Самое интересное вы открыли для. В Южной Африке были обнаружены новые человекообразные виды. Новые достижения в генетике

Вопрос дня. 3

Что нового вы открыли для себя за последнее время?

Правозащитная работа – один из приоритетов деятельности профсоюза. 3

Благодаря активной работе правовой инспекции труда дорпрофжел на СвЖД и её внештатных правовых инспекторов в пользу работников в первом полугодии выплачено около двух миллионов рублей

Наталья Богданова, главный правовой инспектор труда дорпрофжел на СвЖД

Для удобства пассажиров. 3

АО «Свердловская пригородная компания» запустила беспересадочный маршрут от о.п. Первомайская в Екатеринбурге до станции Кузино

АО «Пермская пригородная компания» (ППК) готовит рабочую поездку в Кудымкар, где намечена встреча с главами города и близлежащих населённых пунктов

По новому пути. 3

Модернизация четвёртого пути станции Богданович существенно повысила надёжность и пропускную способность этого транспортного узла

УРАЛЬСКАЯ МАГИСТРАЛЬ

Вопрос дня

Что нового вы открыли для себя за последнее время?

Ирина Якушева, инженер по охране окружающей среды моторвагонного депо Пермь-2:

– В мае совершенно случайно оказалась на туристическом слёте работающей молодёжи Дзержинского района Перми. Сначала меня позвали в команду для участия в спортивном танце, который надо было заранее подготовить. В ходе репетиций выяснилось: не хватает человека для прохождения туристической полосы. Предложили мне: я выносливая, спортивная. Наша команда включала трёх девочек и одного мальчика, в то время как у других было по два. Туристическая полоса состояла из нескольких испытаний: установка и разборка палатки, переправа, оказание первой медицинской помощи, определение азимута и вязание определённых видов узлов. Новые для меня вещи! Я впервые для себя столкнулась с установкой палатки, азимутом и узлами. Туристическую полосу мы прошли успешно. И, несмотря на трёх девушек в команде, показали лучшее время, заняли первое место! Так состоялось моё спонтанное посвящение в туристы. Для меня это очень интересный опыт и приятное открытие.

Никита Домашов, техник Центра инноваций и технологий УрГУПС, консультант команды «Формула студент»:

– Увы, но буквально на днях я понял, что нельзя полностью верить людям. Если обещают, то не обязательно делают. Столкнулся с таким отношением при реализации нашего инженерно-спортивного проекта «Формула студент». Парочка ребят пообещала выполнить некоторую техническую работу, а в итоге не закончила её и просто бросила. Сейчас приходится самим доделывать, доводить до ума с командой более ответственных людей. А времени-то лишнего нет! Дел и без того у каждого хватает, надо от них отвлекаться и переключать своё внимание. Я за время, которое простаиваю в пробках, конечно, обдумал иные варианты решения неожиданно возникшей проблемы, выбрал самый быстрый из них. Фактор времени оказался главным. Хотя и новый вариант всё равно рабочий, качественный в исполнении, не уступает предыдущим. Но именно отношение людей очень огорчило. Надо тщательнее отбирать кандидатуры для проекта. Что поделать: жизнь – штука простая, это мы слишком сложные.


Андрей Русаков, начальник отдела Свердловского центра научно-технической информации и библиотек:

– Я недавно был участником регионального этапа проекта «Лидеры перемен» в Екатеринбурге. Нам рассказывали о концепции «золотого круга» Саймона Синеки. По его словам, сильную компанию можно выстроить, обозначив три ключевых вопроса: почему? как? что? Они крайне важны. Презентация подтолкнула меня к осознанию: успешная компания начинается не с многомиллионных инвестиций, а с правильно поставленных вопросов. И эта идея объясняет, почему одни организации или лидеры могут вдохновлять людей, другие же на такое не способны. Надо постоянно расширять границы сознания, чтобы максимально полно видеть происходящее. Ещё понравились слова Синеки: «Люди не покупают то, что вы производите. Они покупают то, почему вы это делаете. Цель компании – не в том, чтобы продать продукцию тем, кому нужно то, что вы имеете. Её цель должна заключаться в том, чтобы продавать продукцию тем, кто верит в то же, что и вы». На мой взгляд, очень интересная цитата и достаточно эффективная, как мне кажется, точка зрения. Рассчитываю, что смогу применить эти знания и в своей жизни, на практике.

В первые два десятилетия 21-го века наука обогатилась целым рядом открытий, которые в перспективе могут значительно повлиять на качество жизни каждого человека. Чего стоит только получение стволовых клеток из кожи взрослого человека, дающее возможность выращивать нужные органы без использования эмбриональных клеток!

Фундаментальное открытие гравитационных волн дает человечеству надежду на путешествия между звездами, а из нового материала графен совсем скоро будут производить сверхъемкие аккумуляторы. Впрочем, обо всем по порядку: в нижеприведенном рейтинге мы постарались систематизировать важнейшие научные открытия 21 века по степени их значимости для человечества.

ТОП-10 самых значительных научных открытий XXI века

10. БИОНИКА. Сконструированы биопротезы, управляемые силой мысли

Еще недавно утраченные конечности людям заменяли пластиковые муляжи или даже крюки. В последние два десятилетия наука сделала огромный шаг в создании биопротезов, управляемых силой мысли и даже передающих ощущения от искусственных пальцев в мозг. В 2010 г. английская фирма «RSLSteeper» представила биопротез руки, с помощью которого человек способен открывать двери ключом, разбивать яйца на сковородку, снимать деньги в банкомате и даже держать пластиковый стаканчик.

Одноразовый стакан легко раздавить при чрезмерном усилии, но ученые добились того, что силу сжатия пальцев можно варьировать. Управляющие сигналы для этого снимаются с грудных мышц тела.

Другая компания «Bebionic» в 2016 г. изготовила для инвалида Найджела Экленда бионический протез руки, которым не только можно управлять силой мысли. Вдобавок к этому изделие оснащено датчиками чувствительности, подключенными к нервным окончания культи. Таким образом, достигается обратная связь, чтобы пациент мог чувствовать прикосновения и тепло. Пока биопротезы являются достаточно дорогими, однако благодаря развитию 3D-печати уже в ближайшее время прогнозируется их более широкая доступность.


9. БИОТЕХНОЛОГИИ. Создана первая в мире синтетическая бактериальная клетка

В 2010 г. группа ученых под руководством Крейга Вентера добилась прорыва в амбициозном проекте по созданию ни много, ни мало – новой жизни. Биологи взяли геном бактерии Mycoplasma genitalium и систематически, один за другим, удаляли из него гены, чтобы определить минимальный набор, необходимый для жизни. Оказалось, что он должен включать 382 гена, составляющих, как бы основу жизни. После этого ученые уже «с нуля» составили искусственный геном, который пересадили в клетку бактерии Mycoplasma capricolum, из которой предварительно были удалены собственные комплексы ДНК.

Искусственная клетка, которая даже получила собственное имя – Синтия, оказалась жизнеспособной и начала активно делиться.

Данный успех открывает перед биотехнологами широчайшие возможности по созданию гораздо более сложных организмов с заданными параметрами. Уже сейчас конструируются искусственные клетки, которые смогут производить вакцины и даже топливо для автомобилей, а в перспективе биологи надеются создать бактерию, которая бы поглощала углекислый газ. Такой микроорганизм мог бы помочь в ликвидации парникового эффекта на Земле, а также в терраформировании Марса и Венеры.


Так выглядит первая в мире размножившаяся искусственная клетка Синтия под электронным микроскопом

8. АСТРОФИЗИКА. Обнаружены планета Эрида и вода на Марсе

К крупнейшим открытиям 21 века можно отнести сразу две «космические» находки. В 2005 г. группа американских астрономов из обсерватории «Джемини», Йельского и Калифорнийского университетов было открыто небесное тело, движущееся за орбитой Плутона. Дальнейшие исследования показали, что малая планета, получившая название Эрида, по размерам лишь немного уступает Плутону. В 2006 г. это небесное тело сфотографировал орбитальный телескоп «Хаббл», обнаружив вращающийся вокруг него довольно крупный спутник, получивший название Дисномия. Предполагается, что по физическим характеристикам Эрида похожа на Плутон, а ее поверхность, скорее всего, покрыта ярко-белым льдом, поскольку альбедо (отражающая способность) планетоида уступает только спутнику Сатурна Энцеладу.


Вторым крупнейшим открытием 21 века в исследовании Солнечной системы является обнаружение воды на Марсе. Еще в 2002 г. орбитальный аппарат «Одиссей» обнаружил признаки наличия под поверхностью планеты водяного льда. В 2005 г. европейский аппарат «Марс-Экспресс» заснял кратеры с явственными следами водяных потоков, а окончательно развеял сомнения американский зонд «Феникс». В 2008 г. он сел в окрестностях Северного полюса и в одном из экспериментов – успешно выделил воду из марсианского грунта. Гарантированное наличие влаги на Красной планете снимает главное ограничение для ее колонизации. Америка планирует запустить пилотируемую миссию на Марс уже в 2030-х годах, идет разработка ядерного двигателя для этой цели и в России.


7. НЕЙРОЛОГИЯ. Впервые записаны и перезаписаны воспоминания в мозг

В 2014 г. исследователям из Массачусетского университета удалось внедрить в память подопытных мышей ложные воспоминания. Им в голову были вживлены оптоволоконные провода, присоединенные к участкам мозга, ответственным за формирование памяти. По ним ученые подавали лазерные сигналы, которые воздействовали на определенные участки нейронов. В результате удалось добиться как стирания некоторых воспоминаний мышей, так и формирования ложных. Например, грызуны забывали, что в определенном участке клетки у них когда-то были приятные встречи с самками и больше не стремились туда. В то же время, ученым удалось создать новые воспоминания о том, что «опасный» отсек клетки, на самом деле привлекателен и мыши старались оказаться именно там.


На первый взгляд, эти результаты выглядят детской игрой, да еще и с сомнительным этическим подтекстом. Между тем, нейрофизиологам удалось главное – найти участки мозга, отвечающие за память (гиппокамп и префронтальная кора) и создать, пусть пока примитивные, методы воздействия на них. Это дает широкие перспективы для совершенствования путей воздействия на мозг, а в будущем позволит лечить фобии и душевные расстройства. Не исключено, что уже в обозримом будущем удастся создать приборы для пакетной закачки данных в человеческий мозг для быстрого обучения наукам, требующим запоминания большого количества данных, например, можно будет в кратчайшие сроки овладеть иностранным языком.


6. ФИЗИКА. Обнаружен бозон Хиггса или «частица Бога»

В июле 2012 г. произошло открытие, ради которого были потрачены 6 млрд. долларов, вложенные в постройку Большого адронного коллайдера (CERN) близ Женевы. Ученые обнаружили т.н. «частицу Бога», существование которой было предсказано еще в 60-х годах британским физиком Питером Хиггсом. В честь него она и была названа. Благодаря экспериментальному доказательству существования бозона Хиггса фундаментальная физика получила последнее недостающее звено для построения пренормируемой квантовой теории поля. Данная теория является продолжением классической квантовой механики, однако качественно меняет взгляд на картину микромира и Вселенной в целом.

Практическое значение открытия бозона Хиггса заключается в том, что ученым открываются перспективы разработки антигравитации и разработки двигателей, которым не требуется энергия для работы.

Для этого нужно «всего ничего» - научиться убирать т.н. хиггсовское поле, которое связывает элементарные частицы, не давая им разлетаться. В этом случае масса объекта с нейтрализованным полем будет равна нулю, а значит - он перестанет принимать участие в гравитационном взаимодействии. Разумеется, такие открытия – вопрос весьма отдаленного будущего.


5. МАТЕРИАЛОВЕДЕНИЕ. Создан сверхпрочный материал графен

Графен – это уникальный по прочности и многим другим свойствам материал, который был впервые получен русскими физиками (работающими в Британии) Константином Новоселовым и Андреем Геймом в 2004 г. Через 6 лет ученых наградили за это Нобелевской премией, а в наши дни графен активно исследуется и уже применяется в некоторых изделиях . Необычность материала заключается сразу в нескольких его особенностях. Во-первых – это второй по прочности (после карбина) из известных ныне материалов. Во-вторых, графен – великолепный проводник, с помощью которого можно достигать уникальные электронные эффекты. В-третьих, материал обладает высочайшими показателями теплопроводности, что опять же – позволяет использовать его в полупроводниковой электронике без опасений ее перегрева.

Особые надежды на графен возлагаются в плане его применения в сверхъемких аккумуляторах, которых так не хватает электромобилям.

В 2017 г. компания «Samsung» представила один из первых АКБ на основе графена с емкостью на 45% выше, чем у его литий-ионного аналога сопоставимой величины. Но самое главное – новый аккумулятор заряжается и отдает заряд в 5 раз быстрее обычного. Примечательно, что речь идет не о полностью графеновом, а о гибридном АКБ, где инновационный материал используется как вспомогательный. Если же, точнее – когда разработчики создадут полностью графеновую батарею, это станет настоящей революцией в энергетике. Главной проблемой в широком использовании графена является дороговизна его получения и недостатки в технологиях, которые пока не позволяют получить абсолютно однородный материал. Однако уже сейчас число заявок на патенты с использованием графена зашкалило за 50 тыс., поэтому нет сомнения, что уже в обозримом будущем необычный материал заметно повлияет на качество жизни людей.


4. БИОЛОГИЯ. Получены стволовые клетки не из эмбрионов, а из зрелых тканей

В 2012 г. нобелевская премия по физиологии и медицине была вручена английскому биологу Джону Гердону и его японскому коллеге Сине Яманаке. Они произвели настоящий фурор в среде биотехнологов, создав из обычных клеток – стволовые, т.е. способные составлять любые органы. Для этого ученые ввели в клетки соединительной ткани мыши всего 4 гена и в результате фибропласты превратились в незрелые стволовые клетки, обладающие всеми свойствами эмбриональных. Из подобного материала можно вырастить любой орган – от печени до сердца.

Таким образом, исследователи не только теоретически, но и практически доказали обратимость специализации клеток, что невозможно переоценить.

До недавних пор считалось, что стволовые клетки можно получить только из эмбрионов или пуповинной крови. Первое – сомнительно с этической точки зрения, а второе – вынуждало людей (в основном богатых) делать банк стволовых клеток сразу после рождения ребенка, чтобы в будущем он мог использовать его для лечения. Открытие физиологов сняло данные ограничения и теперь каждому человеку (как минимум, теоретически) доступно лечение стволовыми клетками и клонирование органов, содержащих «родную» ДНК организма.


3. АСТРОФИЗИКА. Доказано существование гравитационных волн

Открытие гравитационных волн считается величайшим научным достижением 2016 года, а возможно и всего второго десятилетия XXI века. В 2017 году их первооткрывателям - Райнеру Вайссу, Бэрри Бэришу и Кипу Торну была присуждена нобелевская премия по физике. С помощью двух интероферометрических обсерваторий LIGO и VIRGO, расположенных в США и Италии, ученым удалось зафиксировать гравитационные волны, образовавшиеся в результате слияния двух черных дыр на расстоянии в 1,3 млрд. световых лет от Солнца.

Тем самым исследователи экспериментально подтвердили достоверность Общей теории относительности Эйнштейна, предсказавшей наличие гравитационных волн еще в начале ХХ века (на уровне теории).

Впоследствии LIGO и VIRGO зафиксировали еще два гравитационных всплеска от столкновения нейтронных звезд. Выдающаяся ценность открытия заключается в подтверждении искривления пространства-времени под воздействием массивных объектов. Это означает, что тысячи раз описанные фантастами путешествия звездолетов сквозь «нуль-пространство» и «гиперпереходы» вполне возможны, хоть и являются перспективой далекого будущего. Вероятно, неслучайно, один из первооткрывателей гравитационных волн – Кип Торн, по итогам своих исследований выпустил книгу, «Интерстеллар. Наука за кадром», название которой перекликается со знаменитым фильмом.


Примерно так по Эйнштейну выглядит пространство-время в окрестностях Солнца, искривляющееся под воздействием массивной звезды. Теперь данная картина доказана экспериментально

2. ФИЗИКА. Проведены успешные опыты по дальней квантовой телепортации

Под квантовой телепортацией понимается не перемещение физических объектов, а передача информации о состоянии элементарной частицы или атома. Важнейшим моментом здесь является расстояние – вплоть до начала XXI века подобную связь удавалось обеспечить только на уровне микромира. Прорывным стал 2009 г., когда ученым из Мерилендского университета удалось передать квантовое состояние иона иттербия на 1 метр. Затем инициативу в данном направлении исследований прочно перехватили китайские ученые.

Сначала им удалось обеспечить квантовую связь на дистанции 120 км, а в 2017 г. – осуществить первую космическую квантовую телепортацию со спутника «Мо-Цзы» на три наземных лаборатории до которых было 1203 км.

Такой научно-технологический скачок позволит уже в ближайшем будущем создавать абсолютно защищенные линии связи, которые даже теоретически не смогут взломать хакеры. В условиях, когда финансовая, деловая и частная жизнь все больше перемещается в Интернет, линии на основе квантовой телепортации обещают стать настоящей панацеей в сфере информационной безопасности. Кроме того, на основе данного способа связи разрабатываются сверхбыстрые компьютеры, которые в перспективе заменят существующие.


1. КИБЕРНЕТИКА. Создан робот с биологическим мозгом

В 2008 г. ученые из Англии создали, пожалуй, первого в мире киборга – полуживого робота с мозгом на основе 300 тыс. крысиных нейронов. Их выделили из эмбриона грызуна, разделили с помощью специального фермента и разместили в питательном растворе на пластине размером 8 см. К полученному квазимозгу ученые присоединили 60 электродов, которые считывают сигналы с нейронов и передают их к электронной схеме. Они же служат для доставки в мозг сигналов. Первый робот с биологическим мозгом получил собственное имя – Гордон, был оснащен платформой для передвижения и ультразвуковым сенсором, сканирующим местность при езде. Сигналы от него идут в мозг, а возникающие там импульсы и обратная связь управляют движением.


Исследователям удалось добиться обучаемости Гордона, поскольку нейроны обладают памятью. Упершись в препятствие всего один раз, робот в 80% случаев уже не ездит по неудачному маршруту. При этом, как заявляют ученые, Гордон не управляется извне, а контролируется исключительно серым веществом, доставшимся от крысы. Таким образом, британцы сделали первый шаг по созданию полноценных киборгов на основе уже не десятков тысяч, а миллиардов нейронов, что, скорее всего, произойдет еще до конца текущего столетия.

У новорождённых обычно около 270 костей, большинство из которых очень маленькие. Это делает скелет более гибким и помогает ребёнку пройти через родовой канал и быстро расти. По мере взросления многие из этих костей срастаются. Скелет взрослого человека составляют в среднем 200–213 костей.

2. Эйфелева башня вырастает летом на 15 сантиметров

Огромная конструкция построена с температурными компенсаторами, благодаря которым сталь может расширяться и сжиматься без каких-либо повреждений.

Когда сталь нагревается, она начинает расширяться и занимает больший объём. Это называется тепловым расширением. И наоборот, падение температуры приводит к уменьшению объёма. По этой причине большие сооружения, например мосты, строятся с компенсаторами, которые позволяют им изменяться в размерах без повреждений.

3. 20% кислорода образуется в тропических лесах Амазонии

Flickr.com/thiagomarra

Дождевые леса Амазонии занимают 5,5 миллиона квадратных километров. Амазонские джунгли вырабатывают существенную часть кислорода на Земле, абсорбируя огромное количество углекислого газа, поэтому их часто называют лёгкими планеты.

4. Некоторые металлы настолько химически активны, что взрываются даже при контакте с водой

Некоторые металлы и соединения - калий, натрий, литий, рубидий и цезий - проявляют повышенную химическую активность, поэтому способны молниеносно загореться при контакте с воздухом, а если опустить их в воду - даже взорваться.

5. Чайная ложка нейтронной звезды будет весить 6 миллиардов тонн

Нейтронные звёзды - это остатки массивных звёзд, состоящие в основном из нейтронной сердцевины, покрытой сравнительно тонкой (около 1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Ядра звёзд, погибших во время вспышки сверхновой, сжимались под воздействием гравитации. Так сформировались сверхплотные нейтронные звёзды. Астрономы установили, что масса нейтронных звёзд может быть сравнима с массой Солнца, при том что их радиус не превышает 10–20 километров.

6. Каждый год Гавайи приближаются к Аляске на 7,5 см

Земная кора состоит из нескольких огромных частей - тектонических плит. Эти плиты постоянно двигаются вместе с верхним слоем мантии. Гавайи расположены в средней части Тихоокеанской плиты, которая медленно дрейфует в северо-западном направлении к Северо-Американской плите, на которой как раз и расположена Аляска. Тектонические плиты движутся с такой же скоростью, с какой растут ногти у человека.

7. Через 2,3 миллиарда лет на Земле будет слишком жарко, чтобы на ней была возможна жизнь

Наша планета со временем станет бескрайней пустыней, похожей на сегодняшний Марс. Сотни миллионов лет Солнце нагревалось, становилось ярче и горячее и будет продолжать это делать. Где-то через два с лишним миллиарда лет температура станет настолько высокой, что океаны, благодаря которым Земля пригодна для жизни, испарятся. Вся планета превратится в бескрайнюю пустыню. Как предсказывают учёные, в следующие несколько миллиардов лет Солнце превратится в красного гиганта и полностью поглотит Землю - планете определённо придёт конец.


Flickr.com/andy999

Тепловизоры способны определять объект по теплу, которое он излучает. А белые медведи являются экспертами в сохранении тепла. Благодаря толстому слою подкожного жира и тёплой шубе, медведи способны переносить даже самые холодные дни в Арктике.

9. Свету потребуется 8 минут 19 секунд, чтобы добраться от Солнца до Земли

Известно, что скорость света - 300 000 километров в секунду. Но даже с такой головокружительной скоростью на то, чтобы преодолеть расстояние между Солнцем и Землёй, потребуется время. И 8 минут - это не так уж и много в космических масштабах. Чтобы достичь Плутона, солнечному свету потребуется 5,5 часа.

10. Если убрать всё межатомное пространство, человечество уместится в кубике сахара

На самом деле больше 99,9999% атома - это пустое пространство. Атом состоит из крошечного плотного ядра, окружённого облаком электронов, которые в пропорциональном отношении занимают большее пространство. Всё потому, что электроны движутся волнообразно. Они могут существовать только там, где гребни и впадины волн складываются определённым образом. Электроны не остаются в одной точке, их местоположение может быть где угодно в пределах орбиты. И потому они занимают очень много места.

11. Желудочный сок способен растворить бритвенные лезвия

Желудок переваривает пищу благодаря едкой соляной кислоте с высоким содержанием pH (водородного показателя) - от двух до трёх. Но в то же время кислота воздействует и на слизистую оболочку желудка, которая, впрочем, способна быстро восстанавливаться. Слизистая вашего желудка полностью обновляется каждые четыре дня.

У учёных много версий того, почему это происходит. Самые вероятные: из-за огромных астероидов, которые повлияли на её курс в прошлом, или из-за сильной циркуляции воздушных потоков в верхних слоях атмосферы.

13. Блоха может разгоняться быстрее, чем космический шаттл

Прыжки блох достигают умопомрачительных высот - 8 сантиметров в миллисекунду. Каждый прыжок придаёт блохе ускорение, в 50 раз превышающее ускорение космического корабля.

А какие интересные факты знаете вы?

Откройте в себе способность оперативно ориентироваться во всем многообразии «целевых» вопросов. Узнайте, чем отличаются разные цели, и делитесь на собеседованиях и в резюме самой важной информацией. Информацией, которая поможет привлечь внимание нужного работодателя и подарит возможность заниматься любимым делом с пользой для себя и окружающих. Для чего задают вопросы о целях и про какие цели могут спросить соискателя? Что рассказывать о своих целях в жизни и работе и какие тайны могут скрываться за невинными вопросами? Коротко о сути и важнейших секретах профессиональных, личных и жизненных целей для резюме и собеседования.

Зачем задают вопросы о целях?

Знаете для чего один человек спрашивает другого о целях? Чтобы понять, интересны ли они ему самому и согласуются ли они с его собственными целями и возможностями. Обмениваясь информацией о целях в жизни и работе, мы с вами получаем возможность найти ценных деловых партнеров для себя и стать для кого-то ценным деловым партнером. Если вам небезразлично взаимовыгодное сотрудничество, относитесь серьезно к своим целям - их постановке и презентации, - тем более когда занимаетесь поиском работы.

О каких целях могут спросить соискателя?

Кандидата на замещение вакантного рабочего места могут спросить:

  • о профессиональной цели,
  • о личной цели в работе,
  • о цели профессиональной деятельности,
  • о целях в жизни (жизненных целях).

Среди этих целей есть принципиальные отличия. Давайте кратко их разберем. А начнем с принципиального отличия между профессиональной и личной целью в работе.

Что такое профессиональные цели?

Профессиональные цели – это результат работы специалиста, который он отдает другим (своим клиентам или заказчикам). Профессиональная цель говорит о содержании вашей работы и отвечает на следующие вопросы. Чем именно вы занимаетесь? Какие проблемы помогаете решать? Каким образом это делаете? Что конкретно получат люди, обратившись к вам за профессиональной помощью? Рассказывая работодателю о своей профессиональной цели, ни о чем кроме этого говорить нельзя.

Что такое личные цели в работе?

Личные цели в работе - это результат, который приобретает сам специалист, благодаря выполнению своих профессиональных обязанностей. Это может быть персональное вознаграждение, компенсация, перспективы личного или профессионального роста и развития, знания, навыки, возможности и т.д., и т.п. Что вы рассчитываете получить в результате своего труда? Ответ на этот вопрос и есть описание вашей личной цели в работе. Самое интересное, что подобный результат может быть как выработан самим специалистом в процессе выполнения работы (например, приобретение определенных личных и профессиональных навыков), так и передан ему другими в качестве компенсации или вознаграждения за выполненную работу (например, заработная плата, государственная премия, возможность обучиться за счет организации или занять более ответственное рабочее место). Так вот все то, что специалист рассчитывает получить от других в качестве компенсации, вознаграждения, благодарности за свою работу, по-другому называется ожиданием от работы. Например, устраиваясь на работу, вы можете ожидать определенный размер заработной платы, который будет вам аккуратно начисляться работодателем. Если же свой доход вы обеспечиваете себе сами, а не при помощи работодателя, то вы либо коррупционер, либо индивидуальный предприниматель (бизнесмен или бизнесвумен). Очень рекомендуем внимательно прочитать статью про ожидания от работы, чтобы случайно не брякнуть лишнего на собеседовании.

Что такое цели профессиональной деятельности?

Цели профессиональной деятельности - это результаты, которые вы получаете в процессе работы и либо передаете другим, либо забираете себе. Цели профессиональной деятельности, это общее понятие, отражающее любые результаты, связанные с вашей работой. Понимаете? То есть такие цели могут отражать и ваши личные ожидания, и профессиональные намерения. Хоть вместе, хоть порознь, хоть в чистой формулировке (только профессиональная или только личная цель), хоть в комбинированной формулировке (цель, включающая в себя элементы и профессиональной, и личной цели в работе). Это может быть одна цель, а может быть целый список целей. Но все они обязаны иметь непосредственное отношение к вашей работе. И вот тут есть интересный нюанс.

Внимание... Вопросы о целях работы, поиска работы, целях трудоустройства и т.п., это вопросы об одном и том же – о цели вашей профессиональной деятельности. Формулировка изменяется в зависимости от обстоятельств в которых задается вопрос. Например, если вы занимаетесь поиском работы, вас могут спросить о том, с какой целью вы это делаете. С какой целью вы занялись поиском работы?.. Если вступили в диалог по поводу возможного трудоустройства, вас могут спросить о цели трудоустройства. С какой целью вы решили трудоустроиться?.. Если вы работаете, вас могут спросить о цели вашей работы. Какую цель вы преследуете, качественно выполняя свои профессиональные функции?.. Если вам удалось найти нужное рабочее место, то цель поиска работы, трудоустройства, цель работы и профессиональной деятельности будут практически одинаковыми. Не мудрено - это одна и та же цель, просто в разных ракурсах.

Между прочим, вопросы типа: «Почему вас интересует именно эта вакансия?» или «Почему вы хотите работать именно в нашей организации?», - тоже относятся к категории вопросов, накрепко связанных с вашими целями профессиональной деятельности. Не верите? А проверьте. Почему вас интересует именно эта вакансия, что именно вам в ней нравится? Если привлекает возможность выполнять определенные функции, помогать определенным людям в решении определенных проблем определенными способами, скорее всего, эта вакансия позволяет вам реализовать свою профессиональную цель. Не так ли? Если прельщает размер заработной платы, возможность набраться определенного профессионального опыта, перспектива работы в крупной, стабильной, "крутой" организации и т.д, значит, эта вакансия отвечает вашим ожиданиям от работы или позволит реализовать личные цели, которые планируете достичь сами. Верно? А если вы очень надеетесь получить именно эту работу, поскольку сможете и делом любимым заниматься, и зарплату приличную получать, значит данная вакансия одновременно отражает ваш профессиональный и личный интерес, то есть соответствует комбинированной цели вашей профессиональной деятельности. Вот видите, как следует сформулировав цели своей профессиональной деятельности, вы легко и непринужденно сможете ответить практически на любой вопрос, связанный не только с целями, но и с ожиданиями, намерениями, интересами в работе. Единственное, чего они не коснутся, так это ваших целей, интересов, намерений и планов, которые с работой непосредственно не связаны.

Что такое жизненные цели или цели в жизни?

Цели в жизни или жизненные цели - это результат, который вы планируете достичь в ближайшем или отдаленном будущем в жизни вообще. Такие цели могут быть прямо или косвенно связаны с вашей профессиональной деятельностью, а могут быть вообще с нею не связаны. Все жизненные цели, которые не имеют отношения к вашей работе, называются вашими частными целями. Это, например, цели, которые касаются вашей семьи, детей, друзей, дома, имущества, путешествий, хобби, здоровья, в конце концов. Но здесь есть нюансы, о которых стоит знать.

С одной стороны, вопрос о жизненных целях гораздо более демократичный, нежели о профессиональных целях или личных ожиданиях. Сами понимаете, что жизненные цели касаются абсолютно всех сфер вашей жизни - частной, личной, профессиональной. С другой стороны, именно благодаря своей "тотальной демократичности", такой вопрос может оказаться очень жестким. Однако никакой гарантии подвоха или тайного умысла здесь дать невозможно. Поэтому просто перечислим основные причины, по которым задают именно такой вопрос.

Вопрос о жизненных целях задают, чаще всего, чтобы:

  • сэкономить время на вопросах об отдельных целях, поскольку при ответе становится ясно, чего конкретно и в какой именно сфере вы намерены добиваться;
  • понять, какие именно (частные, личные, профессиональные) интересы вы ставите во главу угла, а о чем не особо заботитесь;
  • выяснить, не планируются ли вами в ближайшем будущем серьезные изменения в жизни, способные отразиться на качестве или сроке вашей работы в компании;
  • прощупать масштаб вашей личности, отследить взаимосвязь, логичность и адекватность преследуемых целей.

Единственное, можем напомнить, что рассказывать о частных целях вы работодателю не обязаны. Отвечая на вопрос о жизненных целях, можете рассказать о профессиональных и личных намерениях в работе. Если этой информации окажется недостаточно, собеседник будет вынужден задать вам более прямой вопрос. Соответственно, вам будет проще сообразить, чего конкретно опасается представитель организации и ответить так, чтобы успокоить его опасения. Главное, на рожон не лезьте. Спрашивают, значит по какой-то причине для них это важно. Ответьте. В конце концов вам бы тоже вряд ли понравился их отказ о предоставлении важной для вас информации, к примеру, о размере заработка или особенностях функций, которые будут поручены.

Можно ли уточнять, о какой именно цели задан вопрос?

Краткие заметки об ответах на вопросы о целях в резюме и на собеседовании

Подведем краткий итог сказанному. Составим небольшую шпаргалку о том, что отвечать в резюме и на собеседовании на вопросы о ваших целях.

  • в ответ на вопрос о профессиональной цели говорю о своих главных профессиональных интересах и намерениях, а именно:
  • О проблемах и задачах, над решением которых хочу работать,
    - о средствах и методах, которые планирую применять в своей работе,
    - о результатах, которых намерен достичь, решив поставленные задачи,
    - о людях, которым рассчитываю помочь, добиваясь нужного результата в работе;
    ()

  • в ответ на вопрос о личной цели в работе рассказываю о том, что надеюсь приобрести, благодаря качественному выполнению своих обязанностей; в ответ на вопрос о личной профессиональной цели улыбаюсь и рассказываю о своей профессиональной цели ();
  • в ответ на вопрос о моих ожиданиях от работы рассказываю о том, что надеюсь получить от других в качестве компенсации, вознаграждения или благодарности за качественно выполненную работу, то есть говорю о составляющей моей личной цели в работе; если спросят о профессиональных ожиданиях, улыбнусь, скажу, что у меня их нет, но есть профессиональные намерения и расскажу о профессиональной цели ();
  • в ответ на вопросы о целях профессиональной деятельности, целях работы, поиска работы или трудоустройства, могу рассказывать о своих профессиональных и/или личных целях в работе ();
  • в цели резюме пишу название желаемого рабочего места и добавляю самые важные для меня элементы профессиональной и/или личной цели ().
  • в ответ на вопросы о целях в жизни или жизненных целях могу смело рассказывать о своих частных, личных и/или профессиональных целях (подробнее некуда);
  • если я не вполне уверен, о чем именно хочет узнать собеседник, смело задаю уточняющий вопрос – это нормально и профессионально.

Все что теперь остается, это внимательно прочесть или выслушать вопрос, понять о какой именно цели идет речь и дать ту информацию, которая требуется. Единственное, желательно говорить о самых важных, самых главных ожиданиях и намерениях. Настолько важных, что если рассматриваемая вами вакансия не позволит их реализовать, скорее всего, вы откажитесь от данного предложения.

Напоминаем.

На сайте есть конкретные методики, при помощи которых можно уточнить , конкретизировать в работе или выяснить главные интересы .
Отчетливо понимая ради достижения каких именно результатов занимаетесь (или намерены заняться) своей работой, можете воспользоваться .

Научные открытия совершаются постоянно. На протяжении года публикуется огромное количество докладов и статей, посвящённых различным темам, и оформляются тысячи патентов на новые изобретения. Среди всего этого можно найти поистине невероятные достижения. В данной статье представлено десять самых интересных научных открытий, которые были сделаны в первой половине 2016 года.

1. Небольшая генетическая мутация, произошедшая 800 миллионов лет назад, привела к возникновению многоклеточных форм жизни

Согласно результатам исследований, древняя молекула, GK-PID, стала причиной того, что одноклеточные организмы начали эволюционировать в многоклеточные организмы примерно 800 миллионов лет назад. Было установлено, что молекула GK-PID выступала в роли «молекулярного карабина»: она собирала хромосомы вместе и закрепляла их на внутренней стенке клеточной мембраны, когда происходило деление. Это позволяло клеткам размножаться должным образом и не становиться злокачественными.

Увлекательное открытие указывает на то, что древняя версия GK-PID вела себя раньше не так, как сейчас. Причина, почему она превратилась в «генетический карабин», связана с небольшой генетической мутацией, которая воспроизвела саму себя. Выходит, что возникновение многоклеточных форм жизни - это результат одной идентифицируемой мутации.

2. Открытие нового простого числа

В январе 2016 года математики открыли новое простое число в рамках "Great Internet Mersenne Prime Search", широкомасштабного проекта добровольных вычислений по поиску простых чисел Мерсенна. Это 2^74,207,281 - 1.

Вы, наверное, хотели бы уточнить, для чего был создан проект "Great Internet Mersenne Prime Search". Современная криптография для расшифровки кодированной информации использует простые числа Мерсенна (всего известно 49 таких чисел), а также комплексные числа. "2^74,207,281 - 1" на данный момент является самым длинным из всех существующих простых чисел (оно длиннее своего предшественника почти на 5 миллионов цифр). Общее количество цифр, из которых состоит новое простое число, составляет около 24 000 000, поэтому "2^74,207,281 - 1" - единственный практический способ записать его на бумаге.

3. В солнечной системе была обнаружена девятая планета

Ещё до открытия Плутона в ХХ веке учёные выдвинули предположение о том, что за пределами орбиты Нептуна находится девятая планета, Планета Х. Это допущение было обусловлено гравитационной кластеризацией, которая могла быть вызвана только массивным объектом. В 2016 году исследователи из Калифорнийского технологического института представили доказательства того, что девятая планета - с орбитальным периодом 15 000 лет - действительно существует.

По словам астрономов, сделавших данное открытие, существует «всего лишь 0,007%-ная вероятность (1:15 000) того, что кластеризация является совпадением». На данный момент существование девятой планеты остаётся гипотетическим, однако астрономы вычислили, что её орбита является огромной. Если Планета Х действительно существует, то она приблизительно в 2-15 раз весит больше Земли и находится от Солнца на расстоянии 600-1200 астрономических единиц. Астрономическая единица равна 150 000 000 километров; это означает, что девятая планета удалена от Солнца на 240 000 000 000 километров.

4. Обнаружен практически вечный способ хранения данных

Рано или поздно всё устаревает, и на данный момент не существует способа, который позволил бы хранить данные на одном устройстве в течение действительно длительного периода времени. Или существует? Недавно учёные из Саутгемптонского университета сделали удивительное открытие. Они использовали нано-структурированное стекло для того, чтобы успешно создать процесс записи и извлечения данных. Запоминающее устройство представляет собой небольшой стеклянный диск размером с монету в 25 центов, который способен хранить 360 терабайт данных и не подвержен влиянию высоких температур (до 1000 градусов Цельсия). Средний срок его годности при комнатной температуре составляет приблизительно 13,8 миллиарда лет (примерно столько же времени существует наша Вселенная).

Данные записываются на устройство при помощи сверхбыстрого лазера посредством коротких, интенсивных световых импульсов. Каждый файл представляет собой три слоя наноструктурных точек, которые находятся друг от друга на расстоянии всего 5 микрометров. Считывание данных выполняется в пяти измерениях благодаря трёхмерному расположению наноструктурных точек, а также их размеру и направленности.

5. Слепоглазковые рыбы, которые способны «ходить по стенам», проявляют черты сходства с четвероногими позвоночными

За последние 170 лет наука выяснила, что позвоночные, обитающие на суше, произошли от рыб, которые плавали в морях древней Земли. Однако исследователи из Института технологий Нью-Джерси обнаружили, что тайваньские слепоглазковые рыбы, которые способны «ходить по стенам», имеют те же анатомические особенности, что и земноводные или рептилии.

Это очень важное открытие с точки зрения эволюционной адаптации, поскольку оно может помочь учёным лучше понять, каким образом доисторические рыбы эволюционировали в наземных четвероногих. Разница между слепоглазковыми и другими видами рыб, которые способны передвигаться по суше, заключается в их походке, которая обеспечивает при подъёме «поддержку тазового пояса».

6. Частная компания "SpaceX" осуществила успешное вертикальное приземление ракеты

В комиксах и мультфильмах Вы обычно видите, что ракеты приземляются на планеты и Луну вертикальным образом, однако в реальности сделать это крайне сложно. Правительственные учреждения вроде НАСА и Европейского космического агентства разрабатывают ракеты, которые либо падают в океан, откуда их потом достают (дорогое удовольствие), либо целенаправленно сгорают в атмосфере. Существование возможности вертикально посадить ракету позволило бы сэкономить невероятное количество денег.

8 апреля 2016 года частная компания "SpaceX" осуществила успешное вертикальное приземление ракеты; ей удалось это сделать на автономном беспилотном корабле-космопорте (англ. autonomous spaceport drone ship). Это невероятное достижение позволит сэкономить деньги, а также время между запусками.

Для генерального директора компании "SpaceX", Элона Маска, данная цель оставалась приоритетной в течение многих лет. Несмотря на то, что достижение принадлежит частному предприятию, технология вертикального приземления станет доступна и правительственным учреждениям вроде НАСА, чтобы они смогли продвинуться дальше в освоении космоса.

7. Кибернетический имплантат помог парализованному человеку пошевелить своими пальцами

Мужчина, который был парализован в течение шести лет, смог пошевелить своими пальцами благодаря небольшому чипу, вживленному в его мозг.

Это заслуга исследователей из Университета штата Огайо. Им удалось создать устройство, которое представляет собой небольшой имплантат, связанный с электронным рукавом, надеваемым на руку пациента. Этот рукав использует провода для стимуляции определённых мышц, чтобы вызвать движение пальцев в реальном времени. Благодаря чипу, парализованный мужчина смог даже сыграть в музыкальную игру "Guitar Hero", к превеликому удивлению врачей и учёных, принявших участие в проекте.

8. Стволовые клетки, вживлённые в мозг пациентов, которые перенесли инсульт, позволяют им снова ходить

В ходе клинических испытаний исследователи из Школы медицины при Стэнфордском университете вживили модифицированные стволовые клетки человека прямо в мозг восемнадцати пациентов, перенёсших инсульт. Процедуры прошли успешно, без каких-либо негативных последствий, за исключением слабой головной боли, наблюдавшейся у некоторых пациентов после наркоза. У всех пациентов период восстановления после инсульта проходил довольно быстро и успешно. Более того, пациенты, которые ранее передвигались только на инвалидных креслах, смогли снова свободно ходить.

9. Углекислый газ, закачанный в грунт, способен превращаться в твёрдый камень

Улавливание углерода является важной частью поддержания баланса выбросов CO2 на планете. Когда топливо сгорает, происходит высвобождение углекислого газа в атмосферу. Это является одной из причин глобального изменения климата. Исландские учёные, возможно, обнаружили способ, как сделать так, чтобы углерод не попадал в атмосферу и не усугублял проблему парникового эффекта.

Они закачали CO2 в вулканические породы, ускорив естественный процесс превращения базальта в карбонаты, которые затем становятся известняком. Этот процесс обычно занимает сотни тысяч лет, однако исландским учёным удалось сократить его до двух лет. Углерод, закачанный в грунт, может храниться под землёй или использоваться в качестве строительного материала.

10. У Земли есть вторая Луна

Учёные НАСА обнаружили астероид, который находится на орбите Земли и, следовательно, является вторым постоянным околоземным спутником. На орбите нашей планеты есть множество объектов (космические станции, искусственные спутники и прочее), однако видеть мы можем только одну Луну. Тем не менее, в 2016 году НАСА подтвердило существование 2016 HO3.

Астероид находится далеко от Земли и больше находится под гравитационным воздействием Солнца, нежели нашей планеты, однако он действительно вращается вокруг её орбиты. 2016 HO3 значительно меньше Луны: его диаметр составляет всего 40-100 метров.

По словам Пола Чодаса, менеджера Центра НАСА по изучению околоземных объектов, 2016 HO3, который более ста лет был квазиспутником Земли, через несколько столетий покинет орбиту нашей планеты.