Трисомия 7 пары хромосом. Хромосомные аномалии при миелодиспластическом синдроме - прогноз. Экспериментальные модели и сравнительная патология

В основу статьи положены работы проф. Буэ.

Остановка развития зародыша в дальнейшем приводит к изгнанию плодного яйца, что проявляется в виде самопроизвольного выкидыша. Однако во многих случаях остановка развития происходит на очень ранних сроках и сам факт зачатия остается неизвестным для женщины. В большом проценте случаев такие выкидыши связаны с хромосомными аномалиями у зародыша.

Самопроизвольные выкидыши

Самопроизвольные выкидыши, определением которых служит "самопроизвольное прерывание беременности между сроком зачатия и сроком жизнеспособности плода", во многих случаях с большим трудом поддаются диагностике: большое число выкидышей происходит на очень ранних сроках: задержки месячных не происходит, или эта задержка настолько мала, что сама женщина не подозревает о беременности.

Клинические данные

Изгнание плодного яйца может произойти внезапно, или ему могут предшествовать клинические симптомы. Чаще всего угроза выкидыша проявляется кровянистыми выделениями и болями внизу живота, переходящими в схватки. Далее следуют изгнание плодного яйца и исчезновение признаков беременности.

Клиническое обследование может выявить несоответсвие между предполагаемым сроком беременности и размерами матки. Уровни гормонов в крови и моче могут быть резко снижены, указывая на отсутствие жизнеспособности зародыша. Ультразвуковое исследование позволяет уточнить диагноз, выявляя либо отсутствие зародыша ("пустое плодное яйцо"), либо отставание в развитии и отсутствие сердцебиения

Клинические проявления самопроизвольного выкидыша значительно варьируют. В одних случаях выкидыш проходит незамеченным, в других — сопровождается кровотечением и может потребовать выскабливания полости матки. Хронология симптоматики может косвенно указывать на причину самопроизвольного выкидыша: кровянистые выделения с ранних сроков беременности, остановка роста матки, исчезновение признаков беременности, "немой" период в течение 4-5 недель, а затем изгнание плодного яйца чаще всего свидетельствуют о хромосомных нарушениях зародыша, а соответствие срока развития зародыша сроку выкидыша говорит в пользу материнских причин невынашивания беременности.

Анатомические данные

Анализ материала самопроизвольных выкидышей, сбор которого был начат в начале двадцатого века в Институте Карнеги, позволил выявить огромный процент аномалий развития среди абортусов ранних сроков

В 1943 году Хертиг и Шелдон опубликовали результаты патологоанатомического исследования материала 1000 выкидышей на ранних сроках. Материнские причины невынашивания беременности были ими исключены в 617 случаев. Современные данные указывают на то, что мацерированные зародыши во внешне нормальных оболочках тоже могут быть связаны с хромосомными аномалиями, что в сумме составляет около 3/4 всех случаев данного исследования.

Морфологическое исследование 1000 абортусов (по Hertig и Sheldon, 1943)
Грубые патологические нарушения плодного яйца:
плодное яйцо без зародыша или с недифференцированным зародышем
489
Локальные аномалии зародышей 32
Аномалии плаценты 96 617
Плодное яйцо без грубых аномалий
с мацерированными зародышами 146
763
с немацерированными зародышами 74
Аномалии матки 64
Другие нарушения 99

Дальнейшие исследования Микамо и Миллера и Полланда позволили уточнить связь между сроком выкидыша и частотой нарушений развития зародыша. Оказалось, что чем меньше срок выкидыша, тем частота аномалий выше. В материалах выкидышей, происшедших до 5-й недели после зачатия макроскопические морфологические аномалии плодного яйца встречаются в 90% случаев, при сроке выкидыша от 5 до 7 недель после зачатия — в 60%, при сроке больше 7 недель после зачатия — менее, чем в 15—20%.

Важность значения остановки развития зародыша в ранних самопроизвольных выкидышах была показана прежде всего фундаментальными исследованиями Артура Хертига, который в 1959 г. опубликовал результаты исследования человеческих зародышей до 17 дней после зачатия. Это был плод его 25-летней работы.

У 210 женщин в возрасте до 40 лет, идущих на операцию гистерэктомии (удаления матки) дата операции была сопоставлена с датой овуляции (возможного зачатия). После операции матки подвергались самому тщательному гистологическому исследованию на предмет выявления возможной беременности малого срока. Из 210 женщин только 107 были оставлены в исследовании в связи с обнаружением признаков овуляции, и отсутствием грубых нарушений труб и яичников, препятствующих наступлению беременности. Было обнаружено 34 плодных яйца, из них 21 плодное яйцо было внешне нормальным, а 13 (38%) имело явные признаки аномалий, которые, по мнению Хертига, обязательно привели бы к выкидышу или на этапе имплантации или вскоре после имплантации. Поскольку в то время не было возможности проведения генетического исследования плодных яиц, причины нарушений развития зародышей оставались неизвестными.

При обследовании женщин с подтвержденной фертильностью (все пациентки имели по несколько детей) было обнаружено, что одно из трех плодных яиц имеет аномалии и подвергается выкидышу до появления признаков беременности.

Эпидемиологические и демографические данные

Нечеткая клиническая симптоматика ранних самопроизвольных выкидышей приводит к тому, что достаточно большой процент выкидышей на малых сроках проходит незамеченным женщинами.

В случае клинически подтвержденных беременностей около 15% всех беременностей заканчивается выкидышем. Большая часть самопроизвольных выкидышей (около 80%) происходит в первом триместре беременности. Однако если принять во внимание тот факт, что выкидыши часто случаются спустя 4-6 недель после остановки развития беременности, можно сказать, что с первым триместром связано более 90% всех самопроизвольных выкидышей.

Специальные демографические исследования позволили уточнить частоту внутриутробной смертности. Так, Френч и Бирман в 1953 — 1956 гг. регистрировали все беременности у женщин острова Канаи и показали, что из 1000 беременностей, диагностированных при сроке после 5 недель, 237 не увенчались рождением жизнеспособного ребенка.

Анализ результатов нескольких исследований позволил Леридону составить таблицу внутриутробной смертности, включающей в себя и неудачи оплодотворения (половой акт в оптимальные сроки — в течение суток после овуляции).

Полная таблица внутри утробной смертности (на 1000 яйцеклеток, подвергшихся риску оплодотворения) (по Leridon, 1973)
Недели после зачатия Остановка развития с последующим изгнанием Процент продолжающихся беременностей
16* 100
0 15 84
1 27 69
2 5,0 42
6 2,9 37
10 1,7 34,1
14 0,5 32,4
18 0,3 31,9
22 0,1 31,6
26 0,1 31,5
30 0,1 31,4
34 0,1 31,3
38 0,2 31,2
* — неудачи зачатия

Все эти данные указывают на огромную частоту самопроизвольных выкидышей и на важную роль нарушений развития плодного яйца в этой патологии.

Эти данные отражают общую частоту нарушений развития, не выделяя среди них конкретные экзо- и эндогенные факторы (иммунологические, инфекционные, физические, химические и т. д.).

Важно отметить, что независимо от причины повреждающего воздействия, при исследовании материала выкидышей обнаруживается очень большая частота генетический нарушений (хромосомных аберраций (на сегодня изучены лучше всего) и генных мутаций) и аномалий развития, как, например, дефекты развития нервной трубки.

Хромосомные аномалии, ответственные за остановку развития беременности

Цитогенетические исследования материала выкидышей позволили уточнить характер и частоту тех или иных хромосомных аномалий.

Общая частота

При оценке результатов больших серий анализов следует иметь в виду следующее. На результаты исследований подобного рода могут оказать значительное влияние следующие факторы: способ сбора материала, относительная частота более ранних и более поздних выкидышей, доля материала искусственных абортов в исследовании, часто не поддающаяся точной оценке, успех культивирования клеточных культур абортуса и хромосомного анализа материала, тонкие методы обработки мацерированного материала.

Общая оценка частоты хромосомных аберраций при невынашивании беременности составляет около 60%, а в первом триместре беременности — от 80 до 90%. Как будет показано ниже, анализ, основанный на стадийности развития зародыша, позволяет сделать гораздо более точные выводы.

Относительная частота

Практически все большие исследования хромосомных аберраций в материале выкидышей дали поразительно сходные результаты относительно характера нарушений. Количественные аномалии составляют 95% всех аберраций и распределяются следующим образом:

Количественные хромосомные аномалии

Различные типы количественных хромосомных аберраций могут возникать в результате:

  • сбоев мейотического деления : речь идет о случаях "нон-дисджанкшн" (неразделения) парных хромосом, что приводит к появлению либо трисомии, либо моносомии. Неразделение может происходить как во время первого, так и во время второго мейотического деления, и может касаться как яйцеклеток, так и сперматозоидов.
  • сбои, возникающие при оплодотворении: : случаи оплодотворения яйцеклетки двумя сперматозоидами (диспермия), в результате чего возникает триплоидный зародыш.
  • сбои, возникающие во время первых митотических делений : полная тетраплоидия возникает в случае, когда первое деление привело к удвоению хромосом, но неразделению цитоплазмы. Мозаики возникают в случае подобных сбоев на этапе последующих делений.

Моносомии

Моносомия X (45,X) представляет одну из часто встречающихся аномалий в материале самопроизвольных выкидышей. При рождении она соответствует синдрому Шерешевского-Тернера, и при рождении она встречается реже, чем другие количественные аномалии половых хромосом. Эта бросающаяся в глаза разница между относительно высокой частотой обнаружения лишних X-хромосом у новорожденных и относительно редким обнаружением моносомии X у новорожденных указывает на высокую частоту летальности моносомии X у зародыша. Кроме того, обращает на себя внимание очень большая частота мозаик у больных с синдромом Шерешевского-Тернера. В материале выкидышей, наоборот, мозаики с моносомией X крайне редки. Данные исследований показали, что только менее 1% всех моносомий X доходит до срока родов. Моносомии аутосом в материале выкидышей встречаются довольно редко. Это очень контрастирует с высокой частотой соответствующих трисомий.

Трисомии

В материале выкидышей трисомии представляют более половины всех количественных хромосомных аберраций. Обращает на себя внимание то, что в случаях моносомий недостающей хромосомой обычно оказывается X-хромосома, а в случаях избыточных хромосом, дополнительная хромосома чаще всего оказывается аутосомой.

Точная идентификация дополнительной хромосомы стала возможна благодаря методу G-бэндинга. Исследования показали, что все аутосомы могут принимать участие в нон-дисджанкшн (см. таблицу). Обращает на себя внимание, что три хромосомы, чаще всего встречающиеся при трисомиях новорожденных (15-я, 18-я и 21-я) чаще всего обнаруживаются и при летальных трисомиях у зародышей. Вариации относительных частот различных трисомий у зародышей отражают во многом сроки, на которых происходит гибель зародышей, поскольку, чем более летальной является комбинация хромосом, тем на более ранних сроках происходит остановка развития, тем реже будет обнаруживаться такая аберрация в материалах выкидышей (чем меньше срок остановки развития, тем труднее обнаружить такой зародыш).

Лишняя хромосома при летальных трисомиях у зародыша (данные 7 исследований: Буэ (Франция), Карр (Канада), Кризи (Великобритания), Дилл (Канада), Кадзи (Швейцария), Такахара (Япония), Теркелсен (Дания))
Дополнительная аутосома Количество наблюдений
A 1
2 15
3 5
B 4 7
5
C 6 1
7 19
8 17
9 15
10 11
11 1
12 3
D 13 15
14 36
15 35
E 16 128
17 1
18 24
F 19 1
20 5
G 21 38
22 47

Триплоидии

Крайне редко наблюдаемые при мертворождениях, триплоидии составляют пятую по частоте хромосомную аномалию в материале выкидыше. В зависимости от соотношения половых хромосом может быть 3 варианта триплоидий: 69XYY (самая редкая), 69, XXX и 69, XXY (самая частая). Анализ полового хроматина показывает, что при конфигурации 69, XXX чаще всего обнаруживается только одна глыбка хроматина, а при конфигурации 69, XXY чаще всего половой хроматин не обнаруживается.

Приведенный ниже рисунок иллюстрирует различные механизмы, приводящие к развитию триплоидии (диандрию, дигинию, диспермию). С помощью специальных методов (хромосомные маркеры, антигены тканевой совместимости) удалось установить относительную роль каждого из этих механизмов в развитии триплоидии у зародыша. Оказалось, что на 50 случаев наблюдений триплоидия была следствием дигинии в 11 случаях (22%), диандрии либо диспермии — в 20 случаях (40%), диспермии — в 18 случаях (36%).

Тетраплоидии

Тетраплоидии встречаются примерно в 5% случаев количественных хромосомных аберраций. Чаще всего встречаются тетраплоидии 92, XXXX. Такие клетки всегда содержат 2 глыбки полового хроматина. В клетках с тетраплоидией 92, XXYY никогда не бывает видно полового хроматина, но в них обнаруживают 2 флуоресцирующие Y-хромосомы.

Двойные аберрации

Большая частота хромосомных аномалий в материале выкидышей объясняет высокую частоту комбинированных аномалий в одном и том же зародыше. Напротив, у новорожденных комбинированные аномалии крайне редки. Обычно в таких случаях наблюдаются комбинации аномалии половой хромосомы и аномалии аутосомы.

В связи с более высокой частотой аутосомных трисомий в материале выкидышей, при комбинированных хромосомных аномалиях у абортусов чаще всего встречаются двойные аутосомные трисомии. Трудно сказать, связаны ли такие трисомии с двойным "нон-дисджанкшн" в одной и той же гамете, или со встречей двух аномальных гамет.

Частота сочетаний различных трисомий в одной и той же зиготе носит случайный характер, что позволяет предположить независимость друг от друга появления двойных трисомий.

Комбинация двух механизмов, приводящих к появлению двойных аномалий, позволяет объяснить появление других аномалий кариотипа, встречающихся при выкидышах. "Нон-дисджанкшн" при образовании одной из гамет в сочетании с механизмами образования полиплоидии объясняет появление зигот с 68 или 70 хромосомами. Сбой первого митотического деления у такой зиготы с трисомией может приводить к таким кариотипам, как 94,XXXX,16+,16+.

Структурные хромосомные аномалии

Согласно классическим исследованиям, частота структурных хромосомных аберраций в материале выкидышей составляет 4—5%. Однако многие исследования были сделаны до широкого использования метода G-бэндинга. Современные исследования указывают на более высокую частоту структурных хромосомных аномалий у абортусов. Обнаруживаются самые разные виды структурных аномалий. Примерно в половине случаев эти аномалии являются унаследованными от родителей, примерно в половине случаев они возникают de novo .

Влияние хромосомных аномалий на развитие зиготы

Хромосомные аномалии зиготы проявляются как правило уже в первые недели развития. Выяснение конкретных проявлений каждой аномалии сопряжено с целым рядом трудностей.

Во многих случаях установление срока беременности при анализе материала выкидышей крайне затруднено. Обычно сроком зачатия считается 14-й день цикла, но у женщин с невынашиванием беременности часто бывают задержки цикла. Кроме того, очень трудно бывает установить дату "смерти" плодного яйца, поскольку от момента гибели до выкидыша может пройти много времени. В случыае триплоидии этот период может составить 10—15 недель. Применение гормональных препаратов может еще более удлиннить это время.

С учетом этих оговорок, можно сказать, что чем меньше срок беременности на момент гибели плодного яйца, тем выше частота хромосомных аберраций. Согласно исследованиям Кризи и Лоритсена, при выкидышах до 15 недель беременности частота хромосомных аберраций составляет около 50%, при сроке 18 — 21 неделя — около 15%, при сроке более 21 недели — около 5—8%, что примерно соответствует частоте хромосомных аберраций в исследованиях перинатальной смертности.

Фенотипические проявления некоторых летальных хромосомных аберраций

Моносомии X обычно останавливаются в развитии к 6 неделям после зачатия. В двух третях случаев плодный пузырь размером 5—8 см не содержит зародыша, но существует шнурообразное образование с элементами эмбриональной ткани, остатками желточного мешка, плацента содержит субамниотические тромбы. В одной трети случаев плацента имеет такие же изменения, но обнаруживается морфологически неизмененный зародыш, погибший в возрасте 40—45 дней после зачатия.

При тетраплоидиях развитие останавливается к сроку 2-3 недели после зачатия, морфологически эта аномалия характеризуется "пустым плодным мешком".

При трисомиях наблюдаются различные типы аномалий развития, в зависимости от того, какая хромосома является лишней. Однако в подавляющем большинстве случаев развитие останавливается на очень ранних сроках, элементов зародыша не обнаруживается. Это классический случай "пустого плодного яйца" (анэмбрионии).

Трисомия 16, очень частая аномалия, характеризуется наличием маленького плодного яйца диаметром около 2,5 см, в полости хориона находится небольшой амниотический пузырек около 5 мм в диаметре и эмбриональный зачаток размером 1—2 мм. Чаще всего развитие останавливается на стадии эмбрионального диска.

При некоторых трисомиях, например, при трисомиях 13 и 14, возможно развитие зародыша до срока около 6 недель. Зародыши характеризуются циклоцефалической формой головы с дефектами закрытия верхнечелюстных холмиков. Плаценты гипопластичны.

Зародыши с трисомиями 21 (синдром Дауна у новорожденных) не всегда имеют аномалии развития, а если и имеют, то незначительные, не могущие служить причиной их гибели. Плаценты в таких случаев бывают бедны клетками, и представляются остановившимися в развитии на ранней стадии. Гибель зародыша в таких случаях представляется следствием плацентарной недостаточности.

Заносы. Сравнительный анализ цитогенетических и морфологических данных позволяет выделить два типа заносов: классический пузырный занос и эмбриональный триплоидный занос.

Выкидыши при триплоидиях имеют четкую морфологическую картину. Это выражается в сочетании полной или (чаще) частичной пузырной дегенерации плаценты и амниотического пузырька с зародышем, размеры которого (зародыша) очень малы по сравнению с относительно большим амниотическим пузырьком. Гистологическое исследование показывает не гипертрофию, а гипотрофию пузырно измененного трофобласта, образующего микрокисты в результате многочисленный инвагинаций.

Напротив, классический пузырный занос не затрагивает ни амниотический мешок, ни зародыш. В пузырьках обнаруживается избыточное образование синцитиотрофобласта с выраженной васкуляризацией. Цитогенетически большинство классических пузырных заносов имеет кариотип 46,XX. Проведенные исследования позволили установить хромосомные сбои, участвующие в образовании пузырного заноса. Было показано, что 2 X-хромосомы в классическом пузырном заносе идентичны и имеют отцовское происхождение. Наиболее вероятным механизмом развития пузырного заноса является истинный андрогенез, возникающий вследствие оплодотворения яйцеклетки диплоидным сперматозоидом, возникшим в результате сбоя второго мейотического деления и последующим полным выключением хромосомного материала яйцеклетки. С точки зрения патогенеза, такие хромосомные нарушения близки к нарушениям при триплоидии.

Оценка частоты хромосомных нарушений в момент зачатия

Можно попробовать расчитать количество зигот с хромосомными аномалиями при зачатии, основываясь на частоте хромосомных аномалий, обнаруживаемых в материале выкидышей. Однако прежде всего следует отметить, что поразительное сходство результатов исследований материала выкидышей, проведенное в разных частях света, говорит о том, что хромосомные сбои в момент зачатия являются очень характерным явлением в репродукции у человека. Кроме того, можно констатировать, что реже всего встречающиеся аномалии (например, трисомии A, B и F) связаны с остановкой развития на очень ранних стадиях.

Анализ относительной частоты различных аномалий, возникающих при нерасхождении хромосом в процессе мейоза, позволяет сделать следующие важные выводы:

1. Единственной моносомией, обнаруживаемой в материале выкидышей, является моносомия X (15% всех аберраций). Напротив, аутосомные моносомии практически не обнаруживаются в материале выкидышей, хотя теоретически их должно быть столько же, сколько и аутосомных трисомий.

2. В группе аутосомных трисомий частота трисомий разных хромосом значительно варьирует. Исследования, выполненные с использованием метода G-бэндинга, позволили установить, что все хромосомы могут быть участницами трисомии, однако некоторые трисомии встречаются гораздо чаще, например, трисомия 16 встречается в 15% случаев всех трисомий.

Из этих наблюдений можно сделать вывод, что, скорее всего, частота нерасхождения разных хромосом приблизительно одинакова, а различная частота аномалий в материале выкидышей связана с тем, что отдельные хромосомные аберрации приводят к остановке развития на очень ранних стадиях и поэтому с трудом поддаются обнаружению.

Эти соображения позволяют приблизительно расчитать реальную частоту хромосомных нарушений в момент зачатия. Расчеты, сделанные Буэ, показали, что каждое второе зачатие дает зиготу с хромосомными аберрациями .

Данные цифры отражают среднюю частоту хромосомных аберраций при зачатии в популяции. Однако данные цифры могут значительно колебаться у разных супружеских пар. У некоторых супружеских пар вероятность возникновения хромосомных аберраций в момент зачатия значительно превышает средний риск в популяции. У таких супружеских пар невынашивание беременности на малых сроках происходит гораздо чаще, чем у остальных супружеских пар.

Данные расчеты подтверждаются другими исследованиями, проведенными с использованием других методов:

1. Классическими исследованиями Хертига
2. Определением уровня хорионического гормона (ХГ) в крови женщин после 10 после зачатия. Часто этот тест оказывается положительным, хотя менструация приходит вовремя или с небольшой задержкой, и субъективно наступления беременности женщина не замечает ("биохимическая беременность")
3. Хромосомный анализ материала, полученного при искусственных абортах показал, что при абортах на сроке 6—9 недель (4—7 недель после зачатия) частота хромосомных аберраций составляет примерно 8%, а при искусственных абортах на сроке 5 недель (3 недели после зачатия) эта частота возрастает до 25%.
4. Было показано, что нерасхождение хромосом в процессе сперматогенеза является очень частым явлением. Так Пирсон и сотр. обнаружили, что вероятность нерасхождения в процессе сперматогенеза для 1-й хромосомы составляет 3,5%, для 9-й хромосомы — 5%, для Y-хромосомы — 2%. Если и другие хромосомы имеют вероятность нерасхождения примерно такого же порядка, то тогда только 40% всех сперматозоидов имеют нормальный хромосомный набор.

Экспериментальные модели и сравнительная патология

Частота остановки развития

Хотя различия в типе плацентации и количестве плодов затрудняют сравнение риска неразвивающейся беременности у домашних животных и у человека, определенные аналогии проследить можно. У домашних животных процент летальных зачатий колеблется между 20 и 60%.

Изучение летальных мутаций у приматов дало цифры, сравнимые с таковыми у человека. Из 23 бластоцист, выделенных у макак до зачатия, у 10 были грубые морфологические аномалии.

Частота хромосомных аномалий

Только экспериментальные исследования позволяют провести хромосомный анализ зигот на разных стадиях развития и оценить частоту хромосомных аберраций. Классические исследования Форда выявили хромосомные аберрации у 2% зародышей мышей в возрасте от 8 до 11 дней после зачатия. Дальнейшие исследования показали, что это слишком продвинутая стадия развития зародышей, и что частота хромосомных аберраций гораздо выше (см. ниже).

Влияние хромосомных аберраций на развитие

Большой вклад в дело выяснения масштаба проблемы внесли исследования Альфреда Гроппа из Любека и Чарльза Форда из Оксфорда, проводившиеся на так называемых "табачных мышах" (Mus poschiavinus ). Скрещивание подобных мышей с нормальными мышами дает большой спектр триплоидий и моносомий, позволяющих оценить влияние обоих типов аберраций на развитие.

Данные профессора Гроппа (1973 г.) приведены в таблице.

Распределение эуплоидных и анэуплоидных зародышей у гибридных мышей
Стадия развития День Кариотип Всего
Моносомии Эуплоидии Трисомии
До имплантации 4 55 74 45 174
После имплантации 7 3 81 44 128
9—15 3 239 94 336
19 56 2 58
Живые мыши 58 58

Эти исследования позволили подтвердить гипотезу о равной вероятности возникновения моносомий и трисомий при зачатии: аутосомные моносомии возникают с такой же частотой, как и трисомии, но зиготы с аутосомными моносомиями погибают еще до имплантации и не обнаруживаются в материале выкидышей.

При трисомиях гибель зародышей происходит на более поздних сдадиях, но ни один зародыш при аутосомных трисомиях у мышей не доживает до родов.

Исследования группы Гроппа позволили показать, что в зависимости от типа трисомии, зародыши погибают на разных сроках: с трисомиями 8, 11, 15, 17 — до 12 дня после зачатия, с трисомиями 19 — ближе к сроку родов.

Патогенез остановки развития при хромосомных аномалиях

Исследование материала выкидышей показывает, что во многих случаях хромосомных аберраций эмбриогенез резко нарушается, так что элементов эмбриона не обнаруживается вообще ("пустые плодные яйца", анэмбриония) (остановка развития до срока 2-3 недель после зачатия). В других случаях удается обнаружить элементы зародыша, часто неоформленные (остановка развития на сроке до 3-4 недель после зачатия). При наличии хромосомных аберраций эмбриогенез часто или вообще невозможен, или резко нарушается с самых ранних стадий развития. Проявления таких нарушений выражены в гораздо большей степени в случае аутосомных моносомий, когда развитие зиготы останавливается в первые дни после зачатия, но и в случае трисомий хромосом, имеющих ключевое значение для эмбриогенеза, развитие также прекращается в первые дни после зачатия. Так, например, трисомия 17 обнаруживается только у зигот, остановившихся в развитии на самых ранних стадиях. Кроме того, многие хромосомные аномалии связаны вообще с пониженной способностью к делению клеток, как показывает изучение культур таких клеток in vitro .

В других случаях развитие может продолжаться до 5—6—7 недель после зачатия, в редких случаях — дольше. Как показали исследования Филиппа, в таких случаях гибель плода объясняется не нарушением эмбрионального развития (обнаруживаемые дефекты сами по себе не могут быть причиной смерти зародыша), а нарушением формирования и функционирования плаценты (стадия развития плода опережает стадию формирования плаценты.

Исследования культур клеток плаценты при различных хромосомных аномалиях показали, что в большинстве случаев деление плацентарных клеток происходит гораздо медленнее, чем при нормальном кариотипе. Это во многом объясняет, почему новорожденные с хромосомными аномалиями обычно имеют низкую массу тела и сниженную массу плаценты.

Можно предположить, что многие нарушения развития при хромосомных аберрациях связаны именно с пониженной способностью клеток к делению. При этом возникает резкая диссинхронизация процессов развития зародыша, развития плаценты и индукции дифференциации и миграции клеток.

Недостаточное и запоздалое формирование плаценты может приводить к нарушению питания и к гипоксии зародыша, а также — к снижению гормональной продукции плаценты, что может быть дополнительной причиной развития выкидышей.

Исследования клеточных линий при трисомиях 13, 18 и 21 у новорожденных показало, что клетки делятся медленнее, чем при нормальном кариотипе, что проявляется в снижении плотности клеток в большинстве органов.

Загадкой является то, почему при единственной аутосомной трисомии, совместимой с жизнью (трисомия 21, синдром Дауна), в одних случаях происходит задержка развития зародыша на ранних стадиях и самопроизвольный выкидыш, а в других — ненарушенное развитие беременности и рождение жизнеспособного ребенка. Сравнение клеточных культур материала выкидышей и доношенных новорожденных при трисомии 21 показало, что различия в способности клеток к делению в первом и втором случаях резко различается, что возможно объясняет разную судьбу таких зигот.

Причины количественных хромосомных аберраций

Изучение причин хромосомных аберраций крайне затруднено, прежде всего из-за высокой частоты, можно сказать, всеобщности этого явления. Очень трудно корректно собрать контрольную группу беременных женщин, с большим трудом поддаются изучению нарушения сперматогенеза и оогенеза. Несмотря на это, некоторые этиологические факторы повышения риска хромосомных аберраций выяснить удалось.

Факторы, напрямую связанные с родителями

Влияние возраста матери на вероятность рождения ребенка с трисомией 21 наводит на мысль о возможном влиянии возраста матери на вероятность возникновения летальных хромосомных аберраций у зародыша. Приводимая ниже таблица показывает связь возраста матери с кариотипом материала выкидышей.

Средний возраст матери при хромосомных аберрациях абортусов
Кариотип Число наблюдений Средний возраст
Нормальный 509 27,5
Моносомия X 134 27,6
Триплоидии 167 27,4
Тетраплоидия 53 26,8
Аутосомные трисомии 448 31,3
Трисомии D 92 32,5
Трисомии E 157 29,6
Трисомии G 78 33,2

Как видно из таблицы, не было обнаружено связи между возрастом матери и самопроизвольными выкидышами, связанными с моносомией X, триплоидией или тетраплоидией. Повышение среднего возраста матери отмечено для аутосомных трисомий в целом, но по разным группам хромосом цифры были получены разные. Однако общее число наблюдений в группах недостаточно, чтобы уверенно судить о каких-либо закономерностях.

Возраст матери в большей степени связан с повышенным риском выкидышей с трисомиями акроцентрических хромосом группы D (13, 14, 15) и G (21, 22), что совпадает и со статистикой хромосомных аберраций при мертворождениях.

Для некоторых случаев трисомий (16, 21) было определено происхождение лишней хромосомы. Оказалось, что возраст матери связан с повышением риска трисомий только в случае материнского происхождения лишней хромосомы. Не было обнаружено связи возраста отца с повышением риска трисомий.

В свете исследований на животных высказываются предположения о возможной связи старения гамет и задержки оплодотворения на риск возникновения хромосомных аберраций. Под старением гамет понимают старение сперматозоидов в половых путях женщины, старение яйцеклетки либо в результате перезрелости внутри фолликула или в результате задержки выхода яйцеклетки из фолликула, либо в результате трубной перезрелости (запоздалого оплодотворения в трубе). Скорее всего, подобные законы действуют и у человека, но достоверных подтверждений этого пока не получено.

Факторы окружающей среды

Было показано, что вероятность хромосомных аберраций при зачатии повышается у женщин, подвергшихся действию ионизирующей радиации. Предполагается связь между риском хромосомных аберраций и действием других факторов, в частности — химических.

Заключение

1. Не каждую беременность удается сохранить на малых сроках. В большом проценте случаев выкидыши обусловлены хромосомными нарушениями у плода, и родить живого ребенка невозможно. Гормональное лечение может отсрочить момент выкидыша, но не может помочь зародышу выжить.

2. Повышенная нестабильность генома супругов является одним из причинных факторов бесплодия и невынашивания беременности. Выявить такие супружеские пары помогает цитогенетическое обследование с анализом на хромосомные аберрации. В некоторых случаях повышенной нестабильности генома специальная антимутагенная терапия может помочь повысить вероятность зачатия здорового ребенка. В других случаях рекомендуется донорская инсеминация или использование донорской яйцеклетки.

3. При невынашивании беременности, обусловленном хромосомными факторами, организм женщины может "запомнить" неблагоприятный иммунологический ответ на плодное яйцо (иммунологический импринтинг). В таких случаях возможно развитие реакции отторжения и на зародыши, зачатые после донорской инсеминации или с использованием донорской яйцеклетки. В таких случаях рекомендуется проведение специального иммунологического обследования.

Геном человека [Энциклопедия, написанная четырьмя буквами] Тарантул Вячеслав Залманович

Хромосома 7

Хромосома 7

Плотность снипсов наибольшая в прицентромерной области длинного плеча этой хромосомы. А вот гены расположены довольно равномерно вдоль хромосомы, за исключением одного участка в середине длинного плеча, где содержится наибольшее их количество. Среди заболеваний, ассоциированных с генами хромосомы 7, можно отметить такие, как хронический грануломатоз, рак прямой кишки, кистозный фиброз, аутосомно-доминантная глухота, вялая кожа, эритремия, гемолитическая анемия, карликовость, фамильный гиперинсулинизм, врожденная миотония, остеопороз, панкреатит, трипсиногеновая недостаточность, болезнь коронарной артерии и др.

Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора Тарантул Вячеслав Залманович

Хромосома 2 Это вторая по размерам хромосома. Наибольшая плотность снипсов имеется в районе центромеры, а вот повторы здесь практически отсутствуют. На единицу длины в ней содержится заметно меньше генов, чем в хромосоме 1 и ряде других хромосом. Тем не менее, число

Из книги автора

Хромосома 3 Это еще одна довольно большая хромосома. В отличие от хромосомы 2 у нее в области центромеры содержится мало как снипсов, так и повторов. Наибольшее количество снипсов расположено ближе к концам этой хромосомы, а наибольшее число генов - на коротком плече.

Из книги автора

Хромосома 4 Гены, повторы и снипсы распределены в хромосоме 4 довольно равномерно (за исключением района центромеры, где все они представлены малым количеством). Подсчитано, что общее число генов здесь меньше, чем в среднем на единицу длины генома. Среди заболеваний,

Из книги автора

Хромосома 5 Большинство генов этой хромосомы сконцентрировано в двух областях длинного плеча и одном районе короткого ближе к его концу. Имеются два района, расположенных вокруг центромеры, обогащенные снипсами. C генами хромосомы 5 связан ряд тяжелых заболеваний:

Из книги автора

Хромосома 6 Плотность и генов и снипсов наибольшая в нескольких районах на коротком плече этой хромосомы, а вот повторы распределены вдоль хромосомы довольно равномерно (их мало только в области центромеры). C генами хромосомы 6 связан ряд патологий человека: диабет,

Из книги автора

Хромосома 7 Плотность снипсов наибольшая в прицентромерной области длинного плеча этой хромосомы. А вот гены расположены довольно равномерно вдоль хромосомы, за исключением одного участка в середине длинного плеча, где содержится наибольшее их количество. Среди

Из книги автора

Хромосома 8 Большинство снипсов в этой хромосоме сконцентрировано на конце короткого плеча, а на конце длинного плеча имеется область, сильно обогащенная генами. Число генов, ассоциированных с заболеваниями, в хромосоме 8 относительно небольшое. Среди них имеются гены,

Из книги автора

Хромосома 9 Здесь и снипсы, и повторы, и гены распределены очень неравномерно вдоль хромосомы. Кроме того, хромосома 9 обогащена снипсами по сравнению с другими хромосомами (при расчете их числа на единицу длины). При этом наибольшее их число сконцентрировано в

Из книги автора

Хромосома 10 Эта хромосома является средней по числу содержащихся в ней генов, повторяющихся участков и снипсов на единицу длины, но распределение их по хромосоме далеко не равномерное: несколько участков на длинном плече сильно обогащены генами и снипсами. Среди

Из книги автора

Хромосома 11 На конце короткого плеча и в прицентромерном районе длинного плеча этой хромосомы имеет место концентрация генов. Содержание снипсов повышено лишь в районе конца короткого плеча, а вдоль хромосомы оно относительно одинаковое. От общего числа генов этой

Из книги автора

Хромосома 12 Эта хромосома является средней по большинству параметров. Гены распределены в ней весьма неравномерно. С ними ассоциирован ряд заболеваний: адренолейкодистрофия, амилоидозис, злокачественная неходжкинская лимфома, рак прямой кишки, эмфизема, энурез,

Из книги автора

Хромосома 13 Короткое плечо этой хромосомы пока плохо секвенировано. Имеется концентрация снипсов в районе центромеры на длинном плече. Хромосома 13 относительно других хромосом обеднена генами (на 1 млн. букв в ней в среднем приходится всего около 5 генов). Наибольшее их

Из книги автора

Хромосома 20 Хромосома 20 стала третьей по времени полностью секвенированной хромосомой человека. По размеру эта хромосома составляет всего около двух процентов генетического кода генома человека. Гены, повторы и снипсы распределены вдоль хромосомы весьма неравномерно.

Из книги автора

Хромосома 21 Эта хромосома является самой маленькой по размерам и информационной емкости (на ее долю приходится не более 1,5% от всего генома человека). Но секвенирована она была только вслед за хромосомой 22. Число генов в хромосоме 21 относительно невелико. При размере около

Из книги автора

Хромосома 22 ДНК этой хромосомы была секвенирована первой (декабрь 1999 г.), поэтому она и описана более полно. В хромосоме 22 остались нерасшифрованными всего несколько участков (менее 3% длины ДНК). Она содержит около 500 генов и 134 псевдогена. Все эти генные последовательности

Из книги автора

Хромосома X Это женская половая хромосома. Наличие двух хромосом X определяет женский пол. Пара для хромосомы X у мужчин - омертвевшая и короткая Y-хромосома. У женщин в одной из 2 хромосом X происходит инактивация всех тех генов, которые не имеют пары на хромосоме Y. В ходе

7-я хромосома человека паука, 7-я хромосома человека органы
7-я хромосо́ма челове́ка - одна из 23 человеческих хромосом. Хромосома содержит более 158 млн пар оснований, что составляет от 5 до 5,5 % всего материала ДНК человеческой клетки. настоящее время считается, что на 7-й хромосоме находятся от 1000 до 1400 генов.

7-я хромосома содержит кластер A генов гомеобокса.

  • 1 Гены
    • 1.1 Плечо p
    • 1.2 Плечо q
  • 2 Болезни и расстройства
    • 2.1 Хромосомные болезни
  • 3 Примечания

Гены

Ниже перечислены некоторые гены, расположенные на 7-й хромосоме:

Плечо p

  • ABCA13 - 13-й член A-подсемейства АТФ-связывающих кассетных белков;
  • AQP1 - Аквапорин 1;
  • C1GALT1 - гликозилтрансфераза;
  • CBX3 - хромобокс гомолог 3;
  • CCM2 - церебральная кавернозная мальформация 2;
  • DFNA5 - глухота, аутосомно-доминантный тип 5;
  • GARS - глицил-тРНК-синтетаза;
  • IL6 - интерлейкин 6;
  • ITGB8 - гликопротеин из надсемейства интегринов (β8);
  • NOD1 - Nod-подобный рецептор подсемейства NOD;
  • PMS2 - PMS2 англ. postmeiotic segregation increased 2 (S. cerevisiae).

Плечо q

  • ABCB1 - P-гликопротеин;
  • ASL - аргининосукцинат-лиаза;
  • CAV1 - кавеолин 1;
  • CCL24 - Chemokine (C-C motif) ligand 24 (scya24);
  • CCL26 - Chemokine (C-C motif) ligand 26 (scya26);
  • CD36;
  • CDK5 - циклин-зависимая киназа 5;
  • CGRP-RCP - calcitonin gene-related peptide receptor component protein;
  • CFTR - Трасмембранный регулятор муковисцидоза, ATP-binding cassette (sub-family C, member 7);
  • CLCN1 - хлоридный канал 1;
  • CNTNAP2 - ген, ассоциированный с аутизмом;
  • COL1A2 - коллаген, тип I, альфа 2;
  • CYLN2 - cytoplasmic linker 2;
  • DLD - дигидролипоамидная дегидрогеназа (E3 компонент пируват дегидрогеназного комплекса, 2-oxo-glutarate complex, branched chain keto acid dehydrogenase complex);
  • ELN - эластин (надклапанный аортальный стеноз, Williams-Beuren syndrome);
  • FOXP2 - Forkhead box protein 2;
  • GTF2I - general transcription factor II, i;
  • GTF2IRD1 - GTF2I repeat domain containing 1;
  • GUSB - бета-глюкуронидаза;
  • HSPB1 - heat shock 27kDa protein 1;
  • KCNH2 - potassium voltage-gated channel, subfamily H (eag-related), member 2;
  • KRIT1 - KRIT1, ankyrin repeat containing;
  • LIMK1 - LIM domain kinase 1;
  • NOS3 - эндотелиальная синтаза оксида азота
  • p47 phox или NCF1 - 47 kDa нейтрофил оксидазный фактор / нейтрофил цитозольный фактор 1;
  • PIK3CG - каталитическая субъединица γ фосфатидилинозитол-4,5-бисфосфат-3-киназы (PI3K gamma, p110γ);
  • RELN - рилин;
  • SBDS - Shwachman-Bodian-Diamond syndrome;
  • SH2B2 - адаптерный белок;
  • SLC25A13 - solute carrier family 25, member 13 (citrin);
  • SLC26A4 - solute carrier family 26, member 4;
  • SRI - sorcin;
  • TAS2R16 - taste receptor, type 2, member 16;
  • TFR2 - рецептор трансферрина 2;
  • TPST1 - тирозилпротеин сульфотрансфераза 1;
  • VGF - «индуцируемый фактором роста нервов».

Болезни и расстройства

Ниже перечислены некоторые заболевания, связанные с генами 7-й хромосомы, а также гены, дефекты которых вызывают эти заболевания:

  • аргининосукциновая ацидурия (англ. argininosuccinic aciduria) - ASL;
  • бессиндромная глухота (англ. nonsyndromic deafness) аутосомно-доминантный тип 5 и аутосомно-рецессивный тип 4 - DFNA5 и SLC26A4;
  • болезнь мочи с запахом кленового сиропа - DLD;
  • болезнь Шарко - Мари - Тута (англ. Charcot–Marie–Tooth disease) типов 2В и 2F - GARS и HSPB1;
  • врожденное двустороннее отсутствие семявыносящих протоков (англ. congenital bilateral absence of vas deferens) - CFTR;
  • гемохроматоз типа 3 (англ. hemochromatosis, type 3) - TFR2;
  • дистальная спинальная амиотрофия (англ. distal spinal muscular atrophy) типа 5 - GARS;
  • кавернозная ангиома (англ. cerebral cavernous malformation) - CCM2;
  • миелодиспластический синдром;
  • муковисцидоз - CFTR;
  • мукополисахаридоз типа VII, или синдром Слая - GUSB;
  • наследственный неполипозный колоректальный рак (англ. hereditary nonpolyposis colorectal cancer) - PMS2;
  • несовершенный остеогенез типов I, II, III и IV - COL1A2;
  • сахарный диабет взрослого типа у молодых типа 2 - GCK;
  • синдром Вильямса - ASL, BAZ1B, BCL7B, CLDN3, CLDN4, CLIP2, EIF4H, ELN, FZD9, FKBP6, GTF2I, GTF2IRD1, HIP1, KCTD7, LAT2, LIMK1, MDH2, NCF1, NSUN5, POR, RFC2, STX1A, TBL2, TRIM50, TRIM73, TRIM74, WBSCR14, WBSCR18, WBSCR21, WBSCR22, WBSCR23, WBSCR24, WBSCR27 и WBSCR28;
  • синдром Норман - Робертс - RELN;
  • синдром Пендреда - SLC26A4;
  • синдром Романо - Уорда (англ. Romano–Ward syndrome) - KCNH2;
  • синдром Швахмана - Даймонда (англ. Shwachman–Diamond syndrome) - SBDS;
  • синдром Элерса - Данлоса с артрохалазией типа 7B - COL1A2;
  • хроническая гранулематозная болезнь, обусловленная недостаточностью нейтрофильного цитозольного фактора 1 - NCF1
  • цитруллинемия (англ. citrullinemia) типа II - SLC25A13;
  • шизофрения - KCNH2, ABCA13

Хромосомные болезни

Некоторые расстройства вызываются изменениями в структуре или количестве копий 7-й хромосомы:

  • синдром Вильямса - делеция участка длинного плеча хромосомы в позиции 7q11.23, который содержит более 20 генов; потеря некоторых из этих генов и связана с характерными особенностями расстройства, однако для большинства генов удалённого участка связь с симптомами пока не установлена;
  • задержка роста и развития, умственная отсталость, характерные изменения черт лица, скелетные аномалии, замедленная речь и другие медицинские проблемы - дополнительная копия части хромосомы (частичная трисомия) или отсутствие части хромосомы (частичная моносомия), иногда делеция или дупликация части хромосомы, а также возникновение кольцевой хромосомы (англ. ring chromosome).

Примечания

  1. Human chromosome 7 map view (англ.). Vertebrate Genome Annotation (VEGA) database. The Wellcome Trust Sanger Institute. - Карта хромосомы и её основные параметры: размер, количество генов и т. п. Проверено 8 сентября 2009. Архивировано из первоисточника 1 апреля 2012.
  2. Kratz C. P., Emerling B. M., Bonifas J., Wang W., Green E. D., Le Beau M. M., Shannon K. M. Genomic structure of the PIK3CG gene on chromosome band 7q22 and evaluation as a candidate myeloid tumor suppressor // Blood. - 2002. - Т. 99, вып. 1. - С. 372-374. - PMID 11756194.

- гликозилтрансфераза ;

  • CBX3 - хромобокс гомолог 3;
  • CCM2 - церебральная кавернозная мальформация 2;
  • DFNA5 - глухота, аутосомно-доминантный тип 5;
  • GARS - глицил-тРНК-синтетаза;
  • IL6 - интерлейкин 6 ;
  • ITGB8 - гликопротеин из надсемейства интегринов (β8);
  • NOD1 - Nod-подобный рецептор подсемейства NOD ;
  • PMS2 - PMS2 англ. postmeiotic segregation increased 2 (S. cerevisiae).
  • Плечо q

    • ABCB1 - P-гликопротеин;
    • ASL - аргининосукцинат-лиаза;
    • CAV1 - кавеолин 1;
    • CCL24 - Chemokine (C-C motif) ligand 24 (scya24 );
    • CCL26 - Chemokine (C-C motif) ligand 26 (scya26 );
    • CDK5 - циклин-зависимая киназа 5 ;
    • CGRP-RCP - calcitonin gene-related peptide receptor component protein;
    • CFTR - Трасмембранный регулятор муковисцидоза, ATP-binding cassette (sub-family C, member 7);
    • CLCN1 - хлоридный канал 1 ;
    • CNTNAP2 - ген, ассоциированный с аутизмом;
    • COL1A2 - коллаген, тип I, альфа 2;
    • CYLN2 - cytoplasmic linker 2;
    • DLD - дигидролипоамидная дегидрогеназа (E3 компонент пируват дегидрогеназного комплекса, 2-oxo-glutarate complex, branched chain keto acid dehydrogenase complex);
    • ELN - эластин (надклапанный аортальный стеноз, Williams-Beuren syndrome);
    • FOXP2 - Forkhead box protein 2;
    • GTF2I - general transcription factor II, i;
    • GTF2IRD1 - GTF2I repeat domain containing 1;
    • GUSB - бета-глюкуронидаза;
    • HSPB1 - heat shock 27kDa protein 1;
    • KCNH2 - potassium voltage-gated channel, subfamily H (eag-related), member 2;
    • KRIT1 - KRIT1, ankyrin repeat containing;
    • LIMK1 - LIM domain kinase 1;
    • NOS3 - эндотелиальная синтаза оксида азота
    • p47 phox или NCF1 - 47 kDa нейтрофил оксидазный фактор / нейтрофил цитозольный фактор 1;
    • PIK3CG - каталитическая субъединица γ фосфатидилинозитол-4,5-бисфосфат-3-киназы (PI3K gamma, p110γ) ;
    • RELN - рилин;
    • SBDS - Shwachman-Bodian-Diamond syndrome;
    • SH2B2 - адаптерный белок;
    • SLC25A13 - solute carrier family 25, member 13 (citrin);
    • SLC26A4 - solute carrier family 26, member 4;
    • TAS2R16 - taste receptor, type 2, member 16;
    • TFR2 - рецептор трансферрина 2;
    • TPST1 - тирозилпротеин сульфотрансфераза 1;
    • VGF - «индуцируемый фактором роста нервов ».

    Болезни и расстройства

    Ниже перечислены некоторые заболевания, связанные с генами 7-й хромосомы, а также гены, дефекты которых вызывают эти заболевания:

    • аргининосукциновая ацидурия (англ. argininosuccinic aciduria ) - ASL ;
    • бессиндромная глухота (англ. nonsyndromic deafness ) аутосомно-доминантный тип 5 и аутосомно-рецессивный тип 4 - DFNA5 и SLC26A4 ;
    • болезнь мочи с запахом кленового сиропа - DLD ;
    • (англ. Charcot–Marie–Tooth disease ) типов 2В и 2F - GARS и HSPB1 ;
    • врожденное двустороннее отсутствие семявыносящих протоков (англ. congenital bilateral absence of vas deferens ) - CFTR ;
    • гемохроматоз типа 3 (англ. hemochromatosis, type 3 ) - TFR2 ;
    • дистальная спинальная амиотрофия (англ. distal spinal muscular atrophy ) типа 5 - GARS ;
    • кавернозная ангиома (англ. cerebral cavernous malformation ) - CCM2 ;
    • мукополисахаридоз типа VII, или синдром Слая - GUSB ;
    • наследственный неполипозный колоректальный рак (англ. ) - PMS2 ;
    • несовершенный остеогенез типов I, II, III и IV - COL1A2 ;
    • сахарный диабет взрослого типа у молодых типа 2 - GCK ;
    • синдром Вильямса - ASL , BAZ1B , BCL7B , CLDN3 , CLDN4 , CLIP2 , EIF4H , ELN , FZD9 , FKBP6 , GTF2I , GTF2IRD1 , HIP1 , KCTD7 , LAT2 , LIMK1 , MDH2 , NCF1 , NSUN5 , POR , RFC2 , STX1A , TBL2 , TRIM50 , TRIM73 , TRIM74 , WBSCR14 , WBSCR18 , WBSCR21 , WBSCR22 , WBSCR23 , WBSCR24 , WBSCR27 и WBSCR28 ;
    • синдром Норман - Робертс - RELN ;
    • синдром Пендреда - SLC26A4 ;
    • синдром Романо - Уорда (англ. Romano–Ward syndrome ) - KCNH2 ;
    • синдром Швахмана - Даймонда (англ. Shwachman–Diamond syndrome ) - SBDS ;
    • синдром Элерса - Данлоса с артрохалазией типа 7B - COL1A2 ;
    • хроническая гранулематозная болезнь, обусловленная недостаточностью нейтрофильного цитозольного фактора 1 - NCF1
    • цитруллинемия (англ. citrullinemia ) типа II - SLC25A13 ;
    • шизофрения - KCNH2 , ABCA13

    Хромосомные болезни

    Некоторые расстройства вызываются изменениями в структуре или количестве копий 7-й хромосомы:

    • синдром Вильямса - делеция участка длинного плеча хромосомы в позиции 7q11.23, который содержит более 20 генов; потеря некоторых из этих генов и связана с характерными особенностями расстройства, однако для большинства генов удалённого участка связь с симптомами пока не установлена;
    • задержка роста и развития, умственная отсталость , характерные изменения черт лица, скелетные аномалии, замедленная речь и другие медицинские проблемы - дополнительная копия части хромосомы (частичная – Да вы кто?
      – Я офицер. Мне бы видеть нужно, – сказал русский приятный и барский голос.
      Мавра Кузминишна отперла калитку. И на двор вошел лет восемнадцати круглолицый офицер, типом лица похожий на Ростовых.
      – Уехали, батюшка. Вчерашнего числа в вечерни изволили уехать, – ласково сказала Мавра Кузмипишна.
      Молодой офицер, стоя в калитке, как бы в нерешительности войти или не войти ему, пощелкал языком.
      – Ах, какая досада!.. – проговорил он. – Мне бы вчера… Ах, как жалко!..
      Мавра Кузминишна между тем внимательно и сочувственно разглядывала знакомые ей черты ростовской породы в лице молодого человека, и изорванную шинель, и стоптанные сапоги, которые были на нем.
      – Вам зачем же графа надо было? – спросила она.
      – Да уж… что делать! – с досадой проговорил офицер и взялся за калитку, как бы намереваясь уйти. Он опять остановился в нерешительности.
      – Видите ли? – вдруг сказал он. – Я родственник графу, и он всегда очень добр был ко мне. Так вот, видите ли (он с доброй и веселой улыбкой посмотрел на свой плащ и сапоги), и обносился, и денег ничего нет; так я хотел попросить графа…
      Мавра Кузминишна не дала договорить ему.
      – Вы минуточку бы повременили, батюшка. Одною минуточку, – сказала она. И как только офицер отпустил руку от калитки, Мавра Кузминишна повернулась и быстрым старушечьим шагом пошла на задний двор к своему флигелю.
      В то время как Мавра Кузминишна бегала к себе, офицер, опустив голову и глядя на свои прорванные сапоги, слегка улыбаясь, прохаживался по двору. «Как жалко, что я не застал дядюшку. А славная старушка! Куда она побежала? И как бы мне узнать, какими улицами мне ближе догнать полк, который теперь должен подходить к Рогожской?» – думал в это время молодой офицер. Мавра Кузминишна с испуганным и вместе решительным лицом, неся в руках свернутый клетчатый платочек, вышла из за угла. Не доходя несколько шагов, она, развернув платок, вынула из него белую двадцатипятирублевую ассигнацию и поспешно отдала ее офицеру.
      – Были бы их сиятельства дома, известно бы, они бы, точно, по родственному, а вот может… теперича… – Мавра Кузминишна заробела и смешалась. Но офицер, не отказываясь и не торопясь, взял бумажку и поблагодарил Мавру Кузминишну. – Как бы граф дома были, – извиняясь, все говорила Мавра Кузминишна. – Христос с вами, батюшка! Спаси вас бог, – говорила Мавра Кузминишна, кланяясь и провожая его. Офицер, как бы смеясь над собою, улыбаясь и покачивая головой, почти рысью побежал по пустым улицам догонять свой полк к Яузскому мосту.
      А Мавра Кузминишна еще долго с мокрыми глазами стояла перед затворенной калиткой, задумчиво покачивая головой и чувствуя неожиданный прилив материнской нежности и жалости к неизвестному ей офицерику.

      В недостроенном доме на Варварке, внизу которого был питейный дом, слышались пьяные крики и песни. На лавках у столов в небольшой грязной комнате сидело человек десять фабричных. Все они, пьяные, потные, с мутными глазами, напруживаясь и широко разевая рты, пели какую то песню. Они пели врозь, с трудом, с усилием, очевидно, не для того, что им хотелось петь, но для того только, чтобы доказать, что они пьяны и гуляют. Один из них, высокий белокурый малый в чистой синей чуйке, стоял над ними. Лицо его с тонким прямым носом было бы красиво, ежели бы не тонкие, поджатые, беспрестанно двигающиеся губы и мутные и нахмуренные, неподвижные глаза. Он стоял над теми, которые пели, и, видимо воображая себе что то, торжественно и угловато размахивал над их головами засученной по локоть белой рукой, грязные пальцы которой он неестественно старался растопыривать. Рукав его чуйки беспрестанно спускался, и малый старательно левой рукой опять засучивал его, как будто что то было особенно важное в том, чтобы эта белая жилистая махавшая рука была непременно голая. В середине песни в сенях и на крыльце послышались крики драки и удары. Высокий малый махнул рукой.
      – Шабаш! – крикнул он повелительно. – Драка, ребята! – И он, не переставая засучивать рукав, вышел на крыльцо.
      Фабричные пошли за ним. Фабричные, пившие в кабаке в это утро под предводительством высокого малого, принесли целовальнику кожи с фабрики, и за это им было дано вино. Кузнецы из соседних кузень, услыхав гульбу в кабаке и полагая, что кабак разбит, силой хотели ворваться в него. На крыльце завязалась драка.
      Целовальник в дверях дрался с кузнецом, и в то время как выходили фабричные, кузнец оторвался от целовальника и упал лицом на мостовую.
      Другой кузнец рвался в дверь, грудью наваливаясь на целовальника.
      Малый с засученным рукавом на ходу еще ударил в лицо рвавшегося в дверь кузнеца и дико закричал:
      – Ребята! наших бьют!
      В это время первый кузнец поднялся с земли и, расцарапывая кровь на разбитом лице, закричал плачущим голосом:
      – Караул! Убили!.. Человека убили! Братцы!..
      – Ой, батюшки, убили до смерти, убили человека! – завизжала баба, вышедшая из соседних ворот. Толпа народа собралась около окровавленного кузнеца.
      – Мало ты народ то грабил, рубахи снимал, – сказал чей то голос, обращаясь к целовальнику, – что ж ты человека убил? Разбойник!
      Высокий малый, стоя на крыльце, мутными глазами водил то на целовальника, то на кузнецов, как бы соображая, с кем теперь следует драться.
      – Душегуб! – вдруг крикнул он на целовальника. – Вяжи его, ребята!
      – Как же, связал одного такого то! – крикнул целовальник, отмахнувшись от набросившихся на него людей, и, сорвав с себя шапку, он бросил ее на землю. Как будто действие это имело какое то таинственно угрожающее значение, фабричные, обступившие целовальника, остановились в нерешительности.

    Закономерности жизни

    Жизнь как явление характеризуется метаболизмом, размножением, наследственностью, изменчивостью, ростом, развитием, смертью.

    Метаболи́зм (от греч. μεταβολή, «превращение, изменение») или обмен веществ - полный процесс превращения химических веществ в организме, обеспечивающих его рост, развитие, деятельность и жизнь в целом. В живом организме постоянно расходуется энергия, причём не только во время физической и умственной работы, а даже при полном покое (сне). Обмен веществ представляет собой комплекс биохимических и энергетических процессов, обеспечивающих использование пищевых веществ для нужд организма и удовлетворения его потребностей в пластических и энергетических веществах.

    Размножение - это увеличение количества особей вида посредством воспроизведения. Способность к размножению, или самовоспроизведению, является одним из обязательных и важнейших свойств живых организмов. Размножение поддерживает длительное существование вида, обеспечивает преемственность между родителями и их потомством в ряду многих поколений. Размножение бывает бесполое и половое.

    Формы бесполого размножения:

    1. Бинарное деление - митотическое деление, при котором образуются две равноценные дочерние клетки (Рис.3.1);

    а - начало профазы; б - конец профазы; в - метафаза; г - анафаза; д - телофаза; е - завершение митоза. 1 - ядро; 2 - ядрышко; 3 - ядерная оболочка; 4 - неспирализованные хромосомы; 5 - пара центртриолей; 6 - нити веретена деления; 7 - родительские хромосомы разных типов; 8 - центромеры хромосом; 9 - дочерние хромосомы; 10 - поперечная мембранная перегородка между дочерними клетками.

    Рис.3.1 Фазы митотического деления

    2. Множественное деление, или шизогония . Материнская клетка распадается на большое количество более или менее одинаковых дочерних клеток (малярийный плазмодий) (Рис.3.2);

    Рис.3.2 Шизогония

    3. Споруляция . Размножение посредством спор - специализированных клеток грибов и растений (Рис.3.3). Если споры имеют жгутик и подвижны, то их называют зооспорами (хламидомонада). Если споры образуются с помощью митоза, то они имеют одинаковый генетический материал, если же они образуются с помощью мейоза, то они имеют генетический материал только одного организма, но генетически такие споры неравноценны;



    Рис.3.3 Растения размножающиеся посредством спор

    Рис.3.3а Споры грибов

    4. Почкование . На материнской особи происходит образование выроста - почки, из которого развивается новая особь (дрожжи, гидра) (Рис.3.4);

    Рис.3.4 Почкообразование у гидры

    5. Фрагментация - разделение особи на две или несколько частей, каждая из которых развивается в новую особь (Рис.3.5). У растений (спирогира), и у животных (кольчатые черви). В основе фрагментации лежит свойство регенерации;

    Рис.3.5 Водоросль спирогира произрастающая повсеместно в случае разрыва в любом месте достраиватся до нужных размеров и формы. Разорванные иглокожие (морские звезды) легко достраиваются до исходных размеров.

    6. Вегетативное размножение . Характерно для многих групп растений. При вегетативном размножении новая особь развивается либо из части материнской, либо из особых структур (луковица, клубень и т.д.), специально предназначенных для вегетативного размножения (Рис.3.6);

    Рис.3.6 Размножение клубники

    7. Клонирование. Искусственный способ бесполого размножения.. Клон - генетически идентичное потомство, полученное от одной особи в результате того или иного способа бесполого размножения. Реализован в практике, путем введения в клетку искусственного ядра. Техника введения показана на рисунке 3.7

    Рис.3.7 Техника введения ядра в клетку

    В естественных условиях клоны появляются редко. Общеизвестный пример естественного клонирования, существующего в природе и имеющего место у человека - однояйцевые близнецы, развившиеся из одной яйцеклетки (Это обязательно дети одного пола). До шестидесятых годов двадцатого века клоны получали искусственным путем исключительно при вегетативном размножении растительных организмов, чаще всего для сохранения сортовых признаков и при получении культур микроорганизмов, используемых в медицине. В начале шестидесятых годов были разработаны методы, позволяющие успешно клонировать некоторые высшие растения и животных путем выращивания из отдельных клеток. Эти методы возникли в результате попыток доказать, что ядра зрелых клеток, закончивших свое развитие, содержат всю информацию, необходимую для кодирования всех признаков организма, и что специализация клеток обусловлена включением и выключением определенных генов, а не утратой некоторых из них. Первый успех был достигнут профессором Стюардом из Корнельского университета, который показал, что, выращивая отдельные клетки корня моркови (ее съедобной части) в среде, содержащей нужные питательные вещества и гормоны, можно индуцировать процессы клеточного деления, приводящие к образованию новых растений моркови. Вскоре после этого Гёрдон, работавший в Оксфордском университете, впервые сумел добиться клонирования позвоночного животного. Позвоночные в естественных условиях клонов не образуют; однако, пересаживая ядро, взятое из клетки кишечника лягушки, в яйцеклетку, собственное ядро которой предварительно было разрушено путем облучения ультрафиолетом, Гёрдону удалось вырастить головастика, а затем и лягушку, идентичную той особи, от которой было взято ядро.

    С семидесятых годов ученые предпринимали попытки клонирования млекопитающих. Крохотная овечка Долли - символ очередного этапа успешного развития биотехнологии. Такого рода эксперименты не только доказывают, что дифференцированные (специализированные) клетки содержат всю информацию, необходимую для развития целого организма, но и позволяют рассчитывать, что подобные методы можно будет использовать для клонирования позвоночных, стоящих на более высоких ступенях развития, в том числе и человека. Техника клонирования сулит, в первую очередь, большие перспективы для животноводства, так как дает возможность получать от любого животного, обладающего ценными качествами, многочисленные генетически идентичные копии с теми же признаками. Клонирование нужных животных, например племенных быков, скаковых лошадей и т.п., может оказаться столь же выгодным, как и клонирование растений, которое, как было сказано, уже производится. Также одна из возможных областей применения данной технологии клонирование редких и исчезающих видов диких животных. Фактически появились реальные технические возможности для клонирования человека.

    Наследственность. Уже более ста лет назад стало известно, что каждый новый организм возникает в результате соединения мужской и женской половых клеток - яйцеклетки и сперматозоида.

    Работы немецкого биолога Ф. Шнейдера наводили на мысль, что из элементов ядра клетки наиболее вероятными непосредственными носителями наследственности являются «цветные тельца» - хромосомы . Свое название они получили после того как для их наблюдения под микроскопом их окрашивали красителями для лучшего рассмотрения.

    Голландец Э. ван Бенедан заметил, что в половых клетках хромосом в два раза меньше (Рис.3.8), и только после слияния разнополых клеток образуется нормальный хромосомный набор.

    Рис.3.8 Хромосомы человека в черно-белом варианте

    Рис.3.8а Хромосомы человека в цветном варианте

    Рис.3.8б Строение хросмосомы

    Хромосомная теория наследственности (морганизм) трансформировалась в молекулярную генетику, в учение о гене, как участке ДНК.

    На рисунке показан процесс "упаковки" ДНК в сложно-скрученные структуры. Причины "укладки" очевидны - ДНК слишком длинная молекула (длина цепи ДНК одной хромосомы - около 10 сантиметров), поэтому её надо упаковать. А чтобы она не слипалась между собой, с ней связываются определённые белки. Комплекс белков с ДНК называется хроматином. Для удобства всегда ставят знак тождества между ДНК и хроматином, поскольку "голой" ДНК в природе не встречается. ДНК содержит гены и некодируемые участки. В процессе расхождения удвоившихся хромосом в центромерах происходит разборка полимера приводящая к расхождению хромосом с образованием 2 дочерних клеток. Репликация ДНК происходит под действием ферментов и приводит к образованию второй точной копии молекулы ДНК в удвоенной хромосоме (Рис.3.9).

    Рис.3.9 Схема репликации молекулы ДНК: дочерняя цепь (реплика) строится на каждой из родительских полинуклеотидных цепей, как на матрице. Стрелкой указано направление движения так называемой вилки репликации, пунктиром обозначены водородные связи между азотистыми основаниями. А - аденин, Т - тимин, Г - гуанин, Ц - цитозин.

    Хромосомная теория наследственности объясняет не только процесс эволюции и передачу признаков родителей детям, но и показывает генетическую связь всего живого, в том числе родственную связь людей и обезьян. В процессе изучения хромосомной теории наследственности были выявлены хромосомно-наследственные заболевания, вызываемые нерасхождением хромосом в процессе митоза клетки. Такие хромосомные образования называются трисомией и по определению излечение данных заболеваний невозможно.

    Синдром Патау (трисомия по хромосоме 13). Впервые опи­сано в 1960 году. Популяционная частота 1 на 7800.

    Для синдрома Патау характерны следующие диагностические при­знаки: расщелина верхней губы и неба, низко поса­женные деформированные ушные раковины, флексорное положение пальцев рук, выпуклые ногти, попе­речная ладонная складка, стопа-качалка. Из пороков внутренних ор­ганов отмечены врожденные пороки сердца (дефекты перегородок и крупных сосудов), незавершенный поворот кишечника и др. Глубокая идиотия. Дети, в основном, умирают в воз­расте до 1 года, чаще в первые 2-3 месяца жизни.

    Синдром Эдвардса (трисомия по хромосоме 18) (Рис.3.10). Описан в 1960 году. Популяционная частота составляет 1 на 6500. Дети с синдромом Эдвардса имеют малую массу тела при рожде­нии. Основными диагностическими признакамисиндрома являются: низко посаженные аномальной фор­мы уши, скошенный подбородок. Имеют­ся аномалии развития конечностей: верхних - сгибательные дефор­мации пальцев, перекрывание пальцев, сжатые пальцы рук, широкий палец стопы, типичная форма стопы в виде качалки. Из внутренних пороков следует отметить комбинирован­ные пороки сердечно-сосудистой системы, незавершенный поворот кишечника пороки развития почек чаще гидронефроз и подковооб­разная почка), крипторхизм. Дети погибают, в основном, в возрасте до 1 года от осложнений, вызванных врожденными порока­ми развития.

    Рис.3.10 Синдром Эдвардса

    Синдром Дауна (трисомия хромосомы 21) (Рис.3.11). Впервые описан в 1866 году английским врачом Дауном. Наиболее часто встречаю­щийся хромосомный синдром - популяционная частота составляет 1 случай на 600-700 новорожденных детей. Частота рождения детей с данным синдромом зависит от возраста матери и резко увеличива­ется после 35 лет. Цитогенетические варианты очень разнообразны, но около 95% случаев представлены простой трисомией 21 хромо­сомы. Несмотря на интенсив­ное изучение синдрома причины нерасхождения хромосом до насто­ящего времени не ясны.

    Основными диагностическими признаками синдрома являются: типичное плоское лицо, монголоидный разрез глаз, откры­тый рот, аномалии зубов, короткий нос и плоская пе­реносица, избыток кожи на шее, короткие конечности, поперечная четырех-пальцевая ладонная складка (обезьянья борозда). Из по­роков внутренних органов часто отмечаются врожденные пороки сер­дца и желудочно-кишечного тракта, которые и определяют продолжительность жизни больных. Умственная отсталость обычно сред­ней степени тяжести. Дети с синдромом Дауна часто ласковые и при­вязчивые, послушные и внимательные.

    Рис. 3.11 Синдром Дауна

    Исследования строения хромосом позволили выявить отдельные участки - гены, отвечающие за наследование некоторых признаков и наличия некоторых заболеваний. Для человеческой хромосомы Х это (Рис.3.12):

    Рис.3.12 Хромосома Х и гены отвечающие за те или иные заболевания

    Хромосома 7 (человека)

    Рис.3.12а Хромосома 7

    Хромосома 7 (Рис.3.12а) - одна их хромосом человека, обычно содержащаяся в ядре клетки в двух экземплярах. Она содержит более 158 миллионов пар оснований, что составляет от 5% до 5.5% всего материала ДНК в клетке тела человека. По разным оценкам, хромосома 7 содержит от 1000 до 1400 генов. Эти данные носят только ориентировочный характер. Точные оценки будут сделаны по мере более глубокого их изучения.

    В 2000 - ом году ученым удалось полностью расшифровать последовательность нуклеотидов, составляющих более чем 80 тысяч генов человека. При его расшифровке, помимо собственно нуклеотидной последовательности, получены данные о цитогенетических и физических картах хромосом, их нуклеотидных последовательностях, локализации генов, устойчивых полиморфизмах, то есть мутациях, присутствующих в локальных популяциях человека с частотами не менее 3-5%. К настоящему времени выявлено не менее 1.5 миллиона мутационных полиморфизмов, по которым геномы людей отличаются друг от друга. К настоящему времени расшифрованы аминокислотные последовательности миллионов белков и с использованием методов рентгеноструктурного анализа и ядерного магнитного резонанса определены пространственные структуры более 15 тысяч белков. В ближайшие годы это достижение позволит справиться с десятками болезней, против которых современная медицина бессильна. Будет найдено средство от рака, заболеваний сердечно-сосудистой системы, многих наследственных нарушений и пороков развития, будет замедлено старение организма. Расшифровка генома - плод совместных усилий международного проекта Геном человека", финансируемого как британским фондом Wellcome Trust, так и американскими Национальными институтами здравоохранения, и частной компании Celera Genomics. Перед учеными встанет задача обобщения данных, установление взаимосвязей между различными генами, изучение механизмов развития болезней на генном уровне. Вскоре каждый человек сможет получить личную копию своего генетического кода для медицинских целей или просто из любопытства. Британская компания Solexa заявила о завершении разработки нового метода расшифровки генов, который позволит прочитать геном человека за один день. Кроме того, американский ученый Крейг Вентер, который принимал участие в расшифровке первого образца человеческого генома, сообщил, что уже получил заказы от частных лиц, желающих иметь на руках собственную генную карту. Человеческий геном представляет собой "строку" из трех миллиардов фрагментов ДНК. Такая информация позволит человеку узнать, например, о существовании генов, которые указывают на повышенный риск таких заболеваний, как болезнь Альцгеймера. Компания Solexa сообщила о создании более быстрого и дешевого метода расшифровки цепочек ДНК. Впервые он был использован для анализа единичных нуклеотидных полиморфизмов (SNP) - фрагментов кода ДНК, отличающиеся у разных людей. Эти незначительные различия могут объяснить, почему некоторые люди предрасположены к таким болезням, как рак или диабет, а другие - нет. Цель компании Solexa - разработать технологию, при которой полный геном человека может быть получен за 24 часа при стоимости процесса не более 1 тыс. долларов. Такая услуга может стать частью анализа крови, проводимого в обычной поликлинике. По словам представителей компании, при правильном использовании генетическая информация способна оказать помощь в улучшении здоровья отдельного человека, но в тоже время необходимо обеспечить конфиденциальность таких данных.

    Изменчивость - это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость ненаследственную - модификационную или фенотипическую, и наследственную мутационную или генотипическую, а также комбинативную и соотносительную. Данные о типах изменчивости приведены в таблице 3.1.

    ТАБЛИЦА 3.1Сравнительная характеристика форм изменчивости

    Формы изменчивости Причины появления Значение Примеры
    Ненаследственная модификационная (фенотипическая) Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом Адаптация - приспособление к данным условиям среды, выживание, сохранение потомства Белокочанная капуста в условиях жаркого климата не образует кочана. Породы лошадей и коров, завезенных в горы, становятся низкорослыми
    Наследственная (генотипическая) Мутационная Влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомах Материал для естественного и искусственного отбора, так как мутации могут быть полезные, вредные и безразличные, доминантные и рецессивные Появление полиплоидных форм в популяции растений или у некоторых животных (насекомых, рыб) приводит к их репродуктивной изоляции и образованию новых видов, родов -- микроэволюции
    Комбинативная Возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации генов Распространение в популяции новых наследственных изменений, которые служат материалом для отбора Появление розовых цветков при скрещивании белоцветковой и красноцветковой примул. При скрещивании белого и серого кроликов может появиться черное потомство
    Соотноси-тельная (коррелятивная) Возникает в результате свойства генов влиять на формирование не одного, а двух и более признаков Постоянство взаимосвязанных признаков, целостность организма как системы Длинноногие животные имеют длинную шею. У столовых сортов свеклы согласованно изменяется окраска корнеплода, черешков и жилок листа

    Онтогенез - индивидуальное развитие организма , совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. Онтогенез включает рост, т. е. увеличение массы тела, его размеров, дифференцировку. Термин введён Э. Геккелем. В ходе онтогенеза каждый организм закономерно проходит последовательные фазы, стадии или периоды развития, из которых основными у организмов, размножающихся половым путём, являются: зародышевый (эмбриональный), послезародышевый (постэмбриональный) и период развития взрослого организма. В основе онтогенеза лежит сложный процесс реализации на разных стадиях развития организма наследственной информации, заложенной в каждой из его клеток. Обусловленная наследственностью программа онтогенеза осуществляется под влиянием многих факторов (условия внешней среды, межклеточные и межтканевые взаимодействия, гуморально-гормональные и нервные регуляции и т.д.) и выражается во взаимосвязанных процессах размножения клеток, их роста и дифференцировки.

    Одной из главных особенностей всех организмов является способность к росту . Было бы неверным представлять рост просто как увеличение в размерах. Так, размеры растительной клетки могут увеличиться при поглощении воды, но этот процесс не будет истинным ростом, так как он обратим. Обычно ростом называется увеличение размеров организма (либо отдельных органов) за счёт процессов биосинтеза. В некоторых случаях рост может быть отрицательным (например, уменьшение сухой массы семени при образовании ростка).

    Рост многоклеточного организма можно разделить на два процесса:

    Деление клеток в результате митоза;

    Рост клеток – необратимое увеличение в размерах за счёт поглощения воды или синтеза протоплазмы.

    У однолетних растений, некоторых насекомых, птиц и млекопитающих рост ограничен. После наступления максимальной интенсивности роста, когда организм достигает зрелости и размножается, рост замедляется, а потом и вовсе приостанавливается, после чего организм стареет и гибнет. У многолетних растений (особенно у деревьев), многих беспозвоночных, рыб и пресмыкающихся рост неограниченный; какая-то небольшая положительная скорость роста наблюдается до самой гибели. Необычным типом роста характеризуются многие членистоногие. Их наружный скелет не может увеличиваться в размерах, и этим животным приходится его сбрасывать. В тот короткий период, пока новый скелет не затвердеет, и происходит увеличение размеров тела.

    Смерть (гибель ) - необратимое прекращение, остановка жизнедеятельности организма. Для одноклеточных живых форм завершением периода существования отдельного организма может являться как смерть, так и митотическое деление клетки. Наступлению смерти всегда предшествуют терминальные состояния - преагональное состояние, агония и клиническая смерть, - которые в совокупности могут продолжаться различное время, от нескольких минут до часов и даже суток. Вне зависимости от темпа наступления смерти ей всегда предшествует состояние клинической смерти. Клиническая смерть продолжается с момента прекращения сердечной деятельности, дыхания и функционирования ЦНС и до момента, пока в мозгу не разовьются необратимые патологические изменения. В состоянии клинической смерти анаэробный обмен веществ в тканях продолжается за счёт накопленных в клетках запасов. Как только эти запасы в нервной ткани заканчиваются, она умирает. При полном отсутствии кислорода в тканях омертвение клеток коры головного мозга и мозжечка (наиболее чувствительных к кислородному голоданию отделов мозга) начинается через 2-2,5 минуты. После смерти коры восстановление жизненных функций организма становится невозможным, то есть клиническая смерть переходит в биологическую.