Пружинный маятник механическая энергия пружинного маятника. Формула частоты колебаний пружинного маятника. Вынужденные колебания. Резонанс

Пружинный маятник представляет собой материальную точку массой , прикрепленную к абсолютно упругой невесомой пружине с жесткостью . Различают два наиболее простых случая: горизонтальный (рис.15,а ) и вертикальный (рис.15, б ) маятники.

а) Горизонтальный маятник (рис. 15,а). При смещении груза
из положения равновесия на величину на него действует в горизонтальном направлениивозвращающая упругая сила
(закон Гука).

Предполагается, что горизонтальная опора, по которой скользит груз
при своих колебаниях, абсолютно гладкая (трения нет).

б) Вертикальный маятник (рис.15, б ). Положение равновесия в этом случае характеризуется условием:

где - величина упругой силы, действующей на груз
при статическом растяжении пружины на под действием силы тяжести груза
.

а

Рис.15. Пружинный маятник: а – горизонтальный и б – вертикальный

Если растянуть пружину и отпустить груз, то он начнет совершать вертикальные колебания. Если смещение в какой-то момент времени будет
, то сила упругости запишется теперь как
.

В обоих рассмотренных случаях пружинный маятник совершает гармонические колебания с периодом

(27)

и циклической частотой

. (28)

На примере рассмотрения пружинного маятника можно сделать вывод о том, что гармонические колебания – это движение, вызванное силой, возрастающей пропорционально смещению . Таким образом, если возвращающая сила по виду напоминает закон Гука
(она получила название квазиупругой силы ), то система должна совершать гармонические колебания. В момент прохождения положения равновесия на тело не действует возвращающая сила, однако, тело по инерции проскакивает положение равновесия и возвращающая сила меняет направление на противоположное.

Математический маятник

Рис.16. Математический маятник

Математический маятник представляет собой идеализированную систему в виде материальной точки, подвешенной на невесомой нерастяжимой нити длиной , которая совершает малые колебания под действием силы тяжести (рис. 16).

Колебания такого маятника при малых углах отклонения
(не превышающих 5º) можно считать гармоническими, и циклическая частота математического маятника:

, (29)

а период:

. (30)

2.3. Энергия тела при гармонических колебаниях

Энергия, сообщенная колебательной системе при начальном толчке, будет периодически преобразовываться: потенциальная энергия деформированной пружины будет переходить в кинетическую энергию движущегося груза и обратно.

Пусть пружинный маятник совершает гармонические колебания с начальной фазой
, т.е.
(рис.17).

Рис.17. Закон сохранения механической энергии

при колебаниях пружинного маятника

При максимальном отклонении груза от положения равновесия полная механическая энергия маятника (энергия деформированной пружины с жесткостью ) равна
. При прохождении положения равновесия (
) потенциальная энергия пружины станет равной нулю, и полная механическая энергия колебательной системы определится как
.

На рис.18 представлены графики зависимостей кинетической, потенциальной и полной энергии в случаях, когда гармонические колебания описываются тригонометрическими функциями синуса (пунктирная линия) или косинуса (сплошная линия).

Рис.18. Графики временной зависимости кинетической

и потенциальной энергии при гармонических колебаниях

Из графиков (рис.18) следует, что частота изменения кинетической и потенциальной энергии в два раза выше собственной частоты гармонических колебаний.

Колебания массивного тела, обусловленные действием упругой силы

Анимация

Описание

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.

Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене (рис. 1).

Пружинный маятник

Рис. 1

Прямолинейное движение тела описывают посредством зависимости его координаты от времени:

x = x (t ). (1)

Если известны все силы, действующие на рассматриваемое тело, то эту зависимость можно установить при помощи второго закона Ньютона:

md 2 x /dt 2 = S F , (2)

где m - масса тела.

Правая часть уравнения (2) есть сумма проекций на ось x всех действующих на тело сил.

В рассматриваемом случае главную роль играет упругая сила, которая является консервативной и может быть представлена в виде:

F (x ) = - dU (x )/dx , (3)

где U = U (x ) - потенциальная энергия деформированной пружины.

Пусть x есть удлинение пружины. Экспериментально установлено, что при малых значениях относительного удлинения пружины, т.е. при условии, что:

Ѕ x Ѕ << l ,

где l - длина недеформированной пружины.

Приближенно справедлива зависимость:

U (x ) = k x 2 /2, (4)

где коэффициент k называют жесткостью пружины.

Из этой формулы вытекает следующее выражение для упругой силы:

F (x ) = - kx . (5)

Эту зависимость называют законом Гука.

Кроме силы упругости на движущееся по плоскости тело может действовать сила трения, которая удовлетворительно описывается эмпирической формулой:

F тр = - r dx /dt , (6)

где r - коэффициент трения.

С учетом формул (5) и (6) уравнение (2) можно записать так:

md 2 x /dt 2 + rdx /dt + kx = F (t ), (7)

где F (t ) - внешная сила.

Если на тело действует только сила Гука (5), то свободные колебания тела будут гармоническими. Такое тело называют гармоническим пружинным маятником.

Второй закон Ньютона в этом случае приводит к уравнению:

d 2 x /dt 2 + w 0 2 x = 0, (8)

w 0 = sqrt (k /m ) (9)

Частота колебаний.

Общее решение уравнения (8) имеет вид:

x (t ) = A cos (w 0 t + a ), (10)

где амплитуда A и начальная фаза a определяются начальными условиями.

Когда на рассматриваемое тело действует только сила упругости (5), его полная механическая энергия не изменяется с течением времени:

mv 2 / 2 + k x 2 /2 = const . (11)

Это утверждение составляет содержание закона сохранения энергии гармонического пружинного маятника.

Пусть на массивное тело кроме упругой силы, возвращающей его в положение равновесия, действует сила трения. В этом случае возбужденные в некоторый момент времени свободные колебания тела будут затухать с течением времени и тело будет стремиться к положению равновесия.

В этом второй закон Ньютона (7) можно записать так:

m d 2 x /dt 2 + rdx /dt + kx = 0, (12)

где m - масса тела.

Общее решение уравнения (12) имеет вид:

x(t) = a exp(- b t )cos (w t + a ), (13)

w = sqrt(w o 2 - b 2 ) (14)

Частота колебаний,

b = r / 2 m (15)

Коэффициент затухания колебаний, амплитуда a и начальная фаза a определяются начальными условиями. Функция (13) описывает так называемые затухающие колебания.

Полная механическая энергия пружинного маятника, т.е. сумма его кинетической и потенциальной энергий

E = m v 2 /2 + kx 2 / 2 (16)

изменяется с течением времени по закону:

dE / dt = P , (17)

где P = - rv 2 - мощность силы трения, т.е. энергия, переходящая в тепло за единицу времени.

Временные характеристики

Время инициации (log to от -3 до -1);

Время существования (log tc от 1 до 15);

Время деградации (log td от -3 до 3);

Время оптимального проявления (log tk от -3 до -2).

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

\[\ddot{x}+{\omega }^2_0x=0\left(1\right),\]

где ${щu}^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

В экспоненциальном виде колебания пружинного маятника можно записать как:

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

Так как частота колебаний ($\nu $) - величина обратная к периоду, то:

\[\nu =\frac{1}{T}=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\left(5\right).\]

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($\varphi $).

Амплитуду можно найти как:

начальная фаза при этом:

где $v_0$ - скорость груза при $t=0\ c$, когда координата груза равна $x_0$.

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

учитывая, что для пружинного маятника $F=-kx$,

тогда потенциальная энергия ($E_p$) пружинного маятника равна:

Закон сохранения энергии для пружинного маятника запишем как:

\[\frac{m{\dot{x}}^2}{2}+\frac{m{{\omega }_0}^2x^2}{2}=const\ \left(10\right),\]

где $\dot{x}=v$ - скорость движения груза; $E_k=\frac{m{\dot{x}}^2}{2}$ - кинетическая энергия маятника.

Из формулы (10) можно сделать следующие выводы:

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Примеры задач с решением

Пример 1

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600\ \frac{Н}{м}$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1\ \frac{м}{с}$?

Решение. Сделаем рисунок.

По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

где $E_{pmax}$ - потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_{kmax\ }$ - кинетическая энергия шарика, в момент прохождения положения равновесия.

Потенциальная энергия равна:

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

\[\frac{mv^2}{2}=\frac{k{x_0}^2}{2}\left(1.4\right).\]

Из (1.4) выразим искомую величину:

Вычислим начальное (максимальное) смещение груза от положения равновесия:

Ответ. $x_0=1,5$ мм

Пример 2

Задание. Пружинный маятник совершает колебания по закону: $x=A{\cos \left(\omega t\right),\ \ }\ $где $A$ и $\omega $ - постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_{p0}$. В какой момент времени это произойдет?

Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

Потенциальную энергию колебаний груза найдем как:

В момент времени, который следует найти $F=F_0$; $E_p=E_{p0}$, значит:

\[\frac{E_{p0}}{F_0}=-\frac{A}{2}{\cos \left(\omega t\right)\ }\to t=\frac{1}{\omega }\ arc{\cos \left(-\frac{2E_{p0}}{AF_0}\right)\ }.\]

Ответ. $t=\frac{1}{\omega }\ arc{\cos \left(-\frac{2E_{p0}}{AF_0}\right)\ }$

Тела под действием силы упругости, потенциальная энергия которой пропорциональна квадрату смещения тела из положения равновесия:

где k – жесткость пружины.

При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине:

Запуск колебательного движения тела осуществляется с помощью кнопки Старт . Остановить процесс в любой момент времени позволяет кнопка Стоп .

Графически показано соотношение между потенциальной и кинетической энергиями при колебаниях в любой момент времени. Обратите внимание, что в отсутствие затухания полная энергия колебательной системы остается неизменной, потенциальная энергия достигает максимума при максимальном отклонении тела от положения равновесия, а кинетическая энергия принимает максимальное значение при прохождении тела через положение равновесия.

Пружинный маятник - это колебательная система, состоящая из материальной точки массой т и пружины. Рассмотрим горизонтальный пружинный маятник (рис. 1, а). Он представляет собой массивное тело, просверленное посередине и надетое на горизонтальный стержень, вдоль которого оно может скользить без трения (идеальная колебательная система). Стержень закреплен между двумя вертикальными опорами.

К телу одним концом прикреплена невесомая пружина. Другой ее конец закреплен на опоре, которая в простейшем случае находится в покое относительно инерциальной системы отсчета, в которой происходят колебания маятника. В начале пружина не деформирована, и тело находится в положении равновесия С. Если, растянув или сжав пружину, вывести тело из положения равновесия, то со стороны деформированной пружины на него начнет действовать сила упругости, всегда направленная к положению равновесия.

Пусть мы сжали пружину, переместив тело в положение А, и отпустили . Под действием силы упругости оно станет двигаться ускоренно. При этом в положении А на тело действует максимальная сила упругости, так как здесь абсолютное удлинение x m пружины наибольшее. Следовательно, в этом положении ускорение максимальное. При движении тела к положению равновесия абсолютное удлинение пружины уменьшается, а следовательно, уменьшается ускорение, сообщаемое силой упругости. Но так как ускорение при данном движении сонаправлено со скоростью, то скорость маятника увеличивается и в положении равновесия она будет максимальна.

Достигнув положения равновесия С, тело не остановится (хотя в этом положении пружина не деформирована, и сила упругости равна нулю), а обладая скоростью, будет по инерции двигаться дальше, растягивая пружину. Возникающая при этом сила упругости направлена теперь против движения тела и тормозит его. В точке D скорость тела окажется равной нулю, а ускорение максимально, тело на мгновение остановится, после чего под действием силы упругости начнет двигаться в обратную сторону, к положению равновесия. Вновь пройдя его по инерции, тело, сжимая пружину и замедляя движение, дойдет до точки А (так как трение отсутствует), т.е. совершит полное колебание. После этого движение тела будет повторяться в описанной последовательности. Итак, причинами свободных колебаний пружинного маятника являются действие силы упругости, возникающей при деформации пружины, и инертность тела.

По закону Гука F x = -kx. По второму закону Ньютона F x = ma x . Следовательно, ma x = -kx. Отсюда

Динамическое уравнение движения пружинного маятника.

Видим, что ускорение прямопропорционально смешению и противоположно ему направлено. Сравнивая полученное уравнение с уравнением гармонических колебаний , видим, что пружинный маятник совершает гармонические колебания с циклической частотой

Период колебаний пружинного маятника.

По этой же формуле можно рассчитывать и период колебаний вертикального пружинного маятника (рис. 1. б). Действительно, в положении равновесия благодаря действию силы тяжести пружина уже растянута на некоторую величину x 0 , определяемую соотношением mg = kx 0 . При смещении маятника из положения равновесия O на х проекция силы упругости