Технология сушки кабеля после ванны охлаждения. Печь для сушки изоляции электрического провода. Сушка бумажной изоляции. Виды влаги. Кинетика процесса сушки

→ ?

Здравствуйте!

Не подскажете методику и чем можно выполнить просушку плинтов боксов БКТ. И как избавиться от этого в дальнейшем.

В общем-то тема сырых плинтов уже поднималась, страницы:

Лучше всего просушить оконечные устройства в сыром шкафу можно бытовым электрическим феном. Именно бытовым, так как при сушке важно выдержать невысокую температуру и не расплавить изоляцию кроссировок или кабелей.

Так как это долго, не серьёзно, требует напряжения 220 Вольт и фен для сушки волос не рассчитан на длительную работу, то сушат плинты паяльными лампами или газовыми горелками. Делать это надо осторожно, не приближая горелку близко к проводам и постоянно контролируя температуру плинтов рукой, так как изоляция кроссировок легко плавиться вызывая короткие и сообщения. Соответственно на такие работы отправляют людей аккуратных и ответственных.

Процесс этот не описан в официальных руководствах, так как сырость в распределительных шкафах возникает из-за нарушения технологий строительства и эксплуатации . Учитывая, что Вы из Беларуси отошлю Вас к ТКП 206 - 2009 (02140) "Правила технической эксплуатации линейно-кабельных сооружений абонентских линий местных телефонных сетей"
9.2 Осмотр и профилактическое обслуживание линейно-кабельных сооружений
9.2.7 При профилактическом обслуживании РШ проводятся следующие работы: …
- установка, выправка, уплотнение и заливка шкафной доски (или заделка доски замазкой);

В официальном документе процесс этот описан сухо, неполно и без объяснения причин. Между тем именно негерметичность заделки пола шкафа основная причина осаждения росы на плинтах. Достаточно небольшой дырочки в полу или между входящими кабелями, чтобы шкаф стал сырым. У строителей есть понятие "точка росы", а говоря простым языком относительно тёплый и влажный воздух из подвала, колодца или даже шкафного приямка попадая в пространство шкафа охлаждается, и на всех внутришкафных поверхностях выпадает роса.

В наших краях (Витебская область) пол шкафа делали трёхслойным. Сначала шли доски или фанера (ДВП и картон не годятся, со временем коробятся). Вырезались две половинки: задняя и передняя, причём на них под существующие кабеля делались пропилы. Доски устанавливаются в шкаф, и все щели затыкаются паклей или ветошью. Далее пол засыпается ровным, 1-2 см, слоем сухого песка, это второй слой.

Пока проводятся все эти работы, обычно разогревают битум. После выравнивания песка дно герметизируется заливкой битума. Стараются, залить его равномерно, во все углы и между кабелями. При заливке так же обращают внимание на температуру битума , так как если заливать его слишком жидким и горячим можно оплавить внутреннюю изоляцию входящих кабелей.

Как некоторая альтернатива может быть использована битумная крошка. В этом случае песок засыпается ровным слоем крошки, затем она сверху, прямо в шкафу разогревается паяльной лампой или газовой горелкой.

Немного удивлён, что в Беларуси всё это используют не везде, так как в Витебской области обязательная герметизация дна шкафа уже лет десять как норма (хотя, халява в глуши всегда возможна). Шкафы реально высохли . Стоит заметить, что РУЭСы в большинстве случаев герметизировали дно шкафов за счёт строительных организаций. Строители при сдаче кабеля в эксплуатацию обязаны восстановить или сделать заново герметизацию шкафного дна. Белорусских документов на этот счёт у меня нет, но могу привести российский (а они, как правило, слово в слово). Руководство по строительству линейных сооружений местных сетей связи, М., 2005 3.20 Распределительные шкафы :

3.20.6 Каналы трубопровода, введенного в шкаф и в шкафной колодец, должны быть тщательно, герметично заделаны с целью предотвращения случайного проникновения воды и взрывоопасных газов через колодцы в шкаф и помещение.

Спасибо большое за консультацию. Будем исправлять наши шкафы.

Надежная и бесперебойная работа кабеля в значительной мере зависит от качества изоляции. Она должна иметь такую электрическую прочность, чтобы возможность электрического пробоя ее при напряжении, на которое рассчитан данный кабель, была исключена.
Пропитанная бумажная изоляция жил кабелей имеет высокие электрические характеристики, продолжительный срок службы, сравнительно высокую допустимую температуру. Все это и невысокая стоимость обеспечили пропитанной кабельной бумаге ведущее место в изоляции кабелей.
Бумага для изоляции жил кабелей на напряжения до 35 кВ включительно выпускается толщиной 0,125 мм марки К-12 и 0,175 мм марки К-17 из небеленой, сульфатной целлюлозы преимущественно натурального цвета (ГОСТ 645-59). Для расцветки фаз в многожильных кабелях верхняя лента применяется из цветной бумаги.
Наложение кабельной бумаги производится путем обмотки жилы бумажными непропитанными лентами. Различают следующие способы намотки многослойной бумажной изоляции: встык, с положительным перекрытием и с отрицательным перекрытием.
Намотка встык характеризуется тем, что при наложении ленты край одного витка соприкасается с краем соседнего. Этот способ намотки применяется редко, так как обладает серьезным недостатком: при изгибах изолированной жилы внутренняя часть лент в зоне сжатия выпучивается, а внешняя в зоне растяжения расходится.
При обмотке с положительным перекрытием один край ленты перекрывает край ленты предыдущего витка. Такой способ намотки уменьшает гибкость жилы и часто вызывает появление складок и даже трещин бумаги в месте перекрытия при изгибе жилы. Этот способ применяется в кабелях лишь для подмотки самых нижних слоев изоляции, расположенных непосредственно у жилы, так как при этом исключается возможность совпадения в первых слоях бумажных лент, что очень важно для обеспечения электрической прочности изоляции. Применение положительного перекрытия для наружных лепт придает большую гладкость наружному слою изоляции.
Наиболее распространенным способом является обмотка с отрицательным перекрытием, т.е. с зазором. Наличие зазора между лентами позволяет в некоторых пределах изгибать кабель без опасности повреждения бумажной изоляции. Величина зазора между двумя соседними витками при этом находится в пределах 0,5-2 мм. Зазоры между витками соседних лент, расположенных сверху (по вертикали), не должны совпадать во избежание ухудшения электрических характеристик изоляции. Однако при наложении большого количества лент не удается избежать совпадений зазоров, поэтому число совпадений лент изоляции согласно ГОСТ 340-59 на кабели силовые с изоляцией из пропитанной бумаги не должно превышать указанного в норм.
Согласно требованиям ГОСТ 340-59 в изоляции кабелей 6 кВ и выше не допускается совпадения более трех лент, расположенных одна над другой, и двух лент, непосредственно прилежащих к жиле.
В процессе изолирования жил кроме совпадения зазоров между лентами могут появляться надрывы лент.
Совпадение продольных трещин или порезов на длине более 50 мм в двух лентах, расположенных одна над другой, считается за одно.

Необходимо отметить, что развитие скользящих разрядов будет происходить труднее всего в случаях, когда зазоры будут находиться под серединой ленты следующего повива, при этом соседние по вертикали зазоры будут перекрыты лишь одним слоем бумаги и это место, естественно, будет электрически ослаблено. По этой причине технологией изолирования предусматривается перекрытие зазоров следующим повивом примерно на одну треть ширины лент.
Большое значение имеет ширина применяемых при обмотке бумажных лент. Широкая лента затрудняет развитие скользящих разрядов между лентами, позволяет увеличить шаг намотки, а следовательно, и производительность. Однако чрезмерное увеличение ширины лент не обеспечивает получение плотной намотки жил, приводит к появлению морщин, трещин и разрывов бумажных лент при изгибах кабеля. Ширина лент обычно устанавливается в зависимости от диаметра обматываемой жилы, при этом чем больше диаметр жилы или кабеля, тем больше допускаемая ширина бумажных лент.
Пределы ширины бумажных лент для жил в зависимости от их диаметра, установленные заводами отечественной кабельной промышленности, приведены в табл. 2-4.
В случае секторной жилы выбор ширины бумажных лент производится по эквивалентному диаметру, который равен периметру жилы, деленному на π.
Наложение бумажной изоляции должно быть плотным, без складок и морщин. Наличие складок, морщин, неплотности в изоляции приводит к образованию пустот, воздушных включений, снижающих надежность работы изоляции в условиях эксплуатации.
Острые грани секторов жил вызывают неравномерность плотности намотки бумажной изоляции, а также повышение напряженности электрического поля. Увеличение радиуса закругления граней секторных жил приводит к более равномерному распределению электрического поля и повышению электрической прочности изоляции.
Толщина изоляционного слоя, нормированная ГОСТ 340-59, приведена в табл. 2-5 и 2-6.
Отклонение толщины изоляции между жилами или |М1чжду жилой и оболочкой допускается не более: для кабелей 1 кВ - минус 0,18 мм, для кабелей выше 1 кВ-минус 0,24 мм.
Бумажные ленты изолирующего слоя, как правило, | накладываются в разные стороны, причем слой изоляции, прилегающей к жиле, накладывается в направлении скрутки проволок верхнего повива жилы. Перемена направления накладываемых лент изолирующего слоя позволяет получить кабели без излишней жесткости и склонности к закручиванию. Бумажная изоляция накладывается на крутильно-изолировочной машине, которая одновременно выполняет скрутку многопроволочной жилы и уплотняет ее.
Изолированные жилы кабелей, у которых каждая жила освинцовывается отдельно, поступают с крутильно-изолировочных машин непосредственно в сушку. Изолированные жилы для многожильных кабелей с крутильно-изолировочных машин сматываются на барабаны и направляются на машины общей скрутки жил в кабель. Скрутка изолированных жил в кабель отличается от скрутки неизолированных лишь меньшим количеством скручиваемых жил и большим шагом скрутки. При общей скрутке изолированных жил в кабель им сообщаются два движения -- одно вращательное вокруг оси кабеля и другое прямолинейное
Общая скрутка характеризуется двумя основными параметрами: шагом и направлением скрутки, имеющим большое значение, как это будет видно далее, при выполнении соединения кабелей между собой.

Шагом общей скрутки жил называют длину изготовленного кабеля за один оборот крутильного устройства. Длина шага определяется заводской нормалью в зависимости от диаметра кабеля под оболочкой.

Каждая жила своей расцветки на протяжении одного шага делает полный оборот вокруг оси кабеля, занимая последовательно любое положение в площади сечения круга от 0 до 360° (подобно стрелке часов). Каждый следующий шаг крутильного устройства является повторением предыдущего как по длине шага, так и по последовательности размещения жил в площади сечения круга.
Таким образом, изготовленная заводом строительная длина кабеля:
где ι - длина шага общей скрутки; n- число шагов. При скрутке изолированных жил одновременно производится заполнение промежутков между жилами бумажными жгутами или сульфатной бумагой толщиной не более 0,08 мм и наложение поверх скрученных жил поясной изоляции. Бумажный жгут, заполняя свободное пространство между жилами до круглой формы, затрудняет перемещение пропиточного состава вдоль кабеля и повышает тем самым электрическую прочность кабеля. Скрутка изолированных жил на всех заводах кабельной промышленности Советского Союза производится в одном - правом направлении. Это определяется условиями прокладки и соединения между собой отдельных строительных длин при сооружении кабельных линий.
Поскольку на изготовление изоляции 1 км кабеля 35 кВ сечением 3X95 мм2 расходуется 2 т кабельной бумаги с влажностью 7-9% (около 140-180 кг воды), кабель с машин общей скрутки поступает в специальные вакуумные котлы для сушки и удаления из бумажной изоляции влаги и воздуха, наличие которых снижает электрические и физические характеристики бумажной изоляции.
Сушка производится при температуре выше 100 °С, и через 2-3 ч из котла начинают откачивать воздух и пары воды. Продолжительность сушки зависит от конструкции кабеля и оборудования. Для ускорения и улучшения качества сушки процесс ведется с одновременным подогревом жил внутренней части кабеля электрическим током.
После окончания процесса сушки производится пропитка бумажной изоляции кабеля пропиточным составом.
После окончания процесса пропитки нагретым составом в вакуумном котле корзины с кабелем устанавливаются для охлаждения на открытом воздухе в сушильно-пропиточном отделении. При этом объем пропиточного состава в изоляции (в результате охлаждения) уменьшается и вследствие этого происходит дополнительная подпитка изоляции находящимся в корзине составом.
Пропитка маслоканифольным составом значительно повышает электрическую прочность бумажной изоляции кабелей.
Пропиточный состав изготовляется из минеральных масел и канифоли. Для пропитки кабелей до 35 кВ включительно применяется очень вязкое минеральное масло марки П-28 (ГОСТ 6480-53), получаемое из остатков перегонки нефти, называемое брайстоком, отличающееся высокой стойкостью против окисления и малым выделением газов при ионизации.

Важнейшей характеристикой пропиточного состава является вязкость. Состав должен быть, с одной стороны, менее вязким, чтобы обеспечивалась полная пропитка бумаги, а также прокладка кабеля без предварительного подогрева при температуре не ниже 0°С, в противном случае при изгибании кабеля отдельные ленты кабельной бумаги не смогут скользить относительно друг друга, что приведет к разрывам бумажных лент и повреждению изоляции в этих местах. С другой стороны, при прокладке па крутонаклонных и вертикальных участках трассы пропиточный состав, недостаточно вязкий, постепенно будет стекать с верхних участков в нижнюю часть кабеля. П результате верхний участок кабеля оказывается лишенным части пропиточного состава, что ухудшает качество изоляции этого участка. В то же время в нижнем участке кабеля создается повышенное давление пропиточного состава, что может привести к разрыву оболочки кабеля.
Для пропитки кабелей применяют состав МП-1, имеющий вязкость 6-7,5 по Энглеру1 при 70 °С, и МП-2, имеющий ту же вязкость при 80 °С. Основные электрические характеристики пропиточных (маслоканифолевых) составов и кабельной бумаги приведены в табл. 2-8.
Сопоставление данных табл. 2-8 показывает, что электрическая прочность пропитанной кабельной бумаги в 1,3-2,2 раза больше, чем прочность пропиточного состава, и в 13-16 раз больше чем прочность непропитанной кабельной бумаги.
Пропитка кабелей с обедненно-пропитанной изоляцией, предназначенных для вертикальных прокладок, производится, менее вязким составом МП-2. Обеднение изоляции выполняется в тех же котлах после удаления из них пропиточного состава.
В кабелях с отдельно освинцованными жилами с обедненно-пропитанной изоляцией пропиточный состав не должен вытекать при температуре 85 °С и в кабелях с общей свинцовой оболочкой - при температуре 75° С.
Обеднение бумаги пропиточным составом приводит к снижению электрической прочности изоляционного слоя, поэтому бумажная изоляция кабелей с обедненной пропиткой утолщается.
Толщина изоляции кабелей 1-3 кВ с обедненной пропиткой одинакова по толщине с изоляцией кабелей того же напряжения с нормальной пропиткой. Это объясняется тем, что толщина изоляции для кабелей на эти напряжения определяется требованием механической прочности, при обеспечении которой полученная толщина бумажной изоляции имеет достаточный запас по электрической прочности.
В настоящее время для вертикальных и крутонаклонных участков трассы кабели с обедненно-пропитанной изоляцией применяются редко, так как использование для кабельной линии кабелей с поясной изоляцией и кабелей с отдельно освинцованными жилами при рабочем напряжении линии 10 кВ требует применения специальных муфт.
В связи с этим в настоящее время большое внимание уделяется пропиточным составам, содержащим в качестве одного из компонентов синтетический церезин.
В соответствии с ГОСТ 340-59 в кабелях 20-35 кВ поверх жилы, в кабелях 6-10 кВ с отдельно освинцованными жилами поверх изоляции и в кабелях с общей свинцовой оболочкой поверх поясной изоляции должно быть выполнено экранирование путем нанесения слоя из полупроводящей бумаги. Экранирование, расположение проводящих поверхностей но отношению к изоляционному материалу кабеля, является одним из лучших способов регулировании, ограничения и снижения напряженности электрического моля.

В кабелях с вязкой пропиткой при разности уровней по трассе прокладки и под действием нагрева происходит перемещение пропиточного состава в радиальном и продольном направлениях. Это приводит к Образованию газовых включений и возникновению в них процессов ионизации, которые могут привести к повреждению изоляции кабеля.
Применение полупроводниковых экранов по жиле и под свинцовой оболочкой, где увеличение объема вследствие давления пропиточного состава и малой эластичности синица п условиях эксплуатации достигает от 0,5 до 20% объема изоляции, значительно улучшает ионизационную характеристику кабеля и повышает надежность его работы.
Под свинцовой оболочкой кабелей согласно ГОСТ 340-59 через каждые 300 мм должны быть четко нанесены на поверхности изоляции или на специальной ленте обозначения предприятия-изготовителя и год изготовления кабеля. В кабелях под свинцовой оболочкой диаметром менее 20 мм вместо специальной ленты допускается лента или нитка присвоенного предприятию-изготовителю цвета.
В многожильных кабелях верхняя лента изоляции одной жилы должна быть из бумаги натурального цвета, второй жилы - красного цвета или из бумаги натурального цвета с красной полоской, третьей жилы - любого другого цвета или из бумаги натурального цвета с полоской любого другого цвета. В четырехжильных кабелях верхняя лента нулевой жилы должна быть из бумаги натурального цвета.
Отличительная расцветка жил введена для определения направления чередования фаз трехфазной системы, обеспечения правильности соединения одноименных фаз между собой по их, цветам при монтаже отдельных строительных длин кабеля, а также соединения кабельными линиями одноименных фаз шин элементов оборудования РУ электроустановок.
Пластмассовая изоляция жил применяется для кабелей до 3 кВ, изготавливаемых по ГОСТ 16442-70*. В качестве пластмасс применяется поливинилхлорид и полиэтилен.
Поливинилхлорид представляет собой твердый продукт полимеризации хлорвинила, он не распространяет горения и весьма стоек к тепловому старению, действию воды, щелочей, разбавленных кислот и других химических активных веществ, масел и бензина. В чистом виде поливинилхлорид не применяется ввиду его жесткости и хрупкости при пониженной температуре.
Для повышения эластичности и морозостойкости поливинилхлорида к нему добавляют трудно испаряемые органические жидкости-наполнители (пластификаторы); для улучшения электроизоляционных характеристик и удешевления стоимости к нему добавляют каолин, тальк, карбонат кальция и др.; для повышения стойкости при высокой температуре - стабилизаторы; для повышения его светостойкости - специальные красители.
Кабели с изоляцией из поливинилхлоридного пластиката наиболее широкое распространение получили на напряжение до 1 000 В. Недостатком изоляции из поливинилхлоридного пластиката является его термопластичность. Нагрев жилы токами нагрузки может вызвать некоторое размягчение изоляции и смещение жилы из центрального положения в процессе эксплуатации. Электрическая прочность изоляции из поливинилхлоридного пластиката, кроме того, зависит от времени нахождения под напряжением переменного тока.
Во избежание повышения диэлектрических потерь в изоляции эти кабели могут изготовляться на напряжения не выше 10 кВ.
Кабели с изоляцией из поливинилхлоридного пластиката изготовляют в оболочке только из поливинилхлоридного пластиката. Толщина оболочек в зависимости от диаметра кабеля под оболочкой равна 1,8-2,6 мм.

Кабели, прокладываемые в земле, снабжаются обычными защитными покровами и бронею.
Полиэтилен - один из синтетических полимеров, имеющий наибольшее применение и перспективное широкое использование в качестве изоляции кабелей, особенно кабелей для крутонаклонных и вертикальных участков трассы. Полиэтилен обладает хорошими механическими свойствами и широком интервале температур стойкостью к действию кислот, щелочей, влаги и имеет высокие 9лвхтроиэоляциоиные характеристики.
В зависимости от плотности полиэтилен различают низкой, средней и высокой плотности.
Полиэтилен высокой плотности имеет по сравнению с полиэтиленом низкой плотности повышенную температуру плавления и большую механическую прочность. При введении в него сажи или графита можно получить полупроводящий полиэтилен для целей экранирования.
Кабели с полиэтиленовой изоляцией выпускаются отечественной промышленностью серийно на напряжения до 10 кВ и в опытном порядке 20, 35 кв.

В отличие от кабелей с бумажной пропитанной изоляцией электрический расчет кабелей с пластмассовой изоляцией производится не по максимальной, а по средней напряженности электрического поля, так как напряженность поля в кабелях с пластмассовой изоляцией заметно зависит от радиуса жилы.
Рабочая напряженность поля разработанных конструкций кабелей с пластмассовой изоляцией, выпускаемых кабельной промышленностью, имеет величины.
Величины толщин изоляционного слоя, налагаемого методом горячего опрессования, кабелей до 3 кВ с пластмассовой изоляцией приведены в табл.
Для кабелей 10 кВ и выше с полиэтиленовой изоляцией выбор экранов является важнейшим вопросом надежности работы кабеля. Экран должен быть хорошо соединен с полиэтиленовой изоляцией и иметь такой же, как у изоляции, температурный коэффициент объемного расширения, с тем чтобы при изменениях нагрузки кабелей между полупроводящими слоями и изоляцией кабеля не образовалось пустот. Эти кабели экранируются как со стороны жилы, так и со стороны оболочки. При этом жила опрессовывается тонким слоем полупроводящего полиэтилена, на который накладывается основная полиэтиленовая изоляция, сверху экранированная коллоидальным графитом или полупроводящим полиэтиленом.
Пластмассовая изоляция на напряжение 6 кВ экранируется со стороны оболочки, для чего поверх изоляции жил накладываются полупроводящие и металлические (медные или алюминиевые) экраны.
На кабелях 6 и 10 кВ с пластмассовой изоляцией и оболочкой проводимость лент экрана должна обеспечить величину тока замыканий на землю, возникающих в условиях эксплуатации

Страница 44 из 45

Несмотря на то, что операция сушки и прописки чрезвычайно важна для получения надлежащего качества кабеля, методы сушки и пропитки у разных заводов очень разнообразны. Проф. Whitehead, опубликовавший з 1928 г. свое исследование по сушке и пропитке кабелей, начатое им по поручению Американского института инженеров-электриков, говорит, что на американских заводах им найдены в этом отношении самые широкие вариации, а именно от шести суток сушки при высоком вакууме и при предварительной подсушке на воздухе до полного отсутствия сушки при 20 час. проварки в горячей пропиточной массе и при пониженном давлении. Такое же разнообразие наблюдается и в Европе, причем здесь особняком стоит способ Heaver’a, применяемый на английском заводе Glover’a, о чем уже упоминалось выше. Все это показывает на отсутствие единообразия в понимании значения процесса и его хода и на сравнительно малую его экспериментальную проработку.
Известно, что качество диэлектрика очень сильно зависит от присутствия в нем влаги, поэтому полное ее удаление очень важно. В изоляции кабеля перед сушкой содержится очень много влаги, для удаления которой без принятия особых мер требуется очень много времени. Н. Mailer приводит по этому поводу следующий простой расчет:
Кабель на 35 кВ, 395 м.n. при длине в 1 000 т, имеет вес бумаги 2000 кг, что при 7% влажности дает содержание воды в кабеле 140 кг. Если такой кабель поместить в вакуум-аппарат объемом 8 м3 и сушить током сухого воздуха при 20° С, то объем вакуум-аппарата нужно переменить 1000 раз при условии, что воздух будет удаляться каждый раз полностью насыщенным влажностью. Потребность в таком большом объеме сухого воздуха при естественной сушке показывает на необходимость применения при сушке искусственных мер: нагрева и вакуума. Однако то и другое имеет свои недостатки: высокий вакуум очень сильно затрудняет теплопередачу от стенок котла к кабелю; количество пара, заключающееся в данном объеме вакуум-аппарата, при пониженном давлении меньше, чем при высоком; быстрое испарение вызывает быстрое падение температуры кабеля, что затрудняет сушку. Поэтому обычный, или, как говорят англичане, "рутинный", способ сушки в основном состоит в том, что погруженный в вакуум-аппарат кабель сначала нагревается при атмосферном давлении и при открытой крышке котла с помощью пара, пропускаемого в змеевик или рубашку котла. Этот подогрев длится в течение от нескольких часов до 2-3 суток при температуре 110-120 С, причем время устанавливается согласно производственному опыту или лабораторной проверке. После такого подогрева котел закрывается крышкой и в нем создается вакуум, при котором сушка продолжается при той же температуре 110 - 120° С. Большей частью дается вакуум порядка 90-95%, однако новые современные установки достигают давления до 5 мм и даже до 2 мм рт. ст., а для особо высоковольтных кабелей с помощью ртутных насосов лабораторного типа достигают и более высокого вакуума. При столь высоких вакуумах необходимо применять сваренную под вакуумом пропиточную массу, так как иначе она сильно пенится при впуске в котел.
Как во время процесса подогрева, так и во время процесса сушки не все элементы кабеля одинаково повышают свою температуру. Как показывают измерения, медная жила кабеля достигает температуры в 100-110° С только через очень продолжительное время непрерывной сушки, порядка суток и более; через 5-6 час. эта температура достигает величины порядка только 60-80° С. Иногда сушку при вакууме прерывают впуском сухого газа (воздуха или предпочтительно углекислоты), добиваясь тем повышения температуры жилы, а затем снова дают вакуум: это так называемая сушка толчками. Нужно иметь в виду, что при перерыве вакуума повышается температура испарения воды, поэтому прекращается и сушка кабеля. В настоящее время вместо сушки толчками часто применяют подогрев жил электрическим током, что очень сильно ускоряет процесс сушки. Такой подогрев всегда ведется постоянным током, ибо при переменном токе требуется очень высокое напряжение источника тока благодаря высокому индуктивному сопротивлению сушимого кабеля. Вообще говоря, ускорение процесса сушки выгодно не только в смысле лучшего использования оборудования и экономии пара, которым обогревается вакуум-сушильный аппарат, но и в отношении улучшения качества изоляции, так как бумага при длительном нагреве может повреждаться. Сушка током экономически обычно не выгодна, так как поглощает большое количество энергии, но все же имеются основания ее применять, если нет достаточного количества вакуум-аппаратов или если желают сократить процесс.
Для низковольтных кабелей напряжением до 3 кВ, а иногда и до 6 кВ, процесс сушки часто совсем опускается и заменяется варкой в горячей массе обычно предварительно подогретого током кабеля. Влага при этом "варочном способе" удаляется во время процесса варки. Такой способ имеет некоторые экономические преимущества, но никаких технических преимуществ в смысле улучшения качества кабеля он не дает. При варочном способе рекомендуется предварительный подогрев кабеля электрическим током или иным способом, так как иначе холодный кабель слишком сильно понижает температуру пропиточной массы и тем затрудняет процесс варки.
При изготовлении кабеля на очень высокое напряжение, перед концом сушки вакуум-аппарат иногда наполняется углекислотой, которая затем эвакуируется. Назначение этой операции заключается в том, чтобы заменить, с одной стороны, химически активный кислород остаточного воздуха нейтральной углекислотой, а с другой стороны, для уменьшения внутренних пустот в кабеле, так как углекислота значительно больше растворяется в пропиточной массе, чем воздух, что влечет за собой уменьшение первоначальных пустот.
Процесс сушки и пропитки кабеля ведут обычно в одном и том же котле, чтобы избежать соприкосновения кабеля с воздухом, ибо сухой кабель очень гигроскопичен. Горячая пропиточная масса всасывается благодаря вакууму, господствующему в котле. Температура всасываемой массы обычно имеет порядок 115-135° С, а по Н. Mflller’y даже 140° С. Столь высокая температура пропиточной массы вызывается необходимостью, поскольку в конце сушки температура медной жилы далеко не достигает 100° С, а так как пенетрация массы через бумагу прекращается около 80° С, то при более низкой температуре впускаемой массы легко может получиться опасность недопропитки кабеля, так как масса особенно сильно должна остывать у относительно холодной медной жилы и прилегающих к ней слоев изоляции. Вторым обстоятельством, вызывающим необходимость высокой температуры пропиточной массы, является то, что для проникновения массы во все поры бумаги нужна горячая масса, когда вязкость ее достаточно мала.
Для того чтобы получилась хорошая и глубокая пропитка, процесс всасывания массы в котел должен быть достаточно медленным и продолжаться не менее 1-2 час. Если всасывание будет идти быстро, то в кабеле будет много воздуха, ибо абсолютного вакуума в котле достичь невозможно. Кроме того, входящая в вакуум-аппарат пропиточная масса сильно пенится, так как при уменьшенном давлении из нее начинают выходить растворенные в ней газы, при медленной же пропитке часть этих газов удаляется с помощью отсоса насосами. В хорошо устроенных установках для пропитки высоковольтных кабелей пропиточная масса дегазируется и в предупреждение обратного растворения в ней газов и для предупреждения окисления держится под вакуумом; такая масса при пропитке уже не пенится. Иногда массу хранят под азотом, который имеет малый коэффициент растворимости.
Для того чтобы улучшить пропитку, ее ведут иногда толчками, меняя вакуум на давление, дальнейшие подробности этого метода пропитки будут даны дальше при описании контроля сушки и пропитки. Иногда при пропитке применяется повышенное на 3-4 at давление с целью вогнать пропиточную массу в кабель. Для того чтобы допустить такую пропитку, котлы фирмы Krupp рассчитываются на это повышенное давление. Практика, однако, не оправдала полностью этого метода, как это будет видно из дальнейшего, и он теперь почти повсеместно оставлен.
Пропитка кабеля должна быть возможно полной, чтобы обеспечить хорошие диэлектрические и термические свойства кабеля. Так как пропиточная масса обладает очень высоким коэффициентом термического расширения, то кабель перед наложением свинцовой оболочки необходимо охладить. Хорошая практика для высоковольтных кабелей ведет охлаждение так, чтобы температура охлажденного кабеля была бы на 4-5° С выше температуры окружающего воздуха, причем охлаждение ниже температуры окружающего воздуха не допускается во избежание осаждения на кабель влаги из окружающей среды.
Описание процесса сушки и пропитки и оборудования начнем с изложения изготовления масло-канифольной пропиточной массы. Варка этой массы ведется или в тех же вакуум-аппаратах, в которых пропитывается кабель, или, что более удобно, в специальных котлах. На фиг. 207 изображен один из таких котлов фирмы Rot, этот котел имеет диаметр 4,2 м, нагревается змеевиком и снабжается мешалкой, делающей 30 об мин. В такие котлы обычно сначала загружается канифоль, а затем заливается масло. Варка ведется при паровом подогреве в течение нескольких часов при температуре около 120° С до тех пор, пока вся канифоль не растворится в масле и не прекратится ее вспенивание, зависящее от выделения паров и влаги. Пропиточную массу для высоковольтных кабелей варят под вакуумом с целью устранения растворения в ней газов и предупреждения окисления. Свежесваренная масса должна обычно выстаиваться в течение нескольких суток, для того чтобы дать возможность оксикислотам, содержащимся в канифоли, выпасть из раствора, в противном случае они со временем могут выпасть в кабельной изоляции. Иногда на кабельных заводах ставится контактная очистка масла с помощью отбеливающих глин. Часто также применяется и фильтрация масла через обычные фильтры для устранения механических загрязнений.

Оба эти вида сушки распространены примерно одинаково, только сушка на барабанах в громадном большинстве случаев производится в вертикальных, а не в горизонтальных котлах, как это изображено на фиг. 210. Относительные достоинства и недостатки сушки на барабанах и в корзинах заключаются в следующем:

Фиг. 207. Котел для варки пропиточной массы фирмы Rot.
кабели поступают в сушку и пропитку или намотанными на железные барабаны, на которые они принимаются с трехфазных машин, или же в так называемых железных корзинах, в которые они перематываются с барабанов. Сушка кабелей на барабанах изображена на фиг. 208, на которой показаны три барабана с кабелями, приготовленные для сушки в горизонтальном котле и соединенные между собой и с особыми клеммами для сушки электрическим током. Вид корзины приведен на фиг. 209, где изображена дырчатая корзина, переделанная в глухую.

Фиг. 208. Сушка кабеля на барабанах в горизонтальных котлах.

При сушке в корзине кабель нужно по меньшей мере один раз перемотать в корзину с приемного барабана, причем в этом случае кабель идет в свинцовый пресс "против перьев", т. е. при верхнем слое бумаги, наложенном с положительной перекрышей, бумага может задраться в прессу.


Фиг. 209. Корзина для сушки и пропитки кабеля.
Преимущества сушки в корзинах заключаются в том, что корзину можно сделать глухой, т. е. без отверстий, открытой только сверху, что позволяет вести охлаждение кабеля не в вакуум-аппарате, а в особом помещении, что сильно повышает использование вакуум-аппаратов, с одной стороны, и позволяет вести процесс изготовления кабеля без соприкосновения неохлажденного кабеля с воздухом, с другой стороны.

Фиг. 210. Схема сушки в вертикальном котле.

При сушке на барабане лишняя перемотка кабеля отпадает, но становится почти неизбежным перенос кабеля по воздуху после пропитки в особые охлаждающие баки, так как в противном случае использование оборудования для сушки и пропитки будет ничтожно малым. Кроме того, очень трудно тонкие кабели опрессовывать с барабанов, так как требуется большое усилие для проворачивания барабана в густой холодной массе. Затем при обычно применяемой сушильно-пропиточной аппаратуре кабели на барабанах нужно перед сушкой кантовать на ребро.
Вакуум-сушильные аппараты можно подразделить на следующие три типа: вертикальные котлы, горизонтальные котлы и сушильные шкафы. Схема вертикального котла приведена на фиг. 210, здесь внутри котла изображен пунктиром погруженный в котел барабан с кабелем. Схема горизонтального котла изображена на фиг. 211, такой котел открывается посредством передвижения каретки с укрепленной на ней крышкой котла; этот котел совершенно не приспособлен для приема корзин. На фиг. 212 изображен вид сушильного шкафа фирмы Krupp; этот шкаф снабжен поворотными тарелками, на которые ставятся корзины с кабелем. Такие шкафы годны только для сушки кабеля, причем кабель должен быть обязательно перемотан в корзины.
Для пропитки силовых кабелей наиболее принятым типом котла является вертикальный котел. Современные котлы для кабелей очень высокого напряжения строятся очень большими, а именно для приема корзин до 3 и 4 л в диаметре, для обычных же потребностей ограничиваются котлами для корзин диаметром 2-2,5 м. Обычно в один котел входит от двух до трех корзин. В этих котлах можно вести сушку и на барабанах. Большим удобством этого типа котлов является то, что во время пропитки можно наблюдать при открытой крышке за состоянием зеркала массы и по его состоянию судить о том, кончилась пропитка или нет, так как после окончания пропитки из массы не должно выделяться пузырей газа и влаги. Обогреваются эти котлы или паровым змеевиком или паровой рубашкой. Котлы с паровой рубашкой дороже котлов с змеевиком, но лучше, так как змеевики часто расстраиваются. Кроме того, при рубашке легче чистить котел, можно применять перегретый пар, что выгодно. Дальнейшим преимуществом рубашки является то, что она легче переносит охлаждение котла путем пуска в него холодной воды.

Фиг. 211. Схема сушки в горизонтальном котле.
В Америке принято применять для нагрева котлов вместо пара масло. Против применения масла, однако, приводятся те возражения, что масло огнеопасно; развивающиеся из него продукты дестилляции требуют особого устройства для отвода; при охлажденном масле в начале процесса нужно приложить очень большое давление, что сильно удорожает установку.
Горизонтальные котлы для производства силовых кабелей употребляются очень редко, и по существу они для этого назначения не пригодны, ибо имеют следующие основные недостатки:

Фиг. 212. Сушильный шкаф фирмы Fr. Krupp, Grusonwerk.

  1. Во время пропитки масса жадно впитывается кабелем, причем быстро понижается зеркало пропиточной массы, благодаря чему возможна недопропитка верхней части барабана с кабелем, если масса не будет набираться во время самого процесса, что очень неудобно.

2. Так как котел, наполненный массой, нельзя открыть, то приходится массу из котла спускать в горячем состоянии, что вредно отражается на качестве кабеля.
Первый из этих недостатков, однако, довольно легко устраняется устройством сверху котла особых резервуаров с пропиточной массой, откуда и пополняется расход ее. Недостатком горизонтальных котлов является также то, что около них труднее поддерживать чистоту, чем около вертикальных котлов. Общепринятым мнением можно считать то, что вертикальные котлы пригодны более для производства силовых кабелей, горизонтальные - для производства телефонных кабелей, а шкафы - для сушки телефонных кабелей небольшего диаметра, которые также должны сушиться в корзинах.
Обычная схема сушильно-пропиточного устройства показана на фиг. 213. Здесь А - железный барабан с кабелем; В - вакуум-аппарат; С- вакуум- насос; D - бак с пропиточной массой; Е - поверхностный конденсатор для паров воды, отсасываемых из кабеля.
В производственных условиях контроль засушкой кабеля заключается в наблюдении за смотровым окошечком конденсатора, в которое видно, идет конденсация отсасываемого пара или нет.


Фиг. 213. Схема сушильно-пропиточного устройства для кабелей, пропитанных вязкой массой.
Спускной кран у конденсатора также дает возможность следить за спуском конденсационной воды и примерно судить о стадии процесса,однако оба эти способа очень примитивны и не дают возможности точного определения процесса. В настоящее время для установления типового режима сушки и пропитки существует несколько методов, основанных на измерении электрических характеристик кабеля во время сушки и пропитки. Впервые сообщение о применении такого метода было сделано W. A. Del Маг’ом в 1924 г. Согласно этому сообщению на американских кабельных заводах применялось измерение во время сушки и пропитки электрической емкости кабеля с помощью переменного тока. Постоянный ток не применялся, так как при нем результаты измерений очень сильно колеблются из-за неизбежных колебаний температуры и вследствие значительной электрической абсорбции.


Фиг. 214. Изменение емкости кабеля во время сушки и пропитки по W. A. Del Маг’у
Характер изменения емкости с течением времени по W. A. Del Маг’у изображен на фиг. 214. Как видно из этой фигуры, в начале процесса емкость очень сильно растет, очевидно, отчасти в связи с повышением температуры кабеля, а отчасти в связи с отпотеванием кабеля. Затем емкость начинает падать, и начиная с некоторого времени, становится постоянной. Тот момент, когда емкость стала постоянной, соответствует,
очевидно, концу процесса сушки. При впуске массы в котел, т. е. при начале пропитки, емкость кабеля сначала очень быстро возрастает, затем возрастание замедляется, и наконец, емкость становится постоянной, что соответствует концу пропитки. Нужно заметить, что на фиг. 214 масштаб для величины емкости при пропитке взят в несколько раз меньше, чем для сушки.

Фиг. 215. Изменение емкости кабеля во время пропитки по P. Junius’y.
Из нескольких последующих сообщений о развитии методов контроля сушки и пропитки путем электрических изменений заслуживают упоминания работы P. Junius’a , , произведенные на германском кабельном заводе Hackethal Draht u. Kabelwerke. Junius снимал кривые зависимости емкости от времени мостиком К. W. Wagner’a переменным током тональной частоты. Наиболее любопытны его наблюдения над процессом пропитки. Он в особенности ясно показал влияние толчков давлением на степень пропитки. На фиг. 215 показана по Junius’y зависимость электрической емкости от времени пропитки, причем видно, что при пропитке под вакуумом емкость относительно медленно растет, что указывает на постепенное увеличение степени пропитки. При даче в вакуум-аппарат давления путем впуска атмосферного воздуха емкость сразу делает скачок кверху, что указывает на сжатие воздушных пузырей в кабеле.
При даче вновь вакуума величина емкости опять падает, но не до прежней величины. Повторные толчки давления дают вновь повышение емкости до некоторой постоянной предельной величины. Степень разрыва между предельной величиной емкости и емкостью при вакууме указывает на степень эвакуации кабеля.
Следует, однако, указать, что приводимая P. Junius’ом кривая ионизации для того кабеля, для которого снималась кривая фиг. 215, не имела точки перегиба.
Такой способ исследования сушки и пропитки дает критерий, с помощью которого P. Junius делает оценку некоторым искусственным методам, применяемым при процессе пропитки кабеля. Некоторые заводы стараются поднять концы пропитываемого кабеля так высоко, чтобы они во время пропитки выходили из пропиточной массы. Этим стараются воспрепятствовать проникновению массы с концов кабеля, ибо тогда по отрезанному концу можно судить о степени пропитки кабеля. Такой вывод концов P. Junius считает вредным, ибо при открытии котла пропиточная масса под действием наружного давления впрессовывается в кабель, а при концах кабеля, выходящих из массы, при этом же давлении в кабель через концы будет впрессовываться воздух.
Другой искусственный способ заключается в том, что во время пропитки через некоторые промежутки времени в котел дается давление, чтобы масса совершеннее проникала в бумажные слои. P. Junius не считает этот метод имеющим большие преимущества, поскольку масса при прекращении давления выгоняется из слоя бумаги давлением спрессованных в кабельной изоляции воздушных пузырей. P. Junius предлагает следующий способ рациональной пропитки:
На находящийся в пропиточном котле кабель (без свинцовой оболочки) одевается на один конец муфточка с плотной пригонкой для возможности создания внутри кабеля вакуума; эта муфточка ставится в соединение с особой мощной вакуумной установкой. При закрытом котле кабель эвакуируется как через муфточку, так и через котел.


Фиг. 216. Схема пропитки маслом наполненного кабеля по Е. F. Nuezel’io.
Электрические испытания - очень длительная процедура, которая может быть применена только к типовым испытаниям. В настоящее время существуют способы контроля степени сушки кабеля, путем пропускания отсасываемого из котла воздуха и пара через индикаторы, указывающие химическим путем на присутствие или отсутствие водяного пара.


Фиг. 217. Схема пропитки маслом наполненного кабеля на заводе "Севкабель".

Остановим с я еще на особенностях сушки и пропитки маслом наполненных кабелей. Как было уже упомянуто выше, эти кабели сушатся (или вернее досушиваются) после наложения свинцовой оболочки, поэтому оборудование для сушки этих кабелей значительно отличается от обычного. На фиг. 216 дана схема соединения приборов для пропитки маслом наполненного кабеля, данная Е. F. Nuezel’eM }