Защита электродвигателей от аварийных режимов работы. Электрическая защита асинхронных электродвигателей. Автоматическая защита двигателя

«- Есть ли у Вас защита двигателя?
— Да, есть. Там сидит специальный человек, следит за двигателем. Когда легкий дымок с двигателя пойдет, его выключает, не дает ему сгореть.»

Это реальный диалог с одним из наших покупателей. Оставим в стороне вопрос о технической культуре и уровне образования, — здесь рассмотрим только технические вопросы как решить эту проблему.

От чего электродвигатель выходит из строя? При прохождении электрического тока через проводник в этом проводнике выделяется тепло. Поэтому электрический двигатель при работе, естественно, нагревается. Производителем рассчитано, что при номинальном токе двигатель не перегреется.

А вот если ток через обмотки двигателя по каким-то причинам увеличится — то электродвигатель начнет перегреваться, и если этот процесс не остановить — то в дальнейшем перегреется и выйдет из строя. В обмотках из-за перегрева начинает плавиться изоляция проводников и происходит короткое замыкание проводников. Поэтому одна из задач защиты - ограничит ток, протекающий через электродвигатель, не выше допустимого.

Одним из самых распространенных способов — это защита электродвигателя при помощи теплового реле. Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз.

Конструктивно тепловое реле представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие на пластины. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата).

Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токо-временной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Как правильно подобрать тепловое реле

Схема защиты электродвигателя при подключении его через магнитный пускатель с катушкой 380В и тепловым реле (нереверсивная схема подключения)

Схема состоит: из QF — автоматического выключателя;KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск) . Рассмотрим работу схемы в динамике.

Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя. КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.
Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Недостатки тепловых реле

Следует отметить и недостатки тепловых реле. Иногда трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от режима холостого хода или недогрузки двигателя, причем иногда даже при обрыве одной из фаз. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегрузок, связанных с быстропеременной нагрузкой на валу электродвигателя.
Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Александр Коваль
067-1717147
Статья отредактирована в ноябре 2015 года.

В электродвигателе, как и в многих других электротехнических устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Наибольшее распространение получили асинхронные электродвигатели. Можно выделить 5 основных видов аварий в асинхронных двигателях:

  • обрыв фазы ОФ статорной обмотки двигателя (вероятность возникновения 40-50%);
  • заторможение ротора ЗР (20-25%);
  • технологические перегрузки ТП (8-10%);
  • понижение сопротивления изоляции обмотки ПС (10-15%);
  • нарушение охлаждения двигателя НО (8-10%).

Любой из этих видов аварий может повлечь выход из строя электродвигателя, а короткое замыкание в двигателе, опасно для питающей сети.

Такие аварийные режимы как ОФ , ЗР , ТП и НО , способны вызвать перегрузку по току в статорной обмотке. В результате этого ток возрастает до 7 Iном и более в течение довольно большого промежутка времени.

Короткое замыкание в электродвигателе может привести к росту тока более чем в 12 Iном в течение очень короткого отрезка времени (около 10 мс).

Учитывая возможные повреждения, и подбирают требуемую защиту.

Защита двигателя от перегрузки. Основные типы.

Тепловая защита – осуществляется путем нагрева током обмотки нагревательного элемента и воздействия его на биметаллическую пластину, которая в свою очередь размыкает контакт в цепи управления контактора или пускателя. Тепловая защита осуществляется с помощь тепловых реле.

Температурная защита — реагирует на увеличение температуры наиболее нагретых частей двигателя с помощью встроенных температурных датчиков (например, позисторов). Через устройства температурной защиты (УВТЗ) воздействует на цепь управления контактора или пускателя и отключает двигатель.

Максимально токовая защита – реагирует на рост тока в статорной обмотке и при его достижении тока уставки отключат цепь управления контактора или пускателя. Осуществляется с помощью максимально токовых реле.

Минимально токовая защита — реагирует на исчезновение тока в статорной обмотке двигателя, например, при обрыве цепи. После чего, подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью минимально токовых реле.

Фазочувствительная защита – реагирует на изменение угла сдвига фаз между токами в трехфазной цепи статорной обмотки двигателя. При изменении угла сдвига фаз в пределах уставки (например, при обрыве фаз угол увеличивается до 180º) подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью фазочувствительных реле типа ФУЗ.

Таблица эффективности применения защит от перегрузки:

Тип защиты от перегрузки Надежность защиты
надежно менее надежно не надежно
1 Тепловая защита ТП ОФ; ЗР НО; ПС
2 Температурная защита ТП; НО ОФ; ЗР ПС
3 Максимально токовая защита ЗР ТП ОФ; НО; ПС
4 Минимально токовая защита ОФ НО; ПС; ТП; ЗР
5 Фазочувствительная защита ТП; ОФ; ЗР НО; ПС

Одним из эффективных средств защиты двигателя является автоматический выключатель.

Автоматический выключатель, обладая максимально токовой защитой, что позволит защитить двигатель от чрезмерного роста тока в цепи статорной обмотки, например при обрыве фазы, или повреждении изоляции. При этом он защитит питающую цепь от короткого замыкания в двигателе.

Автоматический выключатель, имеющий в своем составе тепловой расцепитель, расцепитель минимального напряжения, способен защитить двигатель и от других нештатных режимов.

В настоящее время, это одно из наиболее эффективных защитных устройств асинхронных двигателей и цепей, в которых они работают.

Общие правила выбора защиты асинхронных двигателей.

Все двигатели необходимо защищать от короткого замыкания, а электродвигатели, работающие в режиме S1, должны иметь защиту от перегрузки по току.

Электродвигатели, обмотки которых при запуске переключаются с «треугольника» на «звезду», желательно защищать трехполюсными тепловыми реле с ускоренным срабатыванием в неполнофазных режимах. Для электродвигателей, работающих в повторно-кратковременных режимах, рекомендуется предусматривать встроенную температурную защиту. Двигатели, работающие в кратковременном режиме S2 с возможным заторможением ротора без технологического ущерба, следует оснащать тепловой защитой. В случае, если заторможение ротора влечет за собой технологический ущерб, следует применять температурную защиту.

Тепловые реле предназначены в основном для защиты двигателей в режиме S1. Допустимо применение их и для режима S2, если исключено увеличение длительности рабочего периода. Для режима S3 применение тепловых реле допускается в исключительных случаях при коэффициенте загрузки двигателя не более 0,7.

Для защиты обмоток электродвигателя, соединенных в «звезду», могут применяться однополюсные реле (два реле), двухполюсные и трехполюсные реле. Защита обмоток, соединенных в «треугольник», должна осуществляться трехполюсными реле с ускоренным срабатыванием в неполнофазных режимах.

На многоскоростные двигатели нужно предусматривать отдельные реле на каждой ступени скорости при необходимости полного использования мощности на каждой ступени или одно реле с уставкой, выбранной по току ступени наибольшей скорости для двигателей с вентиляторной нагрузкой.

Номинальный ток тепловых элементов реле должен выбираться по номинальному току двигателя так, чтобы номинальный ток двигателя находился между минимальной и максимальной уставками реле по току.

При эксплуатации асинхронных электродвигателей, как и любого другого электрооборудования, могут возникнуть неполадки – неисправности, часто приводящие к аварийному режиму работы, повреждению двигателя. преждевременному выходу его из строя.

Прежде, чем перейти к способам защиты электродвигателей стоит рассмотреть основные и наиболее частые причины возникновения аварийной работы асинхронных электродвигателей:

  • Однофазные и межфазные короткие замыкания – в кабеле, клеммной коробке электродигателя, в обмотке статора (на корпус, межвитковые замыкания).

Короткие замыкания – наиболее опасный вид неисправности в электродвигателе, т. к. сопровождается возникновением очень больших токов, приводящих к перегреву и сгоранию обмоток статора.

Частой причиной тепловой перегрузки электродвигателя, приводящей к ненормальному режиму работы является пропадание одной из питающих фаз. Это приводит к значительному увеличению тока (в два раза превышающего номинальный) в статорных обмотках двух других фаз.

Результат тепловой перегрузки электродвигателя – перегрев и разрушение изоляции обмоток статора, приводящее к замыканию обмоток и негодности электродвигателя.

Защита электродвигателей от токовых перегрузок заключается в своевременном обесточивании электродвигателя при появлении в его силовой цепи или цепи управления больших токов, т. е. при возникновении коротких замыканий.

Для защиты электродвигателей от коротких замыканий применяют плавкие вставки, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем, подобранные таким образом, чтобы они выдерживали большие пусковые сверхтоки, но незамедлительно срабатывали при возникновении токов короткого замыкания.

Для защиты электродвигателей от тепловых перегрузок в схему подключения электродвигателя включают тепловое реле, имеющее контакты цепи управления – через них подаётся напряжение на катушку магнитного пускателя.

При возникновении тепловых перегрузок эти контакты размыкаются, прерывая питание катушки, что приводит к возврату группы силовых контактов в исходное состояние – электродвигатель обесточен.

Простым и надёжным способом защиты электродвигателя от пропадания фаз будет добавление в схему его подключения дополнительного магнитного пускателя:


Включение автоматического выключателя 1 приводит к замыканию цепи питания катушки магнитного пускателя 2 (рабочее напряжение этой катушки должно быть ~380 в) и замыканию силовых контактов 3 этого пускателя, через который (используется только один контакт) подаётся питание катушки магнитного пускателя 4.

Включением кнопки «Пуск» 6 через кнопку «Стоп» 8 замыкается цепь питания катушки 4 второго магнитного пускателя (её рабочее напряжение может быть как 380 так и 220 в), замыкаются его силовые контакты 5 и на двигатель подаётся напряжение.

При отпускании кнопки «Пуск» 6 напряжение с силовых контактов 3 пойдет через нормально разомкнутый блок-контакт 7, обеспечивая неразрывность цепи питания катушки магнитного пускателя.

Как видно из этой схемы защиты электродвигателя, при отсутствии по каким-то причинам одной из фаз напряжение на электродвигатель поступать не будет, что предотвратит его от тепловых перегрузок и преждевременный выход из строя.

Плавный пуск электродвигателей

Будни электрика. Защита трехфазного двигателя.

Защита двигателя от перегрузки

В процессе эксплуатации различных электроустановок возникают аварийные режимы. Основные из них - короткие замыкания, технологические перегрузки, неполнофазные режимы, заклинивание ротора электрической машины.

Аварийные режимы работы электродвигателей

Под коротким замыканием понимается режим, когда ток перегрузки превышает номинальный в несколько раз. Перегрузочный режим характеризуется превышением тока в 1,5 - 1,8 раза. Технологические перегрузки приводят к увеличению температуры обмоток электродвигателя выше допустимой, постепенному разрушению ее и выходу из строя.

Неполнофазный режим (потеря фазы) возникает в случае перегорания предохранителя в фазе, обрыва провода, нарушения контакта. При этом происходит перераспределение токов, по обмоткам электродвигателя начинают протекать повышенные токи, не исключается остановка механизма и выход электрической машины из строя. Наиболее чувствительны к неполнофазным режимам электродвигатели малой и средней мощности, т. е., которые наиболее часто используются в промышленности и сельском хозяйстве.

Заклинивание ротора электрической машины может возникнуть при разрушении подшипника, заклинивании рабочей машины. Это наиболее тяжелый режим. Скорость нарастания температуры обмотки статора достигает 7 - 10 °С в секунду, через 10 - 15 с температура двигателя выходит за допустимые пределы. Наиболее опасен такой режим для двигателей малой и средней мощности.

Наибольшее количество аварийных выходов из строя электродвигателей обусловлено технологическими перегрузками, заклиниванием, разрушением подшипникового узла . До 15 % отказов происходит из-за обрыва фаз и возникновения недопустимой несимметрии напряжений.

Виды электрических аппаратов для защиты электродвигателей

Для защиты электрооборудования от аварийных режимов серийно выпускаются автоматические выключатели, предохранители, устройства встроенной температурной защиты, фазочувствительная защита и другие аппараты.

При выборе типа защиты учитываются конкретные условия эксплуатации, быстродействие, надежность, удобство эксплуатации, экономические показатели.

В электроустановках до 1000 В защита от коротких замыканий обычно осуществляется плавкими предохранителями или электромагнитными расцепителями максимального тока, встроенными в автоматические выключатели .

Помимо этого, защита от коротких замыканий электродвигателей может осуществляться токовым реле , включенным в одну из фаз статора непосредственно или через трансформатор тока и реле времени.

Защиту от перегрузок подразделяют на два типа: защиту прямого действия, реагирующую на превышение тока, и защиту косвенного действия, реагирующую на превышение температуры. Наиболее распространенным типом токовой защиты, используемой для защиты электродвигателей от перегрузок (в том числе и от заклинивания), являются тепловые релеле . Они выпускаются серии ТРН, ТРП, РТТ, РТЛ. Трехфазные тепловые реле РТТ и РТЛ защищают также от обрыва фазы.

Фазочувствительная защита (ФУЗ) защищает от обрыва фазы, заклинивания механизма, коротких замыканий, пониженного сопротивления изоляции электродвигателя.

Защита от перегрузок и заклинивания механизма может осуществляться также с помощью специальных предохранительных муфт . Указанный тип защиты используется на прессовом оборудовании. Для защиты от обрыва фаз серийно выпускаются реле обрыва фаз типа Е-511, ЕЛ-8, ЕЛ-10, современные электронные и микропроцессорные реле.

К защите косвенного действия относится и встроенная температурная защита УВТЗ , реагирующая не на значение тока, а на температуру обмотки электродвигателя, независимо от причины, вызвавшей нагрев. В настоящее время, для этих целей все чаще используются современные электронные и микропроцессорные тепловые реле, реагирующие на изменение сопротивления встроенных в обмотку статора электродвигателя терморезисторов.

Порядок выбора типа защиты для электродвигателей

При выборе типа защиты необходимо руководствоваться следующими положениями:

    наиболее ответственные электроприемники, отказ в работе которых может привести к большому ущербу, подверженные систематическому загрязнению, или работающие в условиях повышенной температуры, а также с резкопеременной нагрузкой (дробилки, пилорамы, измельчители кормов) целесообразно защищать встроенной температурной защитой и автоматическими выключателями или предохранителями.

    Защита маломощных электродвигателей (до 1,1 кВт), которые обслуживаются высококвалифицированным персоналом, может осуществляться тепловыми реле и предохранителями.

    Защиту электродвигателей средней мощности (более 1,1 кВт), работающих без обслуживающего персонала, рекомендуется защищать фазочувствительными устройствами.

При небольших перегрузках и длительных режимах работы надежно работают тепловые реле, фазочувствительная защита, встроенная температурная защита. Выбор предпочтительного аппарата в этом случае необходимо производить с учетом экономических показателей. При переменных нагрузках с периодом колебаний нагрузки, соизмеримым с постоянной нагрева двигателя, тепловые реле действуют ненадежно и следует применять встроенную температурную защиту или фазочувствительную защиту. При случайных нагрузках большей надежностью обладают защитные устройства, действующие в функции температуры, а не тока.

При включении электропривода в неполнофазную сеть по его обмоткам проходит ток, близкий к пусковому, и защитные аппараты срабатывают надежно. Но если обрыв фазы произошел после включения электродвигателя, то сила тока зависит от нагрузки. Тепловые реле в этом случае обладают значительной зоной нечувствительности и лучше применять фазочувствительную защиту и встроенную температурную защиту.

При затяжных пусках применение тепловых реле нежелательно. Если пуск осуществляется при пониженном напряжении, тепловое реле может ложно отключить электродвигатель.

При заклинивании ротора электродвигателя или рабочей машины ток в его обмотках в 5 - 6 раз превышает номинальный. Тепловые реле в этой ситуации должны в течение 1 - 2 с отключить электродвигатель. Однако температурная защита при перегрузках по току в 1,6 раза и выше имеет большую динамическую погрешность, поэтому электродвигатель может быть не отключен, возникнет недопустимый перегрев обмоток и резкое сокращение срока службы электрической машины. Тепловые реле и встроенная температурная защита при больших перегрузках работают с низкой эффективностью. Лучше в таких ситуациях использовать фазочувствительную защиту.

При применении современных тепловых реле РТТ и РТЛ частота отказов электрооборудования значительно ниже, чем при использовании реле типа ТРН, ТРП и в ряде случаев сравнима с частотой отказов при установке встроенной температурной защиты.

В настоящее время, для защиты особо важных электродвигателей применение находят современные , совмещающие в себе все типы защиты и имеющие возможность гибкой настройки параметров срабатывания.

Область применения различных устройств защиты зависит от числа выходов электрооборудования из строя, размеров технологического ущерба при отключении, затрат на приобретение аппаратуры защиты. Для выбора предпочтительного варианта необходимо технико-экономическое сравнение.

Защита электродвигателей.

Виды повреждений и ненормальных режимов работы ЭД.

Повреждения электродвигателей. В обмотках электродвигателей могут возникать замыкания на землю одной фазы статора, замыкания между витками и многофазные КЗ. Замыкания на землю и многофазные КЗ могут также возникать на выводах электродвигателей, в кабелях, муфтах и воронках. Короткие замыкания в электродвигателях сопровождаются прохождением больших токов, разрушающих изоляцию и медь обмоток, сталь ротора и статора. Для защиты электродвигателей от многофазных КЗ служит токовая отсечка или продольная дифференциальная защита, действующие на отключение.

Однофазные замыкания на землю в обмотках статора электродвигателей напряжением 3-10 кВ менее опасны по сравнению с КЗ, так как сопровождаются прохождением токов 5-20 А, определяемых емкостным током сети. Учитывая сравнительно небольшую стоимость электродвигателей мощностью менее 2000 кВт, защита от замыканий на землю устанавливается на них при токе замыкания на землю более 10 А, а на электродвигателях мощностью более 2000 кВт - при токе замыкания на землю более 5 А защита действует на отключение.

Защита от витковых замыканий на электродвигателях не устанавливается. Ликвидация повреждений этого вида осуществляется другими защитами электродвигателей, поскольку витковые замыкания в большинстве случаев сопровождаются замыканием на землю или переходят в многофазное КЗ.

Электродвигатели напряжением до 600 В защищаются от КЗ всех видов (в том числе и от однофазных) с помощью плавких предохранителей или быстродействующих электромагнитных расцепителей автоматических выключателей.

Ненормальные режимы работы. Основным видом ненормального режима работы для электродвигателей является перегрузка их токами больше номинального. Допустимое время перегрузки электродвигателей, с , определяется по следующему выражению:

Рис. 6.1. Зависимость тока электродвигателя от частоты вращения ротора.

где k - кратность тока электродвигателя по отношению к номинальному; А - коэффициент, зависящий от типа и исполнения электродвигателя: А == 250 - для закрытых электродвигателей, имеющих большую массу и размеры, А = 150 - для открытых электродвигателей.

Перегрузка электродвигателей может возникнуть вследствие перегрузки механизма (например, завала углем мельницы или дробилки, забивания пылью вентилятора или кусками шлака насоса золоудаления и т. п.) и его неисправности (например, повреждения подшипников и т. п.). Токи, значительно превышающие номинальные, проходят при пуске и самозапуске электродвигателей. Это происходит вследствие уменьшения сопротивления электродвигателя при уменьшении его частоты вращения. Зависимость тока электродвигателя I от частоты вращения п при постоянном напряжении на его выводах приведена на рис. 6.1. Ток имеет наибольшее значение, когда ротор электродвигателя остановлен; этот ток, называемый пусковым, в несколько раз превышает номинальное значение тока электродвигателя. Защита от перегрузки может действовать на сигнал, разгрузку механизма или отключение электродвигателя. После отключения КЗ напряжение на выводах электродвигателя восстанавливается и частота его вращения начинает увеличиваться. При этом по обмоткам электродвигателя проходят большие токи, значения которых определяются частотой вращения электродвигателя и напряжением на его выводах. Снижение частоты вращения всего на 10-25 % приводит к уменьшению сопротивления электродвигателя до минимального значения, соответствующего пусковому току. Восстановление нормальной работы электродвигателя после отключения КЗ называется самозапуском, а токи, проходящие при этом, - токами самозапуска.

На всех асинхронных электродвигателях самозапуск может быть осуществлен без опасности их повреждения, и поэтому их защита должна быть отстроена от режима самозапуска. От возможности и длительности самозапуска асинхронных электродвигателей основных механизмов собственных нужд зависит бесперебойная работа тепловых электростанций. Если из-за большого снижения напряжения нельзя обеспечить самозапуск всех работающих электродвигателей, часть из них приходится отключать. Для этого используется специальная защита минимального напряжения, отключающая неответственные электродвигатели при снижении напряжения на их выводах до 60-70 % номинального. В случае обрыва одной из фаз обмотки статора электродвигатель продолжает работать. Частота вращения ротора при этом несколько уменьшается, а обмотки двух неповрежденных фаз перегружаются током в 1,5-2 раза большим номинального. Защита электродвигателя от работы на двух фазах применяется лишь на электродвигателях, защищенных предохранителями, если двухфазный режим работы может повлечь за собой повреждение электродвигателя.

На мощных тепловых электростанциях в качестве привода для дымососов, дутьевых вентиляторов и циркуляционных насосов получили широкое распространение двухскоростные асинхронные электродвигатели напряжением 6 кВ. Эти электродвигатели выполняются с двумя независимыми статорными обмотками, каждая из которых подключается через отдельный выключатель, причем обе статорные обмотки одновременно не могут быть включены, для чего в схемах управления предусмотрена специальная блокировка. Применение таких электродвигателей позволяет экономить электроэнергию путем изменения их частоты вращения в зависимости от нагрузки агрегата. На таких электродвигателях устанавливается по два комплекта релейной защиты.

В эксплуатации применяются также схемы электропривода, предусматривающие вращение механизма (например, шаровой мельницы) двумя спаренными электродвигателями, которые присоединяются к одному выключателю. При этом все защиты являются общими для обоих электродвигателей, за исключением токовой защиты нулевой последовательности, которая предусматривается для каждого электродвигателя и выполняется с помощью токовых реле, подключенных к ТТ нулевой последовательности, установленным на каждом кабеле.

Защита асинхронных ЭД от междуфазных к.з., перегрузок и замыканий на землю.

Для защиты от многофазных КЗ электродвигателей мощностью до 5000 кВт обычно используется максимальная токовая отсечка. Наиболее просто токовую отсечку можно выполнить с реле прямого действия, встроенными в привод выключателя. С реле косвенною действия применяется одна из двух схем соединения ТТ и реле, приведенных на рис. 6.2 и 6.3. Отсечка выполняется с независимыми токовыми реле. Использование токовых реле с зависимой характеристикой (рис. 6 3) позволяет обеспечить с помощью одних и тех же реле защиту от КЗ и перегрузки. Ток срабатывания отсечки выбирается -по следующему выражению:

где k сх - коэффициент схемы, равный 1 для схемы на рис. 6.3 и v3 для схемы на рис. 6.2; I пуск -пусковой ток электродвигателя.

Если ток срабатывания реле отстроен от пускового тока, отсечка, как правило, надежно отстроена и от. тока, который электродвигатель посылает в сечь при внешнем КЗ.

Зная номинальный ток электродвигателя I ном и кратность пускового тока k п, указываемую в каталогах, можно подсчитать пусковой ток по следующему выражению:

Рис. 6.2 Схема защиты электродвигателя токовой отсечкой с одним токовым реле мгновенного действия: а - цепи тока, б - цепи оперативного постоянного тока

Как видно по осциллограмме, приведенной на рис. 6.4, на которой показан пусковой ток электродвигателя питательного насоса, в первый момент пуска появляется кратковременный пик намагничивающего тока, превышающий пусковой ток электродвигателя. Для отстройки от этого пика ток срабатывания отсечки выбирается с учетом коэффициента надежности: k н=1,8 для реле типа РТ-40, действующих через промежуточное реле; k н = 2 для реле типов ИТ-82, ИТ-84 (РТ-82, РТ-84), а также для реле прямого действия.


Рис. 6.3. Схема защиты электродвигателя от коротких замыканий и перегрузки с двумя реле типа РТ-84: а - цепи тока, б - цепи оперативного постоянного тока.

Т

Рис. 6 4. Осциллограмма пускового тока электродвигателя.

токовую отсечку электродвигателей мощностью до 2000 кВт следует выполнять, как правило, по наиболее простой и дешевой однорелейной схеме (см. рис. 6.2). Однако недостатком этой схемы является более низкая чувствительность по сравнению с отсечкой, выполненной по схеме на рис. 6.3, к двухфазным КЗ между одной из фаз, на которых установлен ТТ, и фазой без ТТ. Это имеет место, так как ток срабатывания отсечки, выполненной по однорелейной схеме, согласно (6.1) в vЗ раз больше, чем в двухрелейной схеме. Поэтому на электродвигателях мощностью 2000-5000 кВт токовая отсечка для повышения чувствительности выполняется двухрелейной. Двухрелейную схему отсечки следует также применять на электродвигателях мощностью до 2000 кВт, если коэффициент чувствительности однорелейной схемы при двухфазном КЗ на выводах электродвигателя меньше двух.

На электродвигателях мощностью 5000 кВт и более устанавливается продольная дифференциальная защита, обеспечивающая более высокую чувствительность к КЗ на выводах и в обмотках электродвигателей. Эта защита выполняется в двухфазном или в трехфазном исполнении с реле типа РНТ-565 (аналогично защите генераторов). Ток срабатывания рекомендуется принимать 2I ном.

Поскольку защита в двухфазном исполнении не реагирует на двойные замыкания на землю, одно из которых возникает в обмотке электродвигателя на фазе В , в которой отсутствует ТТ, дополнительно устанавливается специальная защита от двойных замыканий без выдержки времени.

ЗАЩИТА ОТ ПЕРЕГРУЗКИ

Защита от перегрузки устанавливается только на электродвигателях, подверженных технологическим перегрузкам (мельничных вентиляторов, дымососов, мельниц, дробилок, багерных насосов и т. п.), как правило, с действием на сигнал или разгрузку механизма. Так, например, на электродвигателях шахтных мельниц защита может действовать на отключение электродвигателя механизма, подающего уголь, благодаря чему предотвращается завал мельницы углем.

Защита от перегрузки должна отключать электродвигатель, на котором она установлена, только в том случае, если без остановки электродвигателя нельзя устранить причину, вызвавшую перегрузку. Использование защиты от перегрузки с действием на отключение целесообразно также в установках без обслуживающего персонала.

Ток срабатывания защиты от перегрузки принимается равным:

где k н = 1,1-1,2.

При этом реле защиты от перегрузки смогут сработать от пускового тока, поэтому выдержка времени защиты принимается 10-20 с по условию отстройки от времени пуска электродвигателя. Защита от перегрузки выполняется с помощью индукционного элемента реле типа ИТ-80 (РТ-80) (см. рис 6.3). Если электродвигатель при перегрузках должен отключаться, в схеме защиты используются реле типа ИТ-82 (РТ-82). На электродвигателях, защита которых от перегрузки не должна действовать на отключение, целесообразно использовать реле с двумя парами контактов типа ИТ-84 (РТ-84), обеспечивающие раздельное действие отсечки и индукционного элемента.

Для ряда электродвигателей (дымососов, дутьевых вентиляторов, мельниц), время разворота которых составляет 30-35 с, схема защиты от перегрузки с реле РТ-84 дополняется реле времени типа ЭВ-144, которое приходит в действие после замыкания контакта токового реле. При этом выдержка времени защиты может быть увеличена до 36 с. В последнее время для защиты от перегрузки электродвигателей собственных нужд применяется схема защиты с одним реле тока типа РТ-40 и одним реле времени типа ЭВ-144, а для электродвигателей с временем пуска более 20 с - реле времени типа ВЛ-34 (со шкалой 1-100 с).

Защита минимального напряжения.

После отключения КЗ происходит самозапуск электродвигателей, подключенных к секции или системе шин, на которых во время КЗ имело место снижение напряжения. Токи самозапуска, в несколько раз превышающие номинальные, проходят по питающим линиям (или трансформаторам) собственных нужд. В результате напряжение на шинах собственных нужд, а следовательно, и на электродвигателях понижается настолько, что вращающий момент на валу электродвигателя может оказаться недостаточным дляегоразворота. Самозапуск электродвигателей может не произойти, если напряжение на шинах окажется ниже 55-65 % I ном. Для того чтобы обеспечить самозапуск наиболее ответственных электродвигателей, устанавливается защита минимального напряжения, отключающая неответственные электродвигатели, отсутствие которых в течение некоторого времени не отразится на производственном процессе. При этом уменьшается суммарный ток самозапуска и повышается напряжение на шинах собственных нужд, благодаря чему обеспечивается самозапуск ответственных электродвигателей.

В некоторых случаях при длительном отсутствии напряжения защита минимального напряжения отключает и ответственные электродвигатели. Это необходимо, в частности, для пуска схемы АВР электродвигателей, а также по технологии производства. Так, например, в случае остановки всех дымососов необходимо отключить мельничные и дутьевые вентиляторы и питатели пыли; в случае остановки дутьевых вентиляторов - мельничные вентиляторы и питатели пыли. Отключение ответственных электродвигателей защитой минимального напряжения производится также в тех случаях, когда их самозапуск недопустим по условиям техники безопасности или из-за опасности повреждения приводимых механизмов.

Наиболее просто защиту минимального напряжения можно выполнить с одним реле напряжения, включенным на междуфазное напряжение. Однако такое выполнение защиты ненадежно, так как при обрывах в цепях напряжения возможно ложное отключение электродвигателей. Поэтому однорелейная схема защиты применяется только при использовании реле прямого действия.Для предотвращения ложного срабатывания защиты при нарушении цепей напряжения применяются специальные схемы включения реле напряжения. Одна из таких схем для четырех электродвигателей, разработанная в Тяжпромэлектропроекте, показана на рис. 6.5. Реле минимального напряжения прямого действия КVТ1-KVT4 включены на междуфазные напряжения ab и bс. Для повышения надежности защиты эти реле питаются отдельно от приборов и счетчиков, которые подключены к цепям напряжения через трехфазный автоматический выключатель SF3 с мгновенным электромагнитным расцепителем (использованы две фазы автоматического выключателя).

Фаза В цепей напряжения заземлена не глухо, а через пробивной предохранитель FV, чю исключает возможность однофазных КЗ в цепях напряжения и также повышает надежность защиты. В фазе А защиты установлен однофазный автоматический выключатель SFI с электромагнитным мгновенным расцепителем, а в фазе С - автоматический выключатель с замедленным тепловым расцепителем. Между фазами А и С включен конденсатор С емкостью порядка 30 мкФ, назначение которого указано ниже.

Рис. 6 5. Схема защиты минимального напряжения с реле прямого действия типа РНВ

При повреждениях в цепях напряжения рассматриваемая защита будет вести себя следующим образом. Замыкание одной из фаз на землю, как уже отмечалось выше, не приводит к отключению автоматических выключателей, так как цепи напряжения не имеют глухого заземления. При двухфазном КЗ фаз В и С отключится только автоматический выключатель SF2 фазы С . Реле напряжения KVT1 и KVT2 остаются при этом подключенными к нормальному напряжению и поэтому не запускаются. Реле KVT3 и KVT4, запустившиеся при КЗ в цепях напряжения, после отключения автоматического выключателя SF2 вновь подтянутся, так как на них будет подано напряжение от фазы А через конденсатор С. При КЗ фаз АВ или АС отключится автоматический выключатель SF1, установленный в фазе А. После отключения КЗ реле KVT1 и KVT2 вновь подтянутся под действием напряжения от фазы С, поступающего через конденсатор С. Реле KVT3 и KVT4 не запустятся. Аналогично будут вести себя реле и при обрыве фаз А и С . Таким образом, рассматриваемая схема защиты не работает ложно при наиболее вероятных повреждениях цепей напряжения. Ложная работа защиты возможна только при маловероятных повреждениях цепей напряжения - трехфазном КЗ или при отключении автоматических выключателей SF1 и SF2. Сигнализация неисправности цепей напряжения осуществляется контактами реле KV1.1, KV2.1, KV3.1 и контактами автоматических выключателей SF1.1, SF2.1, SF3.1.

В установках с постоянным оперативным током защита минимального напряжения выполняется для каждой секции сборных шин собственных нужд по схеме, приведенной на рис. 6.6. В цепи реле времени КТ1, действующего на отключение неответственных электродвигателей, включены последовательно контакты трех минимальных реле напряжения KV1. Благодаря такому включению реле предотвращается ложное срабатывание защиты при перегорании любого предохранителя в цепях трансформатора напряжения. Напряжение срабатывания реле KV1 принимается порядка 70 % U ном.

Рис. 6.6. Схема защиты минимального напряжения на постоянном оперативном токе: а - цепи переменного напряжения; б - оперативные цепи I - на отключение неответственных двигателей;II - на отключение ответственных двигателей.

Выдержка времени защиты на отключение неответственных электродвигателей отстраивается от отсечек электродвигателей и устанавливается равной 0,5-1,5 с. Выдержка времени на отключение ответственных электродвигателей принимается 10-15 с, для того чтобы защита не действовала на их отключение при снижениях напряжения, вызванных КЗ и самозапуском электродвигателей. Как показывает опыт эксплуатации, в ряде случаев самозапуск электродвигателей продолжается 20-25 с при снижении напряжения на шинах собственных нужд до 60-70 %U ном. При этом, если не принять дополнительных мер, защита минимального напряжения (реле KV1), имеющая уставку срабатывания (0,6-0,7) U ном, могла бы доработать и отключить ответственные электродвигатели. Для предотвращения этого в цепи обмотки реле времени КТ2, действующего на отключение ответственных электродвигателей, включается контакт KV2.1 четвертого реле напряжения KV2. Это минимальное реле напряжения имеет уставку срабатывания порядка (0,4-0,5) U ном и надежно возвращается во время самозапуска. Реле KV2 будет длительно держать замкнутым свой контакт только при полном снятии напряжения с шин собственных нужд. В тех случаях, когда длительность самозапуска меньше выдержки времени реле КТ2, реле KV2 не устанавливается.

В последнее время на электростанциях применяется другая схема защиты, показанная на рис. 6.7. В этой схеме используются три пусковых реле: реле напряжения обратной последовательности KV1 типа РНФ-1М и реле минимального напряжения KV2 и KV3 типа РН-54/160.

Рис. 6.7. Схема защиты минимального напряжения с реле напряжения прямой последовательности: а - цепи напряжения; б - оперативные цепи

В нормальном режиме, когда междуфазные напряжения симметричны, размыкающий контакт KV1.1 в цепи обмоток реле времени защиты КТ1 и КТ2 замкнут, а замыкающий KV1.2 в цепи сигнализации разомкнут. Размыкающие контакты реле K.V2.1 и KV3.1 при этом разомкнуты. При снижении напряжения на всех фазах контакт KV1.1 останется замкнутым и поочередно подействуют: первая ступень защиты минимального напряжения, которая осуществляется с помощью реле KV2 (уставка срабатывания 0,7U ном) и КТ1; вторая - с помощью реле KV3 (уставка срабатывания 0,5 U ном) и КТ2. В случае нарушения одной или двух фаз цепей напряжения срабатывает реле KV1, замыкающим контактом которого KV1.2 подается сигнал о неисправности цепей напряжения. При срабатывании каждой ступени защиты подается плюс на шинки ШМН1 и ШМН2 соответственно, откуда он поступает на цепи отключения электродвигателей. Действие защиты сигнализируется указательными реле КН1 и КН2, имеющими обмотки параллельного включения.