светового климата местности, ориентации окон зданий, наличия затеняющих объектов (здания, деревья), устройства и размеров окон, ширины межоконных простенков, отражающей способности стен, потолка, пола, чистоты стекол и др.

Для хорошего дневного освещения площадь окон должна соответствовать площади помещений. Поэтому распространенным способом оценки естественного освещения помещений является геометрический, при котором вычисляют так называемый световой коэффициент , т. е. отношение застекленной площади окон к площади пола. Чем больше величина светового коэффициента, тем лучше освещение. Для жилых помещений световой коэффициент должен быть не меньше 1/8-1/10, для классов и больничных палат 1/5- 1/6, для операционных 1/4-1/5, для подсобных помещений 1/10-1/12.

Оценка естественного освещения только по световому коэффициенту может оказаться неточной, так как на освещенность оказывает влияние наклон световых лучей к освещаемой поверхности (угол падения лучей). В том случае если из-за противостоящего здания или деревьев в комнату попадает не прямой солнечный свет, а только отраженные лучи, их спектр лишен коротковолновой, самой эффективной в биологическом отношении части – ультрафиолетовых лучей. Угол, в пределах которого в определенную точку помещения попадают прямые лучи с небосвода, носит название угла отверстия.

Угол падения образован двумя линиями, одна из которых идет от верхнего края окна к точке, где определяются условия освещения, вторая – линия на горизонтальной плоскости, соединяющая точку измерения со стеной, на которой расположено окно.

Угол отверстия образуется двумя линиями, идущими от рабочего места: одна – к верхнему краю окна, другая – к самой верхней точке противостоящего здания или какого-либо ограждения (забор, деревья и т.п.). Угол падения должен быть не менее 27º, а угол отверстия – не менее 5 º. Освещенность у внутренней стены помещения зависит также от глубины помещения, в связи с чем для оценки условий дневного освещения определяют также коэффициент заглубления - отношение расстояния от верхнего края окна до пола к глубине комнаты. Коэффициент заглубления должен быть не менее 1:2.

Ни один из геометрических показателей не отражает полноту влияния на естественное освещение всех факторов. Влияние всех факторов учитывается светоте­ническми показателем- коэффициентом естественной освещенности (КЕО). КЕО = Е п: Е 0 *100%, где Е п - освещенность (в лк) точки, находящейся внутри помещения в 1 м от стены, противоположной окну, : Е 0 - освещенность (в лк) точки, расположенной вне помещения, при условии ее освещения рассеянным светом (сплошная облачность) всего небосвода. Таким образом, КЕО определяется как отношение освещенности внутри помещения к одновременной освещенности вне помещения, выраженное в процентах.

Для жилых помещений КЕО должен быть не менее 0,5%, для больничных палат- не менее 1%, для школьных классов- не менее 1,5%, для операционных - не менее 2,5%.

Искусственное освещение должно отвечать следующим требованиям: быть достаточно интенсивным, равномерным; обеспечивать правильное тенеобразование; не ослеплять и не искажать цвета: не нагревать; по спектральному составу приближаться к дневному.

Существует две системы искусственного освещения: общее и комбинированное , когда общее дополняют местным, концентрирующим свет непосредственно на рабочих местах..

Основными источниками искусственного освещения являются лампы накаливания и люминесцентные. Лампа накаливания- - удобный и без­отказный источник света. Одними из ее недостатков являются небольшая светоотдача, преобладание в спектре желтых и красных лучей и меньшее содержание синего и фиолетового. Хотя в психофизиологическом отношении такой спектральный состав делает излучение приятным, теплым. В отношении зрительной работы свет лампы накаливания уступает дневному лишь при необходимости рассматривания очень мелких деталей. Он непригоден в тех случаях, когда требуется хорошее цветоразличение. Поскольку поверхность нити накала ничтожно мала, я­кость ламп накаливания значительно превышает ту, которая слепит . Для борьбы с яркостью применяют защищающую от ослепляющего действия прямых лучей света осветительную арматуру и подвешивают светильники вне поля зрения людей.

Различают осветительную арматуру прямого света, отраженного, полуотраженного и рассеянного . Арматура прямого света направляет свыше 90% света лампы на освещаемое место, обеспечивая его высокую освещенность. В то же время создается значительный контраст между освещенными и неосвещенными участками помещения. Образуются резкие тени, и не исключено ослепляющее действие. Эта арматура применяется для освещения вспомогательных помещений и санитарных узлов. Арматура отраженного света характеризуется тем, что лучи от лампы направляются на потолок и на верхнюю часть стен. Отсюда они отражаются и равномерно, без образования теней, распределяются по помещению, освещая его мягким рассеянным светом. Этот вид арматуры создает наиболее приемлемое с ги­гиенической точки зрения освещение, но оно не экономично, так как при этом теряется свыше 50% света. Поэтому для освещения жилищ, классов, палат часто применяют более экономную арматуру полуотраженного и рассеянного света. При этом часть лучей освещает помещение, пройдя через молочное или матовое стекло, а часть - после отражения от потолка и стен. Подобная арматура создает удовлетворительные условия освещения, она не слепит глаза и при ней не образуется резких теней.

Люминесцентные лампы отвечают большинству требований, приведенных выше. Люминесцентная лампа представляет собой трубку из обычного стекла, внутренняя поверхность которой покрыта люминофором. Трубка заполнена парами ртути, с обеих концов ее впаяны электроды. При включении лампы в электрическую сеть между электродами возникает электрический ток («газовый разряд»), генерирующий ультрафиолетовое излучение. Под воздействием ультрафиолетовых лучей начинает светиться люминофор. Путем подбора люминофоров изготавливают люминесцентные лампы с различным спектром видимого излучения. Наиболее часто применяют лампы дневного света (ЛД), лампы белого света (ЛБ) и тепло-белого света (ЛТБ). Спектр излучения лампы ЛД приближается к спектру естественного освещения помещений северной ориентации. При нем глаза утомляются наименьше даже при рассматривании деталей небольшого размера. Лампа ЛД незаменима в помещениях, где требуется правильное цветоразличение. Недостатком лампы является то, что кожа лица людей выглядит при этом свете, богатом голубыми лучами, нездоровой, цианотичной, из-за чего эти светильники не применяют в больницах, школьных классах и ряде подобных помещений. По сравнению с лампами ЛД спектр ламп ЛБ богаче желтыми лучами. При освеще­нии этими лампами сохраняется высокая работоспособность глаза и лучше выглядит цвет кожи лица. Поэтому лампы ЛБ применяют в школах, аудиториях, жилищах, палатах больниц и т. п. Спектр ламп ЛТБ богаче желтыми и розовыми лучами, что несколько снижает работоспособность глаза, но значительно оживляет цвет кожи лица. Эти лампы применяют для освещения вокзалов, вестибюлей ки­нотеатров, помещений метро и т. п.

Разнообразие спектра является одним из гигиенических п реимуществ этих ламп. Светоотдача люминесцентных ламп в 3-4 раза больше ламп накаливания (с 1 Вт 30-80 лм), поэтому они экономичней . Яркость люминесцентных ламп 4000- 8000 кд/м 2 , т. е. выше допустимой. Поэтому и их применяют с защитной арматурой. При многочисленных сравнительных испытаниях с лампами накаливания на производстве, в школах, аудиториях объективные показатели, характеризующие состояние нервной системы, утомление глаза, работоспособность, почти всегда свидетельствовали о гигиеническом преимуществе люминесцентных ламп. Однако для этого требуется квалифицированное применение их. Необходим правильный выбор ламп по спектру в зависимости от назначения помещения. Так как чувствительность зрения к свету люминесцентных ламп, так же, как и к дневному свету, ниже, чем к свету ламп накаливания, нормы освещенности для них устанавливают в 2-3 раза выше, чем для ламп накаливания (табл. 7.6.).

Если при люминесцентных лампах освещенность ниже 75-150 лк, то наблюдается «сумеречный эффект», т.е. освещенность воспринимается как недостаточная даже при рассматривании крупных деталей. Поэтому при люминесцентных лампах освещенность должна быть не ниже 75-150 лк.