Как делают солнечные панели на заводе. Оборудование для производства солнечных батарей. Технология изготовления. Объединение фотоэлементов в единую систему

На сегодняшний день из всех известных человечеству источников альтернативной энергии наиболее популярными являются солнечные панели, батареи и прочие генераторы на основе гелиоэнергии. Учитывая текущую стоимость расходов на энергоресурсы, многие интересуются, где приобрести солнечные панели для своего дома, каковы цены на них и есть ли готовые решения. И поскольку рост курса валюты прямо отражается на платежной способности населения, все больше граждан стремятся узнать побольше о панелях российского производства.

Что такое солнечные панели и как их используют для дома

Несмотря на то что данному виду энергоснабжения домов уже более 30 лет, не так много специалистов в этой области. Почему использование солнечных панелей для частного дома так выгодно? Ответ прост: платить надо только за оборудование и установку, впоследствии энергоноситель бесплатен! В таких странах, как КНР, Соединенные Штаты, Франция, Италия и Германия, до 30 % населения устанавливает на крышу батареи, чтобы пользоваться миллиардами неиссякаемых киловатт солнечной энергии. Если это бесплатно, в чем секрет?


Принцип работы батареи следующий: представим себе полупроводники из кристаллов (например, из кремния), которые преобразовывают кванты света в составляющие электрического тока. Панель содержит сотни тысяч таких кристаллов. В зависимости от требуемой мощности площадь такого покрытия составляет от пары квадратных сантиметров (вспомним калькулятор) до сотен квадратных метров – например, для орбитальных станций.

Несмотря на кажущуюся простоту устройств, их использование на территории России очень ограничено – климатом, погодой, временем года и суток. Плюс к тому, чтобы система подавала ток в сеть, необходимо приобрести:

  • аккумулятор, который будет накапливать энергию на случай перепадов напряжения;
  • инвертор, который будет переводить постоянный ток в переменный;
  • систему, контролирующую заряд аккумулятора.

Кратко о потреблении

Среднестатистическая семья из 4 человек потребляет 250–300 кВт в месяц. Солнечные модули для бытового пользования дают в среднем 100 Вт с 1 кв. м в сутки (в ясную погоду). Для того чтобы питать полностью дом, нужно установить минимум 30, в идеале 40 секций, что обойдется не менее чем в 10 000 у. е. При этом крыша должна быть ориентирована на южную сторону, а количество солнечных дней в месяц в среднем не должно быть не меньше 18–20. Ниже приведена карта солнечных дней.


Вывод: солнечные панели хороши в качестве резервного источника электрической энергии. Кроме того, нужно знать, как их подобрать, чтобы мощности хватало для обеспечения бытовых нужд. Зато, вне зависимости от аварий, ваш дом всегда будет снабжен электричеством.

1. Панели от ЗАО «Телеком-СТВ»

Российская компания «Телеком-СТВ» (г. Зеленоград) производит продукцию в среднем на 30 % дешевле, чем немецкие аналоги: цены начинаются от 5 600 руб. за панели на 100 Вт. Панели данного производителя имеют КПД до 20–21 %. Основной «фишкой» данного предприятия стала запатентованная технология изготовления кремниевых пластин диаметром до 15 мм и солнечных модулей на их основе.


Какую батарею от ЗАО «Телеком-СТВ» можно посмотреть? Наиболее популярная модель носит название ТСМ, далее идет маркировка в зависимости от мощности: от 15 до 230 Вт (цена указана приблизительно).

Модель Мощность, Вт Габариты, мм Вес, кг Цена, руб.
ТСМ-15 18 430 × 232 × 43 1,45 от 3 500
ТСМ-40 44 620 × 540 × 43 4,05 от 6 000
ТСМ-50 48 620 × 540 × 43 4,05 от 6 575
ТСМ-80А 80 773 × 676 × 43 6,7 от 8 500
ТСМ-80B 80 773 × 676 × 43 6,7 от 9 000
ТСМ-95А 98 1 183 × 563 × 43 7,9 от 10 750
ТСМ-95В 98 1 183 × 563 × 43 7,9 от 11 000
ТСМ-110А 115 1 050 × 665 × 43 8,8 от 12 500
ТСМ-110В 115 1 050 × 665 × 43 8,8 от 12 800
..
ТСМ-270А 270 1 633 × 996 × 43 18,5 от 23 370

Основной тип производимых панелей – монокристаллические, хотя каждая модель также может быть представлена в виде мульти (поли-) кристаллической. Каждый вид имеет свои преимущества и недостатки (см. таблицу).

Выбор, конечно, ограничивается возможностями бюджета, поэтому продолжим обзор других недорогих и надежных устройств от российских производителей.

2. Hevel – завод в Чувашии

Одним из крупнейших производителей солнечных панелей в России является компания «Хевел» . В 2017 году компания провела модернизацию производства и перешла с тонкопленочной на новую гетероструктурную технологию изготовления солнечных модулей. Модули нового поколения сочетают в себе преимущества тонкопленочной и кристаллической технологий, обеспечивают эффективную работу модуля при высоких и низких температурах (от -50 °С до +85°С), а также в условиях рассеянного света. Средний КПД солнечного модуля составляет 20%. По этому показателю модули ГК «Хевел» входят в мировую тройку лидеров. Срок службы модуля составляет не менее 25 лет.


Какую батарею от Hevel можно посмотреть для примера? Вот таблица с параметрами наиболее популярного гетероструктурного модуля:

3. Рязанский ЗМКП

Рязанский завод металлокерамических приборов функционирует с 1963 года, однако с 2002 года перешел на систему международного контроля качества ISO 9001 и выпускает панели строго в соответствии с ее требованиями, а также с нормами ГОСТ 12.2.007-75.

В прейскуранте компании можно найти две актуальные модели RZMP мощностью 130 и 220 Вт. Их КПД варьируется от 12 до 17,1 %. Наносятся солнечные элементы на окрашенную алюминиевую основу методом последовательного соединения. Вот их сравнительные характеристики:

RZMP 130-Т подходит для автономного снабжения отдельных помещений, бытовых приборов (например, нагревательный котел). Более мощная модель, от 220 до 240 Вт, покупается чаще для резервного снабжения всего дома. Ее стоимость варьируется от 13 200 до 14 400 руб. за модуль.

4. Краснодарский «Сатурн»

Панели кубанского производства выпускаются с 1971 года, за этот период предприятие выпустило более 20 000 квадратных метров продукции. «Сатурн» использует две собственно освоенных технологии производства – на основе монокристаллического выращенного кремния или арсенид-галлиевые с германиевой подложкой. Последние показывают максимально высокие характеристики и используются для снабжения ответственных объектов (АЗС, предприятия непрерывного цикла и т. д.)


Оба типа модулей можно выполнить на любом каркасе, от сетки и пленки до металлических (из анодированного алюминия) и струнных типов. Фотоэлектрические преобразователи могут быть:

  • с полированной поверхностью;
  • со встроенными диодами;
  • с алюминиевым зеркалом.

Вот основные энергетические характеристики ФЭП «Сатурн», в зависимости от типа:

Эти характеристики актуальны для носителей любых размеров: на предприятии «Сатурн» можно заказать как сборные модули на крышу коттеджа, так и миниатюрные солнечные панели для датчиков, преобразователей, изделий электротехники, а также аккумуляторные батареи. По прайсам вас сориентируют только в отделе продаж.

5. «Солнечный ветер» (Solar Wind)

Это предприятие расположено в Украине. В России существует аналогичное предприятие, которое выступает скорее в роли инвестора и реализатора. Solar Wind выпускает солнечные модули мощностью от 1 до 15 кВт/ч. В зависимости от назначения и мощности в модуль может входить от пары до нескольких десятков батарей. Так, батарея 1 000 Вт включает 5 модулей, один контроллер заряда на 30 А, аккумулятор 150 А/ч (2 шт. в наборе) и инвертор 1 200 В. Срок службы батареи составляет до 18 лет.


Совет: если вы покупаете оборудование Solar Wind для круглогодичного обеспечения жилого дома энергией, стоит брать не менее 10 кВт/ч.

Чтобы получить представление о возможностях фотоэлектрических систем «Солнечный ветер» (Украина) мощностью от 1 000 до 15 000 Вт, предлагаем сравнительную таблицу из расчета на 1 день потребления.

Мощность модуля, кВт/ч 1 3 5 10 15
Пример снабжения питанием различных систем (суммарно)
Лампочка (энергосберегающая, при работе 4 часа в день) 4 шт. по 11 Вт 10 шт. по 15 Вт 10 шт. по 20 Вт 20 шт. по 20 Вт 40 шт. по 20 Вт
Кондиционер Не хватит Не хватит Не хватит 1 час в день 3 часа в день
Ноутбук питанием 40 Вт/ч 4 часа 4 часа 4 часа 4 часа 4 часа
ТВ 50 Вт/ч, 3 часа в день 50 Вт/ч, 4 часа в день 150 Вт/ч, 4 часа в день 150 Вт/ч, 3 часа в день 150 Вт/ч, 4 часа в день
Антенна спутникового ТВ, 20 Вт/ч 3 часа в день 4 часа в день 4 часа в день 3 часа в день 3 часа в день
Холодильник Не хватит 100 Вт/ч, 24 часа в день 10 Вт/ч, 24 часа в день 150 Вт/ч, 24 часа в день 150 Вт/ч, 24 часа в день
Стиральная машина Не хватит 900 Вт/ч, 40 мин в день 900 Вт/ч, 1 час в день 1 500 Вт/ч, 1 час в день 1 500 Вт/ч, 1 час в день
Пылесос, 900 Вт/ч Не хватит Не хватит 2 раза в неделю по 1 часу 2 раза в неделю по 1 часу 2 раза в неделю по 1 часу

6. Солнечные батареи «Квант»

НПП «Квант» первым предложило производство кремниевых солнечных батарей с 2-сторонней чувствительностью, а также монокристаллы арсенида галлия. Наиболее популярной моделью сегодня выступает «Квант КСМ» и ее модификация КСМ-180П. Стоимость такой батареи не превышает 18 000 руб., срок службы достигает 40 лет.


Однако приведем характеристики всех модулей. Их можно заказать как в моно-, так и в поликристалической вариации. Удельная энергетическая характеристика выше у монокристаллических панелей и достигает 200 Вт/кв.м. По сравнению с зарубежными аналогами «Квант» оптимален за счет низкой цены и относительно небольшого уменьшения КПД на протяжении всего срока службы.

Характеристика КСМ-80 КСМ-90 КСМ-100 КСМ-180 КСМ-190 КСМ-205
Мощность номинальная, Вт 80–85 90–95 98–103 180–185 190–195 205–210
Ток короткого замыкания, А 5,4–5,6 5,5–5,7 5,8–5,9 5,4–5,6 5,5–5,9 5,6–6,1
Напряжение холостого хода, В 21,2–21,5 22,2–22,4 22,8–23,0 34,8–36,6 35,1–37,2 35,9–37,8
Количество солнечных элементов 36 36 36 72 72 72
Габариты, мм 1210 × 547 × 35 1210 × 547 × 35 1210 × 547 × 35 1586 × 806 × 35 1586 × 806 × 35 1586 × 806 × 35
Коммутационная коробка, TUV IP66 IP66 IP66 IP66 IP66 IP66
Масса, кг 8,5 8,5 8,5 16 16 16
КПД, % 17,5 18,3 18,7 17,8 18,4 19,0

7. Sun Power – портативные солнечные панели

Компания Sun Power расположена в Украине и большей частью прославилась выпускаемыми перевозными солнечными комплексами. С их помощью можно получить электричество даже в походных условиях. Эти комплексы отличаются своей мобильностью, небольшими размерами и портативностью. Имеют выход USB и обладают мощностью до 500 Вт.


Другие характеристики портативных панелей Sun Power:

  • срок службы – до 30 лет;
  • имеет международную сертификацию CE RoHC;
  • новое поколение панелей может быть также интегрировано в фасад или крышу без потери эстетики.

Удобно использовать подобные решения в автономном освещении билбордов, дорог и участков, питании кемпингов и трейлеров, яхт и катеров.

8. «Квазар» – еще один украинский производитель

Компания «Квазар» выпускает широкий ассортимент фотовольтаического оборудования, в том числе солнечные панели и зарядные устройства. Солнечные батареи Kvazar изготавливаются из кремниевых кристаллов, выращенных на предприятии, и имеют усиленную алюминиевую базу. Гарантия качества, которая выдается производителем, немного настораживает – всего 10 лет. Однако электролюминесцентные и другие лабораторные тестирования подтверждают более длительный срок службы – до 25 лет.

Наш выбор: панели — KV175-200/24 M (монокристаллические), KV220-255M (также моно), KV210-240Р (вариант поли), в маркировке цифры указывают на мощность устройства.

Цена батарей – от 13 000 руб. (приблизительно) за 150 Вт. Кроме гелиопанелей «Квазар» выпускает фотоэлектрические преобразователи ячейками от 4 × 4 до 6 × 6 дюймов с КПД до 18,7 %.

9. ООО «Витасвет»

Московское предприятие ООО «Витасвет» выпускает одну базовую модель SSI-LS200 P3 в четырех вариациях мощности: от 225 до 240 Вт. Каждый модуль состоит из 60 кремниевых пластин типа мультикристалл и крепится на алюминиевый профиль.

Вот их основные параметры, полученные при испытаниях в нормальных условиях 800 Вт/кв.м:

Мощность батареи, Вт 225 230 235 240
Макс. напряжение, В 29,6 29,7 29,8 30,2
Ток короткого замыкания, А 8,1 8,34 8,41 8,44
КПД, % 13,5 13,8 14,1 14,5

Стоимость – 12 800 руб. за панель мощностью 240 Вт.

10. Завод «Термотрон» (г. Брянск)

Предприятие «Термотрон» производит автономные системы уличного освещения на солнечных батареях и мини-автономные солнечные станции. Первые поставляются на базе серийных модулей с высокой столбовой опорой.


Особенности автономных систем уличного освещения от «Термотрона»:

  • температурный диапазон эксплуатации – -40…+50 °C;
  • угол раскрытия луча – 135 на 90 градусов;
  • гарантированный срок работы – 12 лет в городских условиях;
  • высота опоры – от 6 до 11 м;
  • мощность – от 30 до 160 Вт.

Автономная станция «Экотерм», выпускаемая заводом, будет интересна владельцам загородных домов и участков. Ее применяют также на фермах, телефонных станциях, для оснащения сельских школ, больниц, магазинов. Станция работает от дизель-генератора 14,5 кВт. Цена вырабатываемой энергии при количестве 18 фотоперерабатывающих элементов – 5,12 руб./кВт, срок окупаемости – до 5 лет (цену станции уточнять у производителя).

Заключение


Мы провели обзор нескольких ведущих предприятий так называемой фотоэнергетики России и Украины, который, надеемся, даст первичное представление о целесообразности применения солнечных батарей и позволит принять верное решение. Это не все бренды, однако наиболее популярные и доступные в продаже таковы.

(Пока оценок нет)

Человечество стремится перейти на альтернативные источники электрического снабжения, которые помогут сохранить чистоту окружающей среды и сократить затраты на выработку энергии. Производство является современным индустриальным методом. включает в себя приемники солнечного света, аккумуляторы, контролирующие устройства, инверторы и другие приборы, предназначенные для определенных функций.

Солнечная батарея является главным элементом, с которого начинается накопление и лучей. В современном мире для потребителя при выборе панели существует много подводных камней, так как промышленность предлагает большое число изделий, объединенных под одним названием.

Кремниевые солнечные батареи

Эти изделия популярны у современных потребителей. В основу их изготовления положен кремний. Запасы его в недрах широко распространены, добыча сравнительно недорогая. Кремниевые элементы выгодно отличаются уровнем производительности от других батарей солнечного света.

Виды элементов

Производство из кремния ведется следующих типов:

  • монокристаллический;
  • поликристаллический;
  • аморфный.

Различаются вышеназванные формы устройств тем, как компонуются кремниевые атомы в кристалле. Основным отличием элементов становится различный показатель преобразования световой энергии, который у двух первых видов находится приблизительно на одном уровне и превышает значения у приборов из аморфного кремния.

Промышленность сегодняшнего дня предлагает несколько моделей солнечных уловителей света. Отличие их состоит в том, какое применяется оборудование для производства солнечных батарей. Играет роль технология изготовления и разновидность начального материала.

Монокристаллический тип

Эти элементы состоят из силиконовых ячеек, скрепленных между собой. По способу ученого Чохральского производится абсолютно чистый кремний, из которого изготавливают монокристаллы. Следующим процессом является разрезание застывшего и затвердевшего полуфабриката на пластины толщиной от 250 до 300 мкм. Тонкие слои насыщают металлической сеткой электродов. Несмотря на дороговизну производства, такие элементы применяют достаточно широко из-за высокого показателя преобразования (17-22%).

Изготовление поликристаллических элементов

Солнечных батарей из поликристаллов состоит в том, что расплавленная кремниевая масса постепенно охлаждается. Производство не требует дорогого оборудования, следовательно, затраты на получение кремния снижены. Поликристаллические солнечные накопители имеют меньший коэффициент эффективности (11-18%), в отличие от монокристаллических. Это объясняется тем, что в процессе остывания масса кремния насыщается мельчайшими зернистыми пузырьками, что приводит к дополнительному преломлению лучей.

Элементы из аморфного кремния

Изделия относят к особому типу, так как их принадлежность к кремниевому виду исходит от наименования используемого материала, а производство солнечных батарей выполняется по технологии пленочных приборов. Кристалл в процессе изготовления уступает место кремниевому водороду или силону, тонкий слой которых покрывает подложку. Батареи имеют самое низкое значение эффективности, всего до 6%. Элементы, несмотря на существенный недостаток, имеют ряд неоспоримых преимуществ, дающих им право стоять в ряду с вышеназванными типами:

  • значение поглощения оптики выше в два десятка раз, чем у монокристаллических и поликристаллических накопителей;
  • имеет минимальную толщину слоя, всего 1 мкм;
  • пасмурная погода не влияет на работу по преобразованию света, в отличие от других видов;
  • из-за высокого показателя прочности на изгиб без проблем применяется в трудных местах.

Три вышеописанных вида солнечных преобразователей дополняются гибридными изделиями из материалов с двойственными свойствами. Такие характеристики достигаются, если в аморфный кремний включаются микроэлементы или наночастицы. Полученный материал схож с поликристаллическим кремнием, но выгодно отличается от него новыми техническими показателями.

Сырье для производства солнечных батарей пленочного типа из CdTe

Выбор материала диктуется потребностью в уменьшении стоимости изготовления и повышении технических характеристик в работе. Наиболее часто применяется светопоглощающий теллурид кадмия. В 70-е годы прошлого столетия CdTe считался основным претендентом на космическое использование, в современной промышленности он нашел широкое применение в энергетике солнечного света.

Этот материал относят к категории кумулятивных ядов, поэтому не стихают прения по вопросу его вредности. Исследования ученых установили тот факт, что уровень вредного вещества, поступающего в атмосферу, является допустимым и не наносит вреда экологии. Уровень КПД составляет всего 11%, но стоимость преобразуемой электроэнергии от таких элементов ниже на 20-30%, чем от приборов кремниевого вида.

Накопители лучей из селена, меди и индия

Полупроводниками в приборе служат медь, селен и индий, иногда допускается замещение последнего на галлий. Это объясняется высокой востребованностью индия для производства мониторов плоского типа. Поэтому выбран этот вариант замещения, так как материалы имеют похожие свойства. Но для показателя КПД замена играет существенную роль, производство солнечной батареи без галлия повышает эффективность работы устройства на 14%.

Солнечные уловители на полимерной основе

Эти элементы относят к молодым технологиям, так как они недавно появились на рынке. Полупроводники из органики поглощают свет для преобразования его в электрическую энергию. Для производства применяют фуллерены углеродной группы, полифенилен, меди фталоцианин и др. В результате получают тонкие (100 нм) и гибкие пленки, которые в работе выдают коэффициент эффективности 5-7%. Величина небольшая, но производство гибких солнечных батарей имеет несколько положительных моментов:

  • для изготовления не затрачиваются большие средства;
  • возможность установки гибких батарей в местах изгибов, где эластичность имеет первоочередное значение;
  • сравнительная легкость и доступность установки;
  • гибкие батареи не оказывают вредного воздействия на окружающую среду.

Химическое травление в процессе производства

Самой дорогой в солнечной батарее является мультикристаллическая или монокристаллическая пластина из кремния. Для максимально рационального режут псевдоквадратные фигуры, эта же форма позволяет плотно уложить пластины в будущем модуле. После процесса резки на поверхности остаются микроскопические слои нарушенной поверхности, которые убираются при помощи травления и текстурирования, чтобы улучшить прием падающих лучей.

Обработанная подобным способом поверхность представляет собой хаотично расположенные микропирамиды, отражаясь от грани которых, свет попадает на боковые поверхности других выступов. Процедура рыхления текстуры понижает отражающую способность материала приблизительно на 25%. В процессе травления применяют серию кислотных и щелочных обработок, но недопустимо сильно уменьшать толщину слоя, так как пластина не выдерживает следующие обработки.

Полупроводники в солнечных батареях

Технология производства солнечных батарей предполагает, что основным понятием твердой электроники является p-n-переход. Если в одной пластине совместить электронную проводимость n-типа и дырочную проводимость p-типа, то в месте соприкосновения их возникает p-n-переход. Основным физическим свойством указанного определения становится возможность служить барьером и пропускать электричество в одном направлении. Именно такой эффект позволяет наладить полноценную работу солнечных элементов.

В результате проведения фосфорной диффузии на торцах пластины складывается слой n-типа, который базируется у поверхности элемента на глубине всего 0,5 мкм. Производство солнечной батареи предусматривает неглубокое проникновение носителей противоположных знаков, которые возникают под действием света. Их путь в зону влияния p-n-перехода должен быть коротким, иначе они могут при встрече погасить один другого, при этом не сгенерировав никакого количества электричества.

Использование плазмохимического травления

В конструкции солнечной батареи предусмотрены лицевая поверхность с установленной решеткой для съемки тока и тыльная сторона, представляющая собой сплошной контакт. Во время явления диффузии возникает электрическое замыкание между двумя плоскостями и передается на торец.

Чтобы удалить замыкание, применяется оборудование для солнечных батарей, позволяющее сделать это с помощью плазмохимического, химического травления или механическим, лазерным путем. Часто используется метод плазмохимического воздействия. Травление выполняется одновременно для стопки сложенных вместе пластин кремния. Исход процесса зависит от длительности обработки, состава средства, размера квадратов материала, направления струй ионного потока и других факторов.

Нанесение антиотражающего покрытия

При помощи нанесения текстуры на поверхности элемента снижается отражение до 11%. Это обозначает, что десятая часть лучей попросту отражается от поверхности и не принимает участия в образовании электричества. С целью уменьшения таких потерь на лицевую сторону элемента наносят покрытие с глубоким проникновением световых импульсов, не отражающее их обратно. Ученые, принимая во внимание законы оптики, определяют состав и толщину слоя, поэтому производство и установка солнечных батарей с таким покрытием уменьшают отражение до 2%.

Контактная металлизация с лицевой стороны

Поверхность элемента предназначена для поглощения наибольшего количества излучения, именно этим требованием определяются размерные и технические характеристики наносимой металлической сетки. Выбирая дизайн лицевой стороны, инженеры решают две противоположные проблемы. Снижение оптических потерь происходит при более тонких линиях и расположении их на большом расстоянии одна от другой. Производство солнечной батареи с увеличенными размерами сетки приводит к тому, что часть зарядов не успевает достичь контакта и теряется.

Поэтому учеными стандартизировано значение расстояния и толщины линии для каждого металла. Слишком тонкие полоски открывают пространство на поверхности элемента для поглощения лучей, но не проводят сильный ток. Современные методы нанесения металлизации состоят в трафаретном печатании. В качестве материала наиболее оправдывает себя серебросодержащая паста. За счет ее применения КПД элемента поднимается на 15-17%.

Металлизация на тыльной стороне прибора

Нанесение металла на тыльную сторону устройства происходит по двум схемам, каждая из которых выполняет собственную работу. Сплошным тонким слоем по всей поверхности, кроме отдельных отверстий, напыляют алюминий, а отверстия заполняют серебросодержащей пастой, играющей контактную роль. Сплошной алюминиевый слой служит своеобразным зеркальным устройством с тыльной стороны для свободных зарядов, которые могут потеряться в оборванных кристаллических связях решетки. С таким покрытием на 2% больше по мощности работают солнечные батареи. Отзывы потребителей говорят, что такие элементы более долговечны и не так сильно зависят от пасмурной погоды.

Изготовление солнечных батарей своими руками

Источники питания от солнца не каждый может заказать и установить у себя дома, так как их стоимость на сегодняшний день достаточно велика. Поэтому многие мастера и умельцы осваивают производство солнечных батарей дома.

Приобрести комплекты фотоэлементов для самостоятельной сборки можно в интернете на различных сайтах. Стоимость их зависит от количества применяемых пластин и мощности. Например, небольшой мощности комплекты, от 63 до 76 Вт с 36 пластинами, стоят 2350-2560 руб. соответственно. Здесь же приобретают рабочие элементы, отбракованные с производственных линий по каким-либо причинам.

При выборе типа фотоэлектрического преобразователя принимают во внимание тот факт, что поликристаллические элементы более устойчивы к пасмурной погоде и работают при ней эффективнее монокристаллических, но имеют меньший срок службы. Монокристаллические обладают более высоким КПД в солнечную погоду, и прослужат они гораздо дольше.

Чтобы организовать производство солнечных батарей в домашних условиях, нужно подсчитать общую нагрузку всех приборов, которые будут питаться от будущего преобразователя, и определиться с мощностью устройства. Отсюда вытекает количество фотоэлементов, при этом учитывают угол наклона панели. Некоторые мастера предусматривают возможность изменения положения накопительной плоскости в зависимости от высоты солнцестояния, а зимой - от толщины выпавшего снега.

Для изготовления корпуса применяют различные материалы. Чаще всего ставят алюминиевые или нержавеющие уголки, используют фанеру, ДСП и др. Прозрачная часть выполняется из органического или обыкновенного стекла. В продаже есть фотоэлементы с уже припаянными проводниками, такие покупать предпочтительнее, так как упрощается задача сборки. Пластины не складывают одну на другую - нижние могут дать микротрещины. Припой и флюс наносятся предварительно. Паять элементы удобнее, расположив их сразу на рабочей стороне. В конце крайние пластины приваривают к шинам (более широким проводникам), после этого выводят "минус" и "плюс".

После проделанной работы тестируют панель и герметизируют. Зарубежные мастера для этого используют компаунды, но для наших умельцев они стоят довольно дорого. Самодельные преобразователи герметизируют силиконом, а тыльную сторону покрывают лаком на основе акрила.

В заключение следует сказать, что отзывы мастеров, которые сделали всегда положительные. Однажды затратив средства на изготовление и установку преобразователя, семья очень быстро их окупает и начинает экономить, используя бесплатную энергию.

Выгода солнечной энергетики очевидна, об этом сказано уже весьма много и сомнений в этом не осталось. Именно по этой причине многие люди уже сегодня установили на своих домах панели, в то время как другие только мечтают об этом. Солнечные батареи – это, безусловно, выгодно, однако такие устройства имеют достаточно высокую стоимость, из-за чего далеко не каждый может позволить себе такую роскошь. Благодаря этому многие задаются вопросом, - как сделать солнечную батарею своими руками, возможно ли это, и что для этого необходимо?

Ответ – конечно же, это вполне реально. Причем на сегодняшний день существует несколько способов, которые помогут вам изготовить солнечные батареи своими руками. Выбор метода зависит от того, какая производительность вам нужна.

1. Подготовка исходных материалов

  • Элементы, изготовленные из поликристаллического кремния;
  • Монокристаллические фотоэлементы.

Первый вариант обладает более низким уровнем коэффициента полезного действия (КПД), который составляет около 7-9%. Однако панели, состоящие из таких элементов, не теряют эффективности, даже в пасмурную погоду. Они практически одинаково продуктивны как в солнечные дни, так и в дождливую погоду.

Монокристаллические панели в свою очередь имеют более высокий уровень КПД, который составляет около 13%. Однако они более эффективны только при условии солнечной погоды, а случае облачности или затемнения их производительно достаточно сильно уменьшается. Благодаря таким особенностям, наиболее часто для того, чтобы получилась достаточно мощная самодельная солнечная батарея, которая будет одинаково эффективная при любых погодных условиях, используются именно поликристаллические фотоэлементы.

Настоятельно рекомендуется приобретать фотоэлементы от одного производителя. Это объясняется тем, что устройства разных марок вполне могут иметь отличия по эффективности, что в свою очередь создает дополнительные трудности в момент определения общей мощности батареи. Помимо этого, расчетный период работы элементов также может иметь отличия.

Самым простым и распространенным на сегодняшний день методом приобретения необходимых элементов являются аукционы типа еВау. Здесь можно приобрести уже готовые наборы фотоячеек, при этом они будут иметь вполне приемлемую стоимость . Для того чтобы собрать солнечные батареи для дома своими руками из имеющихся подручных материалов, вам потребуются специальные проводники, которыми фотоэлементы соединяются между собой. Помимо этого потребуются паяльник и приспособления для пайки.

Вполне возможно приобрести немного поврежденные фотоячейки, так как они абсолютно не теряют производительности, но при этом имеют гораздо более низкую стоимость. Конечно же, такие элементы имеют менее эстетичный вид.

Для изготовления корпуса батареи наиболее подходящим материалом являются алюминиевые уголки, которые имеют небольшую высоту. Конечно, вполне возможно сделать солнечные батареи своими руками из подручных средств, не покупая уголки, а используя, к примеру, деревянные бруски. Однако стоит понимать, что самодельные солнечные батареи будут постоянно использоваться, а значит, подвергаться различным погодным условиям. Дерево при этом может крайне быстро испортиться, благодаря чему придется переделывать корпус.

Размеры солнечной батареи зависят от количества фотоэлементов, которые будут использоваться. Внешнее защитное покрытие панели должно быть прозрачным и при этом достаточно прочным и долговечным. В качестве такого покрытия лучше всего использовать оргстекло либо поликарбонат. Можно, конечно, использовать и прочное закаленное стекло, однако с такими панелями стоит быть более аккуратным. Также, будет лучше, если эта защита не будет пропускать инфракрасные лучи, так как благодаря такой защите уменьшается нагрев панели во время использования.

2. Пайка проводников

После того, как вы приобрели все необходимые материалы, можно переходить к выполнению сборки самодельной солнечной батареи. В первую очередь, вам нужно припаять проводники к фотоэлементам. Данный процесс является весьма трудоемким и потребует от вас определенного терпения и аккуратности. В процессе пайки могут возникнуть некоторые трудности, связанные с хрупкостью структуры фотоячеек. Гораздо проще будет купить элементы, которые уже имеют припаянные проводники, однако, даже при самостоятельной пайке, в скором времени вы ”набьете” руку и с легкостью справитесь с этой задачей. К тому же, уже паяные фотоэлементы могут иметь более высокую стоимость.

В том случае, если вы планируете осуществлять пайку проводников самостоятельно, вам нужно знать следующий порядок действий:

  • Первым делом следует нарезать имеющиеся проводники на необходимую длину (более удобно делать это по картонному шаблону);
  • Далее нужно аккуратно поместить на фотоэлемент вырезанный проводник;
  • После этого следует нанести паяльную кислоту, а также припой на то место, где будет выполняться пайка;
  • Аккуратно и внимательно провести пайку проводника. При этом ни в коем случае не следует нажимать на кристалл. Пайка делается легко и быстро. Это придет с опытом.

Данный процесс не является быстрым, из-за чего изготавливая самодельные солнечные батареи для дома, вам потребуется некоторое количество времени, а также терпения.

3. Сборка корпуса и установка фотоэлементов

Как уже говорилось, для изготовления рамы, имеющей требуемый размер, необходимы алюминиевые уголки, а также крепежные материалы (метизы). Лучше всего брать уголки с низкой высотой, так как в противном случае они будут закрывать Солнце, и создавать тень на фотоячейках. Помимо этого, используя слишком высокие уголки, у вас получится неоправданно широкий корпус для панели.

На внутренние грани скрепленных профилей необходимо нанести силиконовый герметик. Это необходимо для того, чтобы самодельная солнечная батарея была герметичной. На нанесенный герметик следует уложить вырезанный по размерам лист оргстекла, плотно прижимая его и фиксируя. После того, как герметик высохнет, оргстекло можно дополнительно зафиксировать метизами.

После выполнения вышеперечисленных действий необходимо разместить на внутренней плоскости прозрачного листа фотоэлементы с припаянными проводниками. При этом между ячейками необходимо выдерживать небольшое расстояние (около 5 мм). Это объясняется тем, что элементы в процессе использования могут расширяться под воздействием температуры. К тому же, благодаря этим отступам исключается возможность нарушения контактов. Для того чтобы солнечная батарея для дома своими руками была правильно собрана, к данному процессу необходимо подходить со всей внимательностью. Помимо этого, для облегчения работы можно предварительно разметить подложку.

4. Объединение фотоэлементов в единую систему

Спаивать все фотоячейки в одну систему необходимо соблюдая электрическую схему. На сегодняшний день известно несколько схем:

  • Последовательное соединение;
  • Соединение с общей шиной;
  • Соединение с выведенной средней точкой.

Также существуют и другие схемы, поэтому, лучше всего предварительно выбрать наиболее подходящий вариант. При этом главное, чтобы в схеме присутствовали шунтирующие диоды, которые необходимо устанавливать на общем ”+” проводнике. Эти диоды требуются для того, чтобы исключить разрядку устройства в темное время суток либо при частичном затемнении. Для этих целей лучше всего использовать диоды Шоттки. В качестве токовыводящих проводов можно использовать обычные кабели, имеющие силиконовую изоляцию. Конечно же, их необходимо надежно и прочно закрепить.

После объединения фотоэлементов по выбранной схеме полученную солнечную батарею необходимо протестировать на силу тока и напряжение. Для этого понадобится обычный амперметр и вольтметр, либо мультиметр, который имеет обе эти функции. Если проверка пройдена успешно, то значит, что соединение элементов выполнено правильно и все контакты целы.

После проверки следует зафиксировать все фотоячейки и выполнить герметизацию панели. Самый легкий способ заключается в нанесении на каждый элемент монтажный силикон, после чего устройство необходимо закрыть панелью, которая может быть изготовлена из прочного пластика. При этом если использовать прозрачный пластик, то у вас будет возможность следить за возможным появлением дефектов либо трещин в элементах. После того как силикон высохнет, заднюю панель необходимо зафиксировать в предварительно изготовленной алюминиевой раме. Все швы конструкции также необходимо загерметизировать при помощи силикона. Для фиксации фотоячеек можно использовать и двухстороннюю липкую ленту. Главное правило заключается в том, чтобы толщина этой ленты (либо слоя силикона) превышала высоту пайки. Это поможет избежать повреждения контактов.

5. Солнечная батарея своими руками из транзисторов

На сегодняшний день существует возможность сделать солнечную батарею своими руками, не используя покупные фотоэлементы. К примеру, ее можно изготовить из транзисторов либо диодов. Конечно, из этих материалов невозможно сделать солнечную батарею, которая сможет обеспечить энергией целый дом, однако такое устройство вполне способно питать небольшие и компактные электроприборы.

Итак, как сделать самодельную солнечную батарею? Весьма просто. Для изготовления самодельной панели вам потребуются старые транзисторы, лучше всего взять устройства типов ”П” либо ”КТ”. В первую очередь необходимо предельно аккуратно спилить верхнюю часть корпуса таким образом, чтобы солнечный свет смог попадать на р-n переходы. В случае использования транзисторов ”П”, из него дополнительно потребуется высыпать порошок и продуть внутреннюю часть.

Далее, полученные фотоэлементы необходимо объединить в блоки. Соединение проводится последовательно – для повышения напряжения, и параллельно – для повышения силы тока. Соединяя таким образом транзисторы, вполне возможно создать солнечную батарею своими руками, которая будет иметь необходимые параметры. Фиксировать такие элементы удобно на текстолитовой подложке путем навесной установки.

Помимо этого, возможно собрать гелиобатарею из диодов, к примеру Д223Б. При этом их даже не нужно разбирать, вполне достаточно просто стереть краску при помощи ацетона. Под краской вы обнаружите стеклянный корпус. Благодаря маленьким размерам таких диодов достигается высокая плотность установки элементов. Впаивать диоды в подложку необходимо вертикально, так как это позволит достичь максимальной освещенности кристалла, а, следовательно, и предельной производительности.

6. Солнечная батарея своими руками: Видео

Солнечные батареи - источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?

Другое дело, когда сделана солнечная батарея своими руками - затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.

В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

Галерея изображений

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте .

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.

Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

По соотношению стоимости к показателям преломления света и поглощения ИК-излучения оргстекло – самый оптимальный вариант для изготовления гелиобатареи

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка . Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).

Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.

Каркас для гелиобатареи готов и можно приступать к самой ответственной части – монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.

Шаг #3 – монтаж кремниевых пластин-фотоэлементов

Монтаж и пайка кремниевых пластин – самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.

Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.

  1. Производим пайку фотоэлементов по следующей электросхеме: “+” дорожки расположены на лицевой стороне пластины, “-” – на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
  2. Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
  3. Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
  4. Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
  5. Контакты крайних фотоэлементов выводим на шину, соответственно “+” и “-“. Для шины рекомендуется использовать более широкий проводник из серебра.
  6. Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
  7. В дне каркаса сверлим отверстия для вывода проводов наружу.

Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.

Галерея изображений

Шаг #4 – тестирование батареи перед герметизацией

Тестирование солнечной панели необходимо проводить до её герметизации, чтобы иметь возможность устранить неисправности, которые часто возникают во время пайки. Лучше всего производить тестирование после спайки каждого ряда элементов – так значительно проще обнаружить, где контакты соединены плохо.

Для тестирования вам понадобиться обычный бытовой амперметр. Измерения необходимо проводить в солнечный день в 13-14 часов, солнце не должно быть скрыто облаками.

Выносим батарею на улицу и устанавливаем в соответствии с ранее рассчитанным углом наклона. Амперметр подключаем к контактам батареи и проводим измерение тока короткого замыкания.

Смысл тестирования заключается в том, что рабочая сила электрического тока должна быть на 0,5-1,0 А ниже, чем ток короткого замыкания. Показания прибора должны быть выше 4,5 А, что говорит о работоспособности гелиобатареи.

Если тестер выдаёт меньшие показания, то где-то наверняка нарушена последовательность соединения фотоэлементов.

Шаг #5 – герметизация уложенных в корпус фотоэлементов

Герметизацию можно производить, только убедившись, что батарея работает. Для герметизации лучше всего использовать эпоксидный компаунд, но учитывая, что расход материала будет большой, а стоимость его составляет примерно 40-45 долларов. Если дороговато, то вместо него можно применять всё тот же силиконовый герметик.


Используя силиконовой герметик, отдавайте предпочтения тому, на упаковке которого указано, что он подходит для использования при минусовых температурах

Существует два способа герметизации:

  • полная заливка, когда панели заливаются герметиком;
  • нанесение герметика на пространство между фотоэлементами и на крайние элементы.

В первом случае герметизация будет более надёжной. После заливки герметик должен схватиться. Затем сверху устанавливается оргстекло и плотно прижимается к пластинам, покрытым силиконом.

Для обеспечения амортизации и дополнительной защиты между задней поверхностью фотоэлементов и каркасом из ДСП многие мастера советуют устанавливать прокладку из жёсткого поролона шириной 1,5-2,5 см.

Делать это необязательно, но желательно, учитывая, что кремниевые пластины достаточно хрупкие и легко повреждаются.

После установки оргстекла на конструкцию ставят груз, под действием которого происходит выдавливание пузырьков воздуха. Солнечная батарея готова и после повторного тестирования её можно устанавливать в заранее выбранное место и подключать к гелиосистеме вашего дома.

Выводы и полезное видео по теме

Обзор фотоэлементов, заказанных в китайском интернет-магазине:

Видео-инструкция по изготовлению солнечной батареи:

Сделать солнечную батарею своими руками – не простая задача. КПД большинства таких батарей ниже, чем у панелей промышленного производства на 10-20%. Самое важное при конструировании солнечной батареи – правильно выбрать и установить фотоэлементы.

Не пытайтесь сразу создать огромную по площади панель. Попробуйте сначала соорудить маленький прибор, чтобы понять все нюансы этого процесса.

У вас есть практические навыки создания солнечных батарей? Поделитесь, пожалуйста, своим опытом с посетителями нашего сайта – пишите комментарии в расположенном ниже блоке. Там же можно задать вопросы по теме статьи.

Содержание:

Обеспечение комфортных условий проживания в современных квартирах и частных домах не может обойтись без электрической энергии, потребность в которой постоянно увеличивается. Однако с достаточной регулярностью увеличиваются и цены на этот энергоноситель. Соответственно возрастают и общие затраты на содержание жилья. Поэтому все более актуальной становится солнечная батарея своими руками для частного дома, наряду с другими альтернативными источниками электроэнергии. Данный способ дает возможность сделать объект энергонезависимым в условиях постоянного роста цен и отключений электричества.

Эффективность солнечных батарей

Проблема автономного электроснабжения приборов и оборудования в частных домах рассматривается уже в течение длительного времени. Одним из вариантов альтернативного питания стала солнечная энергия, которая в современных условиях нашла широкое применение на практике. Единственным фактором, вызывающим сомнения и споры, является эффективность солнечных батарей, которая не всегда оправдывает возлагаемые надежды.

Работа солнечных батарей напрямую зависит от количества солнечной энергии. Таким образом, батареи будут наиболее эффективны в регионах, где преобладают солнечные дни. Даже в самом идеальном варианте эффективность батарей составляет всего 40%, а в реальных условиях этот показатель гораздо ниже. Другое условие нормального функционирования заключается в наличии значительных площадей для монтажа автономных солнечных систем. Если для загородного дома это не является серьезной проблемой, то владельцам квартир приходится решать множество дополнительных технических задач.

Устройство и принцип работы

В основе работы солнечных батарей лежит способность фотоэлементов выполнять преобразование солнечной энергии в электрическую. Все вместе они собираются в виде многоячеистого поля, объединенного в общую систему. Действие солнечной энергии превращает каждую ячейку в источник электрического тока, собирающегося и накапливающегося в аккумуляторных батареях. Размеры общей площади такого поля напрямую влияют на мощность всего устройства. То есть с возрастанием числа фотоэлементов, соответственно увеличивается и количество вырабатываемой электроэнергии.

Это вовсе не означает, что необходимое количество электричества может вырабатываться только на очень больших площадях. Существует множество мелких бытовых приборов, использующих солнечную энергию - калькуляторы, фонарики и другие устройства.

В современных загородных домах все более популярными становятся приборы освещения на солнечных батареях. С помощью этих простых и экономичных устройств освещаются садовые дорожки, террасы и другие необходимые места. В темное время суток используется электроэнергия, накопленная днем, когда светит солнце. Использование экономных ламп позволяет расходовать накопленную электроэнергию в течение длительного времени. Решение основных задач энергоснабжения осуществляется с помощью других, более мощных систем, позволяющих вырабатывать достаточное количество электричества.

Основные виды солнечных батарей

Перед тем как приступать к собственноручному изготовлению солнечных батарей, рекомендуется ознакомиться с их основными видами, чтобы выбрать для себя наиболее подходящий вариант.

Все преобразователи солнечной энергии разделяются на пленочные и кремневые, в соответствии с их устройством и конструктивными особенностями. Первый вариант представлен тонкопленочными батареями, где преобразователи выполнены в виде пленки, изготовленной по специальной технологии. Эти конструкции также известны как полимерные. Их можно устанавливать в любые доступные места, однако, они требуют много места и обладают низким коэффициентом полезного действия. Даже средняя облачность способна снизить эффективность пленочных устройств сразу на 20%.

Кремниевые батареи представлены тремя типами:

  • . Конструкция состоит из многочисленных ячеек с встроенными кремневыми преобразователями. Они соединяются в одно целое и заполняются силиконом. Отличаются простотой эксплуатации, легкостью, гибкостью, водонепроницаемостью. Но, чтобы обеспечить эффективную работу таких батарей, требуется действие прямых солнечных лучей. Несмотря на сравнительно высокий КПД - до 22%, при наступлении облачности выработка электроэнергии может значительно снизиться или прекратиться полностью.
  • . По сравнению с монокристаллическими, у них больше преобразователей, размещаемых в ячейках. Их установка выполнена в разных направлениях, что существенно повышает эффективность работы даже при слабом свете. Эти батареи получили наибольшее распространение, особенно в городских условиях.
  • Аморфные. Обладают низкой эффективностью - всего 6%. Однако, они считаются очень перспективными, благодаря способности к поглощению светового потока во много раз больше, чем у первых двух типов.

Все рассмотренные виды солнечных батарей изготавливаются в заводских условиях, поэтому их цена остается пока еще очень высокой. В связи с этим можно попытаться изготовить солнечную батарею самостоятельно, с использованием недорогих материалов.

Выбор материалов и деталей для изготовления солнечной батареи

Поскольку высокая стоимость автономных источников солнечной энергии делает их недоступными для широкого использования, домашние мастера могут попробовать организовать изготовление солнечных батарей своими руками из подручных материалов. Следует помнить, что при изготовлении батареи невозможно обойтись лишь подручными материалами. Обязательно придется покупать заводские детали, пусть даже и не новые.

В состав преобразователя солнечной энергии входит несколько основных элементов. В первую очередь, это сама батарея определенного типа, которая уже была рассмотрена выше. Далее идет контроллер батареи, контролирующий уровень заряда аккумуляторов полученным электрическим током. Следующим элементом являются аккумуляторы, накапливающие электричество. В обязательном порядке потребуется , преобразующий постоянный ток в переменный. Таким образом, все домашние бытовые приборы, рассчитанные на 220 вольт, смогут нормально работать.

Каждый из этих элементов можно свободно приобрести на рынке электроники. Если же имеются определенные теоретические знания и практические навыки, то большую часть из них можно собрать самостоятельно по типовым схемам, в том числе и контроллер солнечной батареи. Для того чтобы рассчитать мощность преобразователя, необходимо знать, с какой целью он будет использоваться. Это может быть только освещение или отопление, а также полное обеспечение потребностей объекта. В связи с этим будут выбираться материалы и комплектующие детали.

При изготовлении солнечной батареи своими руками, нужно определиться не только с мощностью, но и с рабочим напряжением сети. Дело в том, что сети на солнечной энергии могут работать на постоянном или переменном токе. Последний вариант считается более предпочтительным, так как позволяет разносить электроэнергию потребителям на расстояние свыше 15 метров. При использовании поликристаллических батарей, с одного квадратного метра можно получить, в среднем, за один час примерно 120 Вт. То есть, для получения 300 кВт в месяц потребуются солнечные панели общей площадью 20 м2. Именно столько расходует обычная семья в составе 3-4 человек.

В частных домах и на дачах применяются солнечные панели, каждая из которых включает 36 элементов. Мощность одной панели составляет около 65 Вт. В небольшом частном доме или на даче вполне достаточно 15 панелей, способных вырабатывать электрическую мощность до 5 кВт в час. После выполнения предварительных расчетов можно приобретать преобразующие пластины. Допускается приобретение поврежденных элементов с небольшими дефектами, влияющими только на внешний вид батареи. В рабочем состоянии каждый элемент способен выдавать около 19 В.

Изготовление солнечных батарей

После того как все материалы и детали подготовлены, можно начинать сборку преобразователей. При спаивании элементов нужно предусмотреть зазор на расширение между ними в пределах 5 мм. Паять следует очень внимательно и осторожно. Например, при отсутствии проводков у пластинок, их нужно будет напаять вручную. Для работы понадобится паяльник на 60 ватт, к которому последовательно подключена обычная лампа накаливания на 100 Вт.

Все пластины спаиваются последовательно между собой. Пластины отличаются повышенной хрупкостью, поэтому их спаивание рекомендуется производить с использованием каркаса. Во время распайки в схему совместно с фотопластинками вставляются диоды, предохраняющие фотоэлементы от разряда при снижении уровня освещенности или наступлении полной темноты. С этой целью половинки панели объединяются в общей шине, которая в свою очередь выводится на клеммник, за счет чего и происходит создание средней точки. Те же самые диоды предохраняют аккумуляторные батареи от разряда в ночное время.

Одним из основных условий эффективной работы батарей является качественная пайка всех точек и узлов. Перед тем как устанавливать подложку, эти места обязательно тестируются. Для вывода тока рекомендуется использовать проводники с малым сечением, например, акустический кабель в силиконовой изоляции. Все провода закрепляются с помощью герметика. После этого выбирается материал для поверхности, к которой будут прикрепляться пластины. Наиболее подходящими характеристиками обладает стекло, гораздо лучше пропускающее световой поток, чем карбонат или оргстекло.

При изготовление солнечной батареи из подручных средств, необходимо позаботиться и о коробе. Обычно короб изготавливается из деревянного бруса или алюминиевого уголка, после чего в него на герметик укладывается стекло. Герметик должен заполнить все неровности, а затем полностью высохнуть. За счет этого пыль не попадет внутрь, и фотопластинки в процессе эксплуатации не будут загрязняться.

Далее на стекло устанавливается лист с припаянными фотоэлементами. Он может закрепляться разными способами, однако, наиболее оптимальными вариантами считаются прозрачная эпоксидная смола или герметик. Эпоксидной смолой равномерно покрывается вся поверхность стекла, затем на нее устанавливаются преобразователи. При использовании герметика крепление осуществляется точками в центре каждого элемента. По концу сборки должен получиться герметичный корпус, внутри которого размещается солнечная батарея. Готовое устройство будет выдавать примерно 18-19 вольт, что вполне достаточно для зарядки аккумуляторной батареи на 12 вольт.

Возможность домашнего отопления

После того как самодельная солнечная батарея собрана, каждый хозяин наверняка захочет проверить ее в действии. Наиболее важной проблемой считается отопление дома, поэтому в первую очередь проверяются возможности обогрева за счет солнечной энергии.

Для отопления используется гелиоколлекторы. С помощью вакуумного коллектора солнечный свет превращается в тепло. Тонкие стеклянные трубки заполняются жидкостью, которая нагревается от солнца и передает тепло воде, помещенной в бак-накопитель. В нашем случае этот способ не подходит, поскольку речь идет исключительно о преобразовании солнечной энергии в электрическую.

Все зависит от мощности используемого устройства. В любом случае на нагрев воды в бойлере будет уходить большая часть получаемой энергии. Если 100 литров воды нагреть до 70-80 градусов, понадобится примерно 4 часа времени. Потребление электроэнергии водяным котлом с ТЭНами на 2 кВт составит 8 кВт. При вырабатывании электроэнергии 5 кВт в час, никаких проблем не будет. Однако при площади батарей менее 10 м2 отопление частного дома с их помощью становится невозможным.