Методика определения растворенных газов в трансформаторном масле. Хроматографический анализ - эксплуатация силовых трансформаторов. Газовыделение из новых масел

Хроматографический анализ газов растворенных в масле, является специальным методом, служащим для обнаружения повреждений и дефектов конструктивных узлов электрооборудования, но практически не информирующем о качестве и состоянии самого масла. Хроматографический анализ (ХАРГ) позволяет:

  • отслеживать развитие процессов в оборудовании,
  • выявлять дефекты на ранней стадии их развития, не обнаруживаемые традиционными способами,
  • определять предполагаемый характер дефекта и степень имеющегося повреждения
  • ориентироваться при определении места повреждения.
Для оценки состояния маслонаполненного оборудования используются газы: водород (Н2), метан (CH4), этан (C2H6), этилен (C2H4), ацетилен (С2Н2), угарный газ (CO), углекислый газ (CO2). Кроме этого, всегда присутствуют кислород и азот, а их концентрация изменяется в зависимости от герметичности корпуса трансформатора и могут выделяться такие газы как пропан, бутан, бутен и другие, но их исследование в диагностических целях не получило широкого распространения.

Состояние оборудования оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Важно различать нормальные и чрезмерные объемы газа. Нормальное старение или газовая генерация изменяется в зависимости от конструкции трансформатора, нагрузки и типа изоляционных материалов.

В заимосвязь основных газов и наиболее характерных видов дефектов.

Водород (Н2) Дефекты электрического характера: частичные разряды, искровые и дуговые разряды
Метан (CH4) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции в диапазоне температур (400-600)°С
или нагрев масла и бумажно-масляной изоляции, сопровождающийся разрядами;
Этан (C2H6) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции в диапазоне температур (300-400)°С;
Этилен (C2H4) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции выше 600°С
Ацетилен (С2Н2) Дефекты электрического характера: электрическая дуга, искрение
У гарный газ (CO) Дефекты термического характера: старение и увлажнение масла и/или твердой изоляции;
Углекислый газ (CO2) Дефекты термического характера: старение и увлажнение масла и/или твердой изоляции;
нагрев твердой изоляции


Дефекты трансформаторов, определяемые с помощью хроматографического анализа:

Наименование дефектов

Основные газы Характерные газы
Перегревы токоведущих соединений

С 2 Н 4 - в случае нагрева масла
и бумажно-масляной
изоляции выше 600°С

Н 2 , С Н 4 и С 2 Н 6

- нагрев и выгорание контактов переключающих устройств;
- ослабление и нагрев места крепления электростатического экрана;
- обрыв электростатического экрана;
- ослабление винтов компенсаторов отводов НН;
- ослабление и нагрев контактных соединений отвода НН и шпильки проходного изолятора;
- лопнувшая пайка элементов обмотки: замыкание параллельных и элементарных проводников обмотки и др

С 2 Н 2 - в случае перегрева масла,
вызванного дуговым разрядом.

Перегревы элементов конструкции остова.
- неудовлетворительная изоляция листов электротехнической стали;
- нарушение изоляции стяжных шпилек или накладок, ярмовых балок с образованием короткозамкнутого контура;
- общий нагрев и недопустимый местный нагрев от магнитных полей рассеяния в ярмовых балках, бандажах,
рессующих кольцах и винтах;
- неправильное заземление магнитопровода;
- нарушение изоляции амортизаторов и шипов поддона реактора, домкратов и прессующих колец
при распрессовке и др.
Частичные разряды Н 2 СН 4 и С 2 Н 2
с малым содержанием
Искровые и дуговые разряды Н 2 или С 2 Н 2 СН 4 и С 2 Н 2
с любым содержанием
Ускоренное старении и/или увлажнение твердой изоляции СО и СO 2
Перегрев твердой изоляции СO 2

Для получения объективных результатов хроматографического анализа трансформаторного масла необходимо квалифицированно произвести отбор проб из маслонаполненного оборудования. Более подробные требования по отбору проб трансформаторного масла представлены в разделе Отбор проб масла

Данное исследование необходимо для осуществления контроля над изменениями в составе масла в ходе эксплуатации трансформаторов. Во время использования трансформаторов используемое масло требует постоянного аналитического контроля за качественными и количественными показателями соединительных единиц в нем.

Самым оптимальным способом контроля за состоянием масла является хроматографический анализ трансформаторного масла в лабораторных условиях. Хроматографический анализ проводится на базе лаборатории АНО «Центра химических экспертиз». Сегодня эксперты обеспечены современным оборудованием и материалами для исследований, представляющих комплексный метод. Комплексность задачи заключается в отождествлении частиц и разделения сложных смесей на отдельные составляющие и вещества, оценке их качественного и количественного показателя.

Исходя из полученных химических исследований, эксперты подводят итоги и подготавливают независимое заключение о состоянии трансформаторного масла.

Что определяет хроматографический анализ

Хроматографический анализ трансформаторного масла позволяет определить наличие и виды сложных газов, растворенные в маслах, эти сведении помогут выявить дефекты в работе трансформатора в определенных его узлах, также установить характер и степень износа, нарушений работы.

Хроматографический анализ трансформаторного масла проводится на предоставленных образцах, отобранных пробах масла и доставленных в лабораторию. Полученные результаты помогут принять решение о дальнейшей эксплуатации трансформатора. Анализ выполняется на хронографе, аттестованными экспертами химической лаборатории.

За качественной оценкой на хроматографе трансформаторного масла, необходимо обращаться в АНО «Центр химических экспертиз».

Для качественной диагностикии контроля над состоянием трансформаторов в последние годы все чаще используется хроматографический анализ трансформаторного масла . Данная процедура достаточно проста, не требует наличия полноценных лабораторий и квалифицированных сотрудников, как это было 20 лет назад. Сейчас для диагностики применяют современные портативные газоанализаторы и тестеры масла, позволяющие всего за несколько минут получить необходимые данные.

В основе хроматографического анализа лежит разделение сложной смеси на простейшие составляющие с последующей стадией количественного определения содержания в ней веществ. Именно на основе полученных цифр и проводится конечная оценка состояния изоляции трансформатора и качества масла.

Хроматографический анализ растворенных газов позволяет достаточно точно определить вид имеющегося повреждения и степень его развития. Кроме того, возможно определение дефектана ранней стадии его появления. Диагностика проводится следующим образом: делается анализ масла (контактный или бесконтактный в зависимости от типа оборудования), выявляются количественныехарактеристики примесей и сравниваются с граничными значениями для данного типа трансформаторов. Эта процедура должна делаться не реже 1 раза в полгода.

Анализу подвергаются все растворенные в масле газы. Так, ХАРГ позволяет определить количественное содержание в смеси водорода, метана, ацетилена, этана, окисей CO, этилена и CO2. Поломки электрики (разряды в масле) приводят к повышению количества водорода, перегрев масла или изоляции – к выработке этана и его составляющих, перегрев активных элементов – к появлению в смеси ацетилена, разряды в изоляции обмотки – к возникновению окиси и двуокиси углерода.

Хроматографический анализ позволяет обнаружить следующие неполадки:

  • Повреждения твердой изоляции. Как правило, образуются из-за системного перегрева изоляции и, как следствие, частого пробоя.
  • Перегрев магнитопровода и различных токопроводящих частей. Возникает из-за подгорания контактов, лопнувшей пайки обмотки, замыканием проводов обмотки, разбалтыванием крепежа электростатического экрана и т.д.
  • Наличие электрических пробоев в масле (дуговых, искровых или частичных разрядов). При обнаружении этой проблемы необходимо сделать несколько контрольных замеров, чтобы подтвердить диагноз, и, если он верен, вывести из работы трансформатор. Эксплуатация оборудования с пробоями строго запрещена, поскольку может привести к аварийному повреждению трансформатора и его капитальному ремонту или замене.

Кроме этого, ХАРГ трансформаторного масла позволяет эффективно определять общее состояние обмотки электрооборудования по степени ее полимеризации, а также количество защитных присадок в смеси.

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ
РАО «ЕЭС РОССИИ»

ДЕПАРТАМЕНТ НАУЧНО-ТЕХНИЧЕСКОЙ ПОЛИТИКИ И РАЗВИТИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ДИАГНОСТИКЕ
РАЗВИВАЮЩИХСЯ ДЕФЕКТОВ
ТРАНСФОРМАТОРНОГО ОБОРУДОВАНИЯ
ПО РЕЗУЛЬТАТАМ
ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ГАЗОВ,
РАСТВОРЕННЫХ В МАСЛЕ

РД 153-34.0-46.302-00

МОСКВА, 2001

РАЗРАБОТАНО: Департаментом научно-технической политики и развития РАО «ЕЭС России», Научно-исследовательским институтом электроэнергетики (АО ВНИИЭ), раздел - совместно с ЗАО Московский завод «Изолятор» им. А. Баркова

ИСПОЛНИТЕЛИ: Ю.Н. Львов, Т.Е. Касаткина, Б.В. Ванин, М.Ю. Львов, В. С. Богомолов, Ю.М. Сапожников - (АО ВНИИЭ), С.Д. Кассихин, Б.П. Кокуркин, С.Г. Радковский, А.З. Славинский - (ЗАО «МОСИЗОЛЯТОР»), К.М. Антипов, В.В. Смекалов - (Департамент научно-технической политики и развития РАО «ЕЭС России»)

УТВЕРЖДАЮ: Начальник Департамента научно-технической политики и развития РАО «ЕЭС России»

Ю.Н. Кучеров

12.12.2000 г.

СПИСОК ИСПОЛЬЗОВАННЫХ ОБОЗНАЧЕНИЙ

М Ai - предел обнаружения в масле i-го газа, %об;

A 0 i - начальное значение концентрации i -г o газа, %об;

A i - измеренное значение концентрации i -г o газа, %об;

Агр i - граничная концентрация i -г o газа, %об;

a i - относительная концентрация i -г o газа;

a maxi - максимальная относительная концентрация i -г o газа;

F Li - интегральная функция распределения;

P Li - вероятность;

N- общее число трансформаторов;

L - интервал измерения концентрации i -г o газа;

n Li - число трансформаторов с концентрацией газа А (1-1) i < А 1i ;

V абс i - абсолютная скорость нарастания i -г o газа, %об/мес;

Am i , A (m -1) i - два последовательных измерения концентрации i -г o газа, %об;

Td - периодичность диагностики, мес.;

V отн i - относительная скорость нарастания i -г o газа, %/мес;

b - коэффициент кратности последовательных измерений (принимать b = 5);

T 1 d - минимальное время до повторного отбора пробы масла, мес.;

Аг i - концентрация i -г o газа в равновесии с газовой фазой, %об;

B i - коэффициент растворимости i -г o газа в масле

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ДИАГНОСТИКЕ
РАЗВИВАЮЩИХСЯ ДЕФЕКТОВ ТРАНСФОРМАТОРНОГО
ОБОРУДОВАНИЯ ПО РЕЗУЛЬТАТАМ
ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ГАЗОВ,
РАСТВОРЕННЫХ В МАСЛЕ

РД 153-34.0-46.302-00

Срок действия установлен

с 01.01.2001 г.

до 01.01.2011 г.

Настоящие Методические указания составлены на основе накопленного в России опыта применения «Методических указаний по диагностике развивающихся дефектов по результатам хроматографического анализа газов, растворенных в масле силовых трансформаторов» РД 34.46.302-89 (М: СПО Союзтехэнерго, 1989), с учетом рекомендаций публикации МЭК 599 и СИГРЭ и вводятся взамен упомянутого выше РД 34.46.302-89 и взамен противоаварийного циркуляра Ц-06-88(Э) «О мерах по повышению надежности герметичных вводов 110-750 кВ» от 27.07.1988 г.

Настоящие Методические указания распространяются на трансформаторы напряжением 110 кВ и выше, блочные трансформаторы, трансформаторы собственных нужд с любым видом защиты масла от атмосферы и высоковольтные герметичные вводы напряжением 110 кВ и выше, залитые трансформаторным маслом любой марки.

В Методических указаниях изложены: критерии диагностики развивающихся в трансформаторах дефектов (критерий ключевых газов, критерий граничных концентраций газов, критерий отношения концентраций пар газов для определения вида и характера дефекта, критерий скорости нарастания газов в масле); эксплуатационные факторы, влияющие на результаты АРГ; дефекты, обнаруживаемые в трансформаторах с помощью АРГ; основы диагностики эксплуатационного состояния трансформаторов по результатам АРГ; определение наличия дефекта в высоковольтных герметичных вводах по результатам анализа растворенных в масле газов.

Вероятность совпадения прогнозируемого и фактического дефектов в трансформаторах при использовании настоящих Методических указаний - 95 %.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Хроматографический анализ растворенных в масле газов проводится в соответствии с методикой «Методические указания по подготовке и проведению хроматографического анализа газов, растворенных в масле силовых трансформаторов» (РД 34.46.303-98), обеспечивающей:

1.1.1 Определение концентраций следующих газов, растворенных в масле: водорода (H 2 ), метана (СН 4), ацетилена (C 2 H 2 ), этилена (C 2 H 4 ), этана (C 2 H 6 ), оксида углерода (СО), диоксида углерода (CO 2 ).

Граничные концентрации растворенных в масле газов

Концентрации газов, %об.

Оборудование

Н 2

СН 4

С 2 Н 2

С 2 Н 4

С 2 Н 6

СО

СО 2

Трансформаторы напряжением 110-500 кВ

0,01

0,01

0,001

0,01

0,005

Трансформаторы напряжением 750 кВ

0,003

0,002

0,001

0,002

0,001

0,05

0,40

Реакторы напряжением 750 кВ

0,01

0,003

0,001

0,001

0,002

0,05

0,40

* для СО - в числителе приведено значение для трансформаторов с азотной или пленочной защитами масла, в знаменателе - для трансформаторов со свободным дыханием; для СО 2 - в числителе приведены значения для трансформато ров со свободным дыханием при сроке эксплуатации до 10 лет, в знаменателе - свыше 10 лет, в скобках приведены те же данные для трансформаторов с пленочной или азотной защитами масла

5. ОПРЕДЕЛЕНИЕ ВИДА И ХАРАКТЕРА РАЗВИВАЮЩЕГОСЯ ДЕФЕКТА ПО КРИТЕРИЯМ ОТНОШЕНИЙ КОНЦЕНТРАЦИЙ ПАР ГАЗОВ

Вид и характер развивающихся в трансформаторе повреждений определяется по отношению концентраций следующих газов: Н 2 , СН 4 , С 2 Н 2 , С 2 Н 4 и С 2 Н 6 .

Дефект

Основные хроматографические признаки дефекта

Механические примеси

Образование углеродосодержащих частиц вследствие разрядов - ацетилен. Появление незавершенных искровых разрядов - водород. Возможно отложение загрязнений по поверхностям и прорастание по ним разряда - водород и ацетилен.

Острые края деталей в масле

Появление незавершенных искровых разрядов - водород. Накопление продуктов деструкции масла по поверхностям и прорастание по ним разряда - водород и ацетилен.

Нарушение контактных соединений

Появление искрового разряда в масле - водород и ацетилен. Отложение продуктов деструкции масла по поверхностям и прорастание по ним разряда - водород и ацетилен. Накопление продуктов деструкции масла - водород и ацетилен.

Ослабление контактных соединений верхней контактной шпильки

Термическая деструкция масла (осмоление) - метан, этан.

Локальные дефекты остова

Микроразряды в остове - ацетилен и водород.

Литература

Рассчитаем величины абсолютных скоростей нарастания концентраций каждого газа:

Так как максимальная абсолютная скорость нарастания у водорода, то Т 1 d определяем по ней:

T 1 d = 5 ´ 5 ´ 10 4 /0,0125 = 0,2 мес., т.е. 6 дней

Фактически следующий отбор пробы масла и АРГ были проведены через 7 дней и получены следующие концентрации газов:

4-й анализ СО 2 = 0,15; СО = 0,02; СН 4 = 0,018; С 2 Н 4 = 0,051; С 2 Н 2 = 0,0035; С 2 Н 6 = 0,0053; Н 2 = 0,01.

По данным этого анализа в трансформаторе подтвердилось наличие быстроразвивающегося дефекта термического характера, не затрагивающего твердую изоляцию - «термический дефект высокой температуры, > 700 °С» и относящегося к 1 группе дефектов «Перегревы токоведущих соединений и элементов конструкции остова».

Трансформатор был выведен в ремонт. Во время ремонта в нем было обнаружено выгорание меди отвода обмотки 330 кВ, что подтвердило правильность поставленного диагноза.

Пример 2 .

В трансформаторе ТДТГ - 10000/110 после срабатывания газовой защиты на отключение (отбор пробы масла был проведен из бака трансформатора) определен следующий состав растворенных в масле газов (концентрации в %об.):

СО 2 = 0,45; СО = 0,04; СН 4 = 0,021; С 2 Н 4 = 0,027; С 2 Н 2 = 0,134; С 2 Н 6 = 0,006; Н 2 = 0,20.

Изрезультатов анализа следует, что концентрации метана и этилена более, чем в 2 раза превышают соответствующие граничные значения (табл. РД), концентрация водорода в 20 раз превышает граничное значение, а ацетилена - более, чем в 100 раз.

Анализ условий эксплуатации за предшествующий период показал, что отсутствуют факторы, которые могли бы вызвать рост концентраций углеводородных газов (п. ).

По полученным концентрациям углеводородных газов определим характер развивающегося в трансформаторе дефекта по таблице текста РД:

На основании полученных данных прогнозируется дефект электрического характера - «разряды большой мощности».

Трансформатор был выведен в ремонт, в нем был обнаружен обрыв токопровода переключателя.

Пример 3.

В трансформаторе ТДТН-31500/110 газовая защита сработала на сигнал.

Отобрали пробу газа из газового реле и пробу масла из бака трансформатора. Определили концентрации растворенных в масле газов и газа из газового реле; результаты анализов приведены в таблице:

Характеристика пробы

Концентрации газов, %об.

Н 2

СН 4

С 2 Н 4

С 2 Н 6

С 2 Н 2

СО 2

СО

Масло из бака

0,016

0,0024

0,015

0,0006

0,040

0,162

0,05

Газ из реле, (Ас i )

31,4

4,42

1,52

0,03

3,34

0,58

5,78

Расчетное значение газа из реле, (Ari )

0,32

0,056

0,009

0,00025

0,033

0,15

0,42

1. По концентрациям углеводородных газов в масле из бака трансформатора определим характер развивающегося в нем дефекта по таблице текста РД:

По критерию отношения в трансформаторе прогнозируется дефект электрического характера - дуговой разряд, затрагивающий твердую изоляцию.

2. По концентрациям газов, растворенных в масле бака трансформатора, рассчитаем концентрации этих же газов, соответствующих равновесному состоянию с газовой фазой (Ari ) по формуле РД и результаты расчета занесем в третью строку таблицы:

При сравнении концентраций Ari и Aci по каждому газу (строка 2 и 3 таблицы примера ) получаем неравенство: Ari < Aci , т.е. можно заключить, что газ в реле выделился в неравновесных условиях в результате быстро развивающегося дефекта (дуговой разряд, затрагивающий твердую изоляцию).

Было дано заключение о выводе трансформатора из работы. При осмотре был обнаружен пробой витковой изоляции.

Приложение 3

ОПРЕДЕЛЕНИЕ ГРАФИЧЕСКИМ СПОСОБОМ РАЗВИВАЮЩИХСЯ В ТРАНСФОРМАТОРАХ ДЕФЕКТОВ ПО РЕЗУЛЬТАТАМ АРГ

Вид развивающихся в трансформаторах дефектов можно ориентировочно определить графически по основным газам: водороду, метану, этилену и ацетилену.

А. Построение графиков по относительным концентрациям.

Основной газ определяется по п. РД.

1. Для дефектов электрического характера основным газом может быть водород или ацетилен (п. текста РД).

На рис. - - изображены графики дефектов электрического характера.

2. Для дефектов термического характера (перегревы при плохих контактах, токах утечки, от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах и винтах и т.п.) основным газом является метан или этилен в зависимости от температуры нагрева в зоне развития дефекта (см. п. текста РД).

На рис. - изображены графики дефектов термического характера. Графики строятся следующим образом:

По результатам хроматографического анализа масла (А i ) по формуле настоящих РД рассчитать относительные концентрации (a i ) водорода и углеводородных газов;

Определить основной газ в данном анализе (по расчетным относительным концентрациям максимальное значение a maxi соответствует основному газу);

Определить величину отношения a i / a maxi по углеводородным газам и водороду, причем для основного газа это отношение равно единице;

По оси X отложить пять равных отрезков и обозначить полученные точки соответствующими газами в следующей последовательности:

По оси Y отложить отрезок произвольной величины и обозначить его цифрой «1»;

Полученные точки соединить прямыми линиями;

Построенный график сравнить с графиками рис. - и определить характер дефекта.

При сравнении графиков необходимо учитывать модальность и основной газ.

Б. Построение графиков по абсолютным концентрациям

1. По результатам хроматографического анализа масла газ с максимальной концентрацией (Amax i ) принимается за основной газ.

2. Определить величину отношения измеренной концентрации газового компонента к максимальной концентрации (A i / Amax i ), причем для основного газа это отношение равно единице.

3. Далее для каждого газа на оси ординат отложить соответствующие величины отношения A i / Amax i для каждого газа, построить график в соответствии с п. А и определить характер дефекта.

Рекомендуется для построения графиков использовать только такие результаты АРГ, в которых концентрации водорода и углеводородных газов в несколько раз превышают соответствующие граничные значения (при этом возможно отсутствие в масле ацетилена и/или наличие низких концентраций водорода).

Пример 1

В трансформаторе ТРДЦН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,004 %об, СН 4 = 0,084 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,02 %об, С 2 Н 6 = 0,011 %об, СО = 0,05 %об, СО 2 = 0,48 %об.

I ) для каждого газа:

а Н2 = 0,004/0,01 = 0,4, а СН4 = 0,084/0,01 = 8,4, а С2Н2 = 0, а С2Н4 = 0,02/0,01 = 2,0, а С2Н6 = 0,011/0,005 = 2,2

8,4 = а СН4 > а С2Н6 > а С2Н4 > а Н2 , т.е. основной газ - метан

Y для каждого газа

СН 4 = 1, Н 2 = 0,4/8,4 = 0,05, С 2 Н 4 = 2/8,4 = 0,24, С 2 Н 2 = 0, С 2 Н 6 = 2,2/8,4 = 0,26

4. Строим график (рис. РД):

Рис. 4.1. График дефекта термического характера в диапазоне средних температур, вызванного подгаром контактов избирателя

Пример 2

В автотрансформаторе АТДЦТГ-240000/220 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,01 %об, СН 4 = 0,09 %об, С 2 Н 2 = 0,008 %об, С 2 Н 4 = 0,167 %об, С 2 Н 6 = 0,03 %об, СО = 0,019 %об, СО 2 = 0,24 %об.

а i ) для каждого газа:

а Н2 = 0,01/0,01 = 1, а СН4 = 0,09/0,01 = 9, а С2Н2 = 0,008/0,001 = 8, а С2Н4 = 0,167/0,01 = 16,7, = 0,03/0,005 = 6,0

2. По полученным относительным концентрациям определяем основной газ:

16,7 = а С2Н4 > а СН4 > а С2Н2 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 4 = 1, Н 2 = 1/16,7 = 0,06, СН 4 = 9/16,7 = 0,54, С 2 Н 2 = 8/16,7 = 0,45, С 2 Н 6 = 6,0/16,7 = 0,36

4. Строим график (рис. ).

5. По основному газу С 2 Н 4 находим график рис. , Приложение , похожий на построенный график (рис. ). Следовательно, в автотрансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

СО 2 /СО = 0,24/0,019 = 12,6, следовательно, дефектом не затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести автотрансформатор в ремонт в ближайшее время, но руководство системы оставило его в работе под контролем АРГ.

Автотрансформатор проработал еще 4 мес. и был выведен в ремонт.

Во время ремонта в нем было обнаружено замыкание прессующего кольца обмотки СН на прессующее кольцо обмотки НН через упавший стакан домкрата.

Рис. 4.2. График дефекта термического характера - высокотемпературный перегрев, вызванный короткозамкнутым контуром в остове

Пример 3

В автотрансформаторе АТДЦТН-250000/500 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,03 %об, СН 4 = 0,18 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,3 %об, С 2 Н 6 = 0,043 %об, СО = 0,016 %об, СО 2 = 0,19 %об.

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,03/0,01 = 3, а СН4 = 0,18/0,01 = 18, а С2Н2 = 0, а С2Н4 = 0,3/0,01 = 30, а С2Н6 = 0,043/0,005 = 8,6

2. По полученным относительным концентрациям определяем основной газ:

30 = а С2Н4 > а СН4 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 4 = 1, Н 2 = 3/30 = 0,1, СН 4 = 18/30 = 0,6, С 2 Н 2 = 0, С 2 Н 6 = 8,6/30 = 0,29

4. Строим график (рис. ).

5. По основному газу С 2 Н 4 находим график рис. , Приложение , похожий на построенный график (рис. ). Следовательно, в автотрансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,19/0,016 = 11,9 < 13 (см. п. . РД), следовательно, дефектом не затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести автотрансформатор в ремонт. Во время ремонта в нем был обнаружен короткозамкнутый контур - касание нижней консоли с шипом.

Рис. 4.3. График дефекта термического характера - высокотемпературный нагрев (> 700 °С), вызванный касанием нижней консоли с шипом

Пример 4

В трансформаторе ТДТН-40000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,011 %об, СН 4 = 0,036 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,152 %об, С 2 Н 6 = 0,039 %об, СО = 0,04 %об, СО 2 = 0,45 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,011/0,1 = 1,1, а СН4 = 0,036/0,01 = 3,6, а С2Н2 = 0, а С2Н4 = 0,152/0,01 = 15,2, а С2Н6 = 0,039/0,005 = 7,8

2. По полученным относительным концентрациям определяем основной газ:

15,2 = а С2Н4 > а С2Н6 > а СН4 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 4 = 1, Н 2 = 1,1/15,2 = 0,072, СН 4 = 3,6/15,2 = 0,24, С 2 Н 2 = 0, С 2 Н 6 = 7,8/15,2 = 0,5

4. Строим график (рис. ).

5. По основному газу С 2 Н 4 находим график рис. , Приложение , похожий на построенный график (рис. ). Следовательно, в трансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,45/0,04 = 11,25 < 13 (см. п. . РД), следовательно, дефектом не затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести трансформатор в ремонт. Во время ремонта в нем был обнаружен подгар контактов переключателя.

Рис. 4.4. График дефекта термического характера - высокотемпературный нагрев (> 700 °С), вызванный подгаром контактов переключателя

Пример 5

В автотрансформаторе ОДТГА-80000/220 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,097 %об, СН 4 = 0,019 %об, С 2 Н 2 = 0,013 %об, С 2 Н 4 = 0,024 %об, С 2 Н 6 = 0,0023 %об, СО = 0,064 %об, СО 2 = 0,27 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,097/0,01 = 9,7, а СН4 = 0,019/0,01 = 1,9, а С2Н2 = 0,013/0,001 = 13 , а С2Н4 = 0,024/0,01 = 2,4, а С2Н6 = 0,0023/0,005 = 0,46

2. По полученным относительным концентрациям определяем основной газ:

5.3 . РД), следовательно, дефектом затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести автотрансформатор в ремонт в ближайшее время.

Автотрансформатор был выведен в ремонт. Во время ремонта в нем было обнаружено: выгорание изоляции шпилек, касание стягивающих шпилек консоли, выгорание металла шпильки.

Рис. 4.5. График дефекта электрического характера (дуга), вызванного короткозамкнутым контуром в остове

Пример 6 (см. Приложение , пример для случая, когда газовая защита сработала на отключение)

В трансформаторе ТДТГ-10000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,20 %об, СН 4 = 0,021 %об, С 2 Н 2 = 0,134 %об, С 2 Н 4 = 0,027 %об, С 2 Н 6 = 0,0006 %об, СО = 0,04 %об, СО 2 = 0,45 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,20/0,01 = 20, а СН4 = 0,021/0,01 = 2,1, а С2Н2 = 0,134/0,001 = 134 , а С2Н4 = 0,027/0,01 = 2,7, а С2Н6 = 0,0006/0,005 = 0,12

2. По полученным относительным концентрациям определяем основной газ:

134 = а С2Н2 > а Н2 > а С2Н4 > а СН4 > а С2Н6 , т.е. основной газ - ацетилен

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 2 = 1, Н 2 = 20/134 = 0,15, СН 4 = 2,1/134 = 0,016, С 2 Н 6 = 0,12/134 = 0,12, С 2 Н 4 = 2,7/134 = 0,02

4. Строим график (рис. ).

5. По основному газу С 2 Н 2 находим график рис. , Приложение , похожий на построенный график (рис. ). Следовательно, в трансформаторе по данным АРГ прогнозируется дефект электрического характера - дефект, вызванный дугой.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,45/0,04 = 11,25 < 13 (см. п. . РД), следовательно, дефектом не затронута твердая изоляция.

По результату этого анализа была дана рекомендация вывести трансформатор в ремонт.

Во время ремонта в нем обнаружили обрыв токопровода переключателя.

Рис. 4.6. График дефекта электрического характера (дуга)

Пример 7

В трансформаторе ТДТН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,053 %об, СН 4 = 0,02 %об, С 2 Н 2 = 0,0013 %об, С 2 Н 4 = 0,049 %об, С 2 Н 6 = 0,009 %об (концентрации оксида и диоксида углерода не определялись).

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,053/0,01 = 5,3, а СН4 = 0,02/0,01 = 2,0, а С2Н2 = 0,0013/0,001 = 1,3 , а С2Н4 = 0,049/0,01 = 4,9, а С2Н6 = 0,009/0,005 = 1,8

2. По полученным относительным концентрациям определяем основной газ:

5,3 = а Н2 > а С2Н4 > а СН4 > а С2Н6 > а С2Н2 , т.е. основной газ - водород

3. Определяем величины отрезков по оси

Рис. 4.7. График дефекта электрического характера (искрение)

Пример 8

В трансформаторе ТДЦ-400000/330 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,27 %об, СН 4 = 0,025 %об, С 2 Н 2 = 0,024 %об, С 2 Н 4 = 0,030 %об, С 2 Н 6 = 0,007 %об (концентрации оксида и диоксида углерода не определялись).

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,27/0,01 = 27,0, а СН4 = 0,025/0,01 = 2,5, а С2Н2 = 0,024/0,001 = 24,0 , а С2Н4 = 0,030/0,01 = 3,0, а С2Н6 = 0,007/0,005 = 1,4

2. По полученным относительным концентрациям определяем основной газ:

27 = а Н2 > а С2Н2 > а С2Н4 > а СН4 > а С2Н62 , т.е. основной газ - водород

3. Определяем величины отрезков по оси

« ____ » ____________ 2006 г.

ИНФОРМАЦИОННОЕ ПИСЬМО

Отбор, хранение и транспортировка проб трансформаторного масла

для хроматографического анализа растворённых газов (ХАРГ)

Настоящее информационное письмо составлено на основе действующих инструкций, руководящих документов и ГОСТов, а также накопленного опыта практической работы в этой области. Приводимая ниже информация рекомендована для специалистов по эксплуатации и ремонту электрооборудования 110-500 кВ.

    Технология отбора проб масла на ХАРГ.

    1. Отбор проб осуществляется в стеклянные медицинские шприцы (рис. 1) ёмкостью 10-20 мл с заглушкой, изготовленной из наконечника медицинской иглы с запаянным отверстием. Заглушка используется для герметизации шприца после отбора пробы. Для отбора проб могут применяться также специальные пробоотборники «ЭЛХРОМ» ёмкостью 20 мл (приложение 1). Пробоотборник представляет собой комбинацию специального цельностеклянного шприца и прецизионного трехходового крана. Конструкция пробоотборника позволяет производить отбор проб из всех видов электрооборудования без использования дополнительных приспособлений. При этом сводятся до минимума потери масла из электрооборудования, что особенно важно для маломасляных аппаратов (высоковольтных вводов). Газоплотность пробоотборника позволяет обеспечить минимальные потери газов при хранении и транспортировке.

Каждый шприц (пробоотборник) должен иметь индивидуальный номер!

Рисунок 1. Шприц для отбора проб масла на ХАРГ

      При отборе проб трансформаторного масла необходимо следить, чтобы в шприц с маслом не попали механические примеси и пузырьки воздуха.

Недопустим отбор проб масла в одноразовые пластмассовые шприцы!

Недопустим отбор проб масла из открытой струи!

Недопустим контакт масла с атмосферным воздухом при отборе!

      При отборе пробы масла из бака трансформатора 1 (рис. 2) маслоотборное устройство очистить от загрязнений, проверить маркировку шприцев. К маслоотборному штуцеру подсоединить шланг с внутренним диаметром 6-8 мм из маслостойкой резины. Приоткрыть вентиль маслоотборного устройства и слить 1-2 литра масла для промывки штуцера и шланга. Перед окончанием слива свободный конец шланга приподнять вверх для удаления пузырьков воздуха. Плотно ввести присоединительный конус шприца в заранее подготовленное отверстие в шланге (возможно применение медицинской иглы или специально изготовленных переходников), перекрыть конец шланга для создания в нём избыточного давления.

Перед заполнением шприц промыть отбираемым маслом! Для этого шприц полностью заполнить отбираемым маслом, после чего, плавным нажатием на поршень, вытеснить всё масло из шприца. Процедуру промывки повторить не менее трёх раз.

Рисунок 2. Отбора пробы масла из бака силового трансформатора

После промывки заполнить шприц маслом и расположив шприц иглой вверх, вытеснить 1-2 мл масла для удаления пузырьков воздуха. Закрыть шприц наконечником-заглушкой (установку заглушки проводят одновременно с надавливанием на поршень шприца). Заполнить сопроводительные листы (приложение 2), шприцы с пробами масла поместить в специальную тару.

      Отбор проб масла из герметичных вводов должен производиться по технологической карте . Для вводов со встроенным компенсатором давления пробы отбираются непосредственно из ввода. Для вводов с выносным компенсатором давления пробы отбираются из бака давления (для уточнения вида предполагаемого дефекта, по согласованию с СИИЗ, допускается отбор пробы масла непосредственно из вводов).

При отборе пробы из ввода с выносным баком давления закрывать вентиль на время

не более 5-10 минут!

Для отбора пробы масла из герметичного ввода: закрыть вентиль на вводе, снять заглушку с перекрываемого хода вентиля, прижать конус шприца через мягкую резиновую прокладку толщиной 8-10мм к отверстию вентиля (предварительно в прокладке необходимо проколоть отверстие для конуса шприца). Приоткрыть вентиль до заполнения шприца маслом. Перед заполнением маслом шприц промыть отбираемым маслом! Для этого шприц полностью заполнить отбираемым маслом, после чего, плавным нажатием на поршень, вытеснить всё масло из шприца.

После промывки заполнить шприц маслом. Закрыть вентиль, поставить заглушку на место, открыть вентиль до конца. Расположив шприц иглой вверх, вытеснить 1-2 мл масла для удаления пузырьков воздуха. Плотно закрыть шприц наконечником-заглушкой, (установку заглушки проводят одновременно с надавливанием на поршень шприца). Заполнить сопроводительные листы (приложение 2), шприцы с пробами масла опустить в специальную тару.

    Герметично закрытые шприцы с пробами масла хранят в защищённом от солнечного света месте в емкостях, заполненных трансформаторным маслом (шприцы должны быть полностью погружены в масло). На контейнерах должно быть указано наименование подстанции.

    Доставка проб масла на ХАРГ осуществляется транспортом ПС, либо другим способом (по согласованию с начальниками районов), не позже 3-4 суток с момента отбора. Пробы отправляются в химлабораторию с заполненными сопроводительными листами. Шприцы транспортируются в емкостях, заполненных трансформаторным маслом (шприцы должны быть полностью погружены в масло) в вертикальном положении, заглушками вниз.

При транспортировании необходимо избегать сильной вибрации, тряски, резких перепадов температур и попадания прямого солнечного света на пробы масла.

    Хроматографический анализ газов, растворённых в трансформаторном масле, проводит персонал химической лаборатории службы испытаний и измерений. Результаты анализа заносятся в сопроводительный протокол, который после аналитической обработки в службе СИИЗ возвращается на подстанцию с заключением специалистов.

Приложение 1

Отбор проб масла в пробоотборник ЭЛХРОМ

    Отверните две половинки гермоузла.

    2 и оттяните поршень.

    Переместите уплотнительное кольцо гермоузла в крайнее нижнее положение поршня так, чтобы оно не препятствовало свободному ходу поршня в процессе отбора пробы.

    Снимите защитные пробки.

    Прижмите поршень до упора (для обеспечения свободного хода поршня ручка трехходового крана должна быть в положении 2 или 3 ) и поверните ручку трехходового крана в положение 1 .

    Соедините конус крана пробоотборника с источником масла, слейте порцию масла через боковой штуцер (для удобства к нему можно присоединить специальный шланг). Рекомендуемое положение пробоотборника при отборе пробы – вертикальное.

    Поверните ручку крана в положение 2 , заполните шприц небольшой порцией масла и поверните ручку в положение 3 .

    Слейте взятую порцию масла через боковой штуцер спокойным нажатием на поршень.

    Поверните ручку в положение 2 и заполните шприц до отметки 20 мл.

    Поверните ручку в положение 1 .

    Установите защитные пробки.

    Прикрутите две половинки гермоузла до упора. Проба взята.

Если при отборе пробы по каким-либо причинам пробоотборник не занимает вертикального положения, то для удаления воздушного пузыря пробоотборник необходимо отсоединить от источника, сбросить пузырь (в вертикальном положении) и повторить все процедуры снова. Не следует осуществлять процедуру удаления воздуха энергично – это не приведет к желаемому результату, а только осложнит получение достоверной пробы.

Внимание! Замена поршней шприцев запрещается, так как поршни не являются взаимозаменяемыми!

Схема расположения ручки трехходового крана при вертикальном положении пробоотборника:

Приложение 2

Требования к заполнению сопроводительного листа

при отборе проб трансформаторного масла на ХАРГ

СОПРОВОДИТЕЛЬНЫЙ ЛИСТ

пробы на ХАРГ в масле

ПС ____________________________ Тип (тр-ра, ввода) __________________________________

Дисп. наименование ___________________ Фаза ______ Заводской № ______________________

№ чертежа (ввода) ______________________ Завод-изготовитель _________________________

Дата вып.: ____________ Дата ввода в экспл. ______________ Нагрузка (тр-ра) __________ МВт

Марка залитого масла ____________________ Вид защиты масла (тр-ра) ____________________

Причина отбора пробы ________________________________ Дата отбора ___________________

При отборе: t масла ___________ С, t воздуха ___________ С

Пробу отобрал (Ф.И.О.)_______________________ в шприц № _________ Подпись ___________

В сопроводительном листе должны быть указаны следующие сведения: название подстанции, тип оборудования, диспетчерское обозначение, фаза, заводской номер, номер заводского чертежа (для вводов). Например:

АОДЦТН-267000/500, АТГ-4, фаза А, Зав. № 92766;

АТ-1, ввод 110 кВ ГМТА-110/2000-У1, фаза А, черт. № 2ИЭ.800.055

Кроме того, необходимо указать завод-изготовитель, дату выпуска и ввода в эксплуатацию, значение нагрузки трансформатора перед отбором пробы, марку масла, залитого в оборудование, тип защиты масла (свободное дыхание, азотная или плёночная защита), причину отбора (очередная, внеочередная, повторная, после кап. ремонта и т.п.), дату отбора пробы.

Максимально точно указать температуру верхних слоёв масла и температуру окружающего воздуха в момент отбора пробы. Указать фамилию, инициалы отбиравшего пробу (подтверждается подписью) и номер шприца, в который отобрана проба.

Начальник СИИЗ

1 Из бака трансформатора необходимо отбирать два шприца (или пробоотборника) объемом 20 мл.