Что такое температура точка росы. Определение точки росы в стене. Использование бытовых психрометров

Точка росы является своеобразным указателем содержания водяных паров в воздухе. При повышении влажности повышается и значение точки росы (при определенной температуре и давлении). Значение точки росы выражается в градусах. Это температура, при которой достигается максимальное насыщение воздуха водяными парами, если они постоянно содержаться в воздухе при одной и той же температуре.

Точка росы не может превышать температуру воздуха. В результате соприкосновения холодной поверхности и теплого воздуха влажность падает — это явление называют конденсацией .

Получаются капельки влаги, которые могут трансформироваться в туман, иней, облако или дождь. Простейший пример – закипающий на плите чайник, на горячей крышке которого можно видеть капельки влаги. Температура крышки и есть точка росы в данном случае.

Зная температуру точки росы, можно сделать получить представление об относительной влажности воздуха. Если температура точки росы близка к температуре окружающего воздуха — значит влажность высокая (при совпадении получается туман! ).

И напротив, если значения точки росы и температуры сильно расходятся, то можно говорить о низком содержании водяных паров в атмосфере.

Ещё один простой пример можно рассмотреть, когда в теплое помещение с мороза заносят какую-либо вещь. Воздух над ней охлаждается, насыщается водяными парами и на вещи конденсируются капельки воды.

В дальнейшем вещь прогревается до температуры воздуха помещения и конденсат испаряется. Кстати, этим явлением обусловлена рекомендация не включать сразу в сеть бытовые электрические приборы, занесенные с мороза.

Другой, не менее хорошо знакомый пример – запотевание стекол в доме. У многих зимой окна «плачут», на них выпадает конденсат. Необходимо понимать, что на это явление в большей мере влияют два фактора — влажность и температура.

Поэтому, если у вас нормальный стеклопакет и правильно проведено утепление, а конденсат есть, — значит, не всё в порядке с влажностью; возможно плохая вентиляция, вытяжка.

Одно из самых интересных физических явлений — это изменение агрегатного состояния воды, в частности — закипание воды. Читайте более подробную информацию в статье это действительно очень интересно. Уверены, вы найдете здесь немало нового для себя.

Как рассчитать точку росы? ^

Чтобы найти температуру точки росы ранее пользовались громоздкими формулами, Вот одна из них, справедливо работающая при температуре от 0 до +60С . Тр=b((aT/b+T)+lnRH)/a-((aT/b+T)+lnRH); здесь а=17,27, b=237,7, RH – относительная влажность воздуха, выраженная в долях единицы, Ln – натуральный логарифм, Тр – точка росы.

Сейчас можно просто зайти в интернет и на соответствующих сайтах разыскать калькулятор, который покажет температуру точки росы в зависимости от температуры воздуха и давления (обычно берется нормальное атмосферное давление в 762 мм рт.ст.).

Один из «продвинутых» способов расчета точки росы заключается в использовании тепловизоров. Часть моделей имеет такую функцию. На дисплее показывается термограмма, которая наглядно демонстрирует места с температурой ниже точки росы.

Таблица для определения точки росы ^

Более доступный метод – использование бытового психрометра. Это прибор, в котором совмещены два спиртовых термометра. Один из них имеет специальное увлажнение, другой обычный, сухой.

Так как влага испаряется, то термометр с увлажнением охлаждается. Влажность ниже – температура меньше. Значение влажности в 100% означает, что показания обоих термометров сравнялись.

Зная влажность и температуру, отображаемые на дисплее, можно рассчитать точку росы по таблице. Ими пользуются для быстрого расчета. Указывается значение температуры окружающего воздуха, влажности и соответствующее значение точки росы.

А вы знаете, какой должна быть Изучите данную статью, нет ничего более ценного, чем здоровье наших детей!

Все про аквааэробику и ее пользу для похудения вы сможете прочитать , самая важная, актуальная и полезная информация!

Все про лечение с помощью живой и мертвой воды читайте в статье:
, берегите Ваше здоровье!

Как определить точку росы? ^

Правильное определение этого параметра важнейшее значение имеет в строительстве. От правильности расчётов зависит возможность образования конденсата на стенах, который резко снижает долговечность конструкций, а в ряде случаев делает проживание в помещении просто невозможным.

Той или иной влажностью обладает любая стена (если она не из металла). Причина образования конденсата кроется не только в материале самих стен, а в теплоизоляции, от правильного обустройства которой и зависит место образования конденсата. Температура, при которой он выпадает, зависит от:

  • температуры воздуха в помещении;
  • влажности в помещении.

Пользуясь таблицами, можно определить, что если температура, к примеру, в помещении +20С при влажности в 60%, то на любой поверхности, имеющей температуру в 12С и ниже, будет образовываться влага.

При уменьшении влажности до 40% конденсат будет появляться на поверхности, имеющей температуру ниже 6С. То есть, чем ниже влажность, тем точка росы дальше от температуры воздуха в помещении.

Месторасположение точки росы зависит от:

  • наружной влажности;
  • внутренней влажности;
  • температуры внутри и снаружи помещения;
  • толщины стен, утеплителя.

1. Как «ведет» себя точка росы в стене без утеплителя? Возможны несколько вариантов её нахождения:

  • между центром стены (по толщине) и наружной поверхностью: в этом случае внутренняя стена остаётся сухой;
  • между центром стены и внутренней поверхностью: внутренняя поверхность может замокать на несколько дней при резком снижении температуры воздуха в регионе;
  • на поверхности стены внутри помещения: в течение зимнего периода стена будет мокрой.

2. При использовании утеплителя картина будет несколько иной. Место образования конденсата может располагаться (утепление снаружи):

  • внутри утеплителя: это справедливо при верных теплотехнических расчётах, — стена будет сухой, точка рассчитана правильно;
  • в любом месте, описанном выше (п.1): это происходит в случае, если толщина утеплителя выбрана неверно.

3. Внутреннее утепление. В этом случае место образования конденсата сдвигается внутрь помещения; при этом температура под утеплителем понижается. Точка росы может быть:

  • между центром стены и утеплителем или на их границе в случае резкого похолодания;
  • только под утеплителем: стена будет частично мокнуть весь зимний период;
  • внутри утеплителя: он будет мокнуть в течение всего холодного периода.

Как используется точка росы? ^

Зная местоположение точки росы, можно правильно рассчитать толщину утеплителя, не допуская тем самым образования конденсата в нежелательном месте.

Но есть и другой вопрос: в какой ситуации стену утеплять изнутри, а в какой – снаружи? Чтобы ответить на него, необходимо принимать во внимание все факторы, влияющие на точку росы и её положение:

  • климатическая зона;
  • режим проживания (постоянный, временный) в помещении;
  • с чем граничит утепляемая стена (иное помещение или улица);
  • работа вентиляционной системы (в т.ч. вытяжка и правильность расчётов всей системы);
  • качество работы отопительной системы в помещении;
  • материал, толщина стен;
  • температура снаружи и внутри помещения;
  • наружная и внутренняя влажность;
  • утепление всех элементов дома (пол, стены, потолок).

Утепление помещения изнутри возможно, если ситуация выглядит нижеследующим образом:

  • в помещении постоянно проживают;
  • вентиляция функционирует согласно нормативам для данного помещения;
  • так же хорошо работает отопление;
  • все элементы конструкции утеплены в соответствии с требованиями по конкретной климатической зоне;
  • стена, предназначенная для утепления достаточно толстая (в соответствии с климатической зоной): т.е. толщина утеплителя в любом случае не должна превышать 50 мм.

Если говорить уж совсем просто, то всё вышеизложенное можно сформулировать так: чем теплее регион, лучше отопление, вентиляция и толще стена, тем больше вероятность внутреннего утепления стены.

Практика показывает, что в абсолютном большинстве случаев предпочтительнее обустраивать наружное утепление. В этом варианте гораздо больше шансов, что точка росы окажется в нужном месте.

Почему «плачут» окна ^

Существуют конкретные рекомендации по микроклимату в жилом помещении. Это влажность -40-50% и температура +18-23С . Поддержание этих параметров сводит к минимуму возможность образования конденсата на поверхности стекол.

Его появление так же связано с жизнедеятельностью человека (он тоже выделяет влагу!). То есть, в помещении должно находиться столько человек, сколько допускают санитарные нормы.

Повышенная влажность может быть связана и с неправильным воздухообменом. Здесь тоже есть свои нормы: не менее 3-х «кубов» на «квадрат» площади за один час.

Для кухонь эти требования ещё жёстче: от 6-ти до 9-ти «кубов» в час, в зависимости от типа плиты (9 куб. м/час – для газовой ). Поэтому всё зависит от качества вентиляции.

Бывает противоречивая ситуация; в доме сделали капитальный ремонт, поменяли старые окна на стеклопакеты, а в помещениях стала появляться плесень. С чем это связано?

Дело в том, что в ходе полной реконструкции меняют отопление, вместо старых газовых колонок ставят современные котлы, утепляют окна. По большому счёту, возможностей для естественной вентиляции стало меньше.

Если раньше влага из помещения могла выходить через неплотные оконные щели, через вытяжку старой газовой колонки, то теперь такой возможности нет.

Выход один – разработка и установка новой системы вентиляции. Если такой возможности нет, — то просто чаще проветривайте комнаты, кухню.

Эксплуатационные характеристики стеклопакета (коэффициент «К», в частности) имеют значение, но уже вторичное.

Возможные последствия неправильного выбора точки росы ^

Воздух, идущий в холодное время года из теплого помещения наружу, переохлаждается, проявляясь в виде осаждающейся влаги. Поверхностью служит любой материал, имеющий температуру ниже точки росы. В результате при пониженной температуре наружного воздуха стены находятся постоянно во влажном состоянии. Это ведет к образованию плесени, способствует развитию различных микроорганизмов. Впоследствии они могут запросто оказаться во вдыхаемом жильцами воздухе, что приводит к заболеваниям различного рода; например, астме.

Здание с отсыревающими стенами не прослужит долго; процесс разрушения будет неминуемо ускоряться. Пораженные плесенью, грибком дома долго не «живут». Поэтому важно рассчитать правильную точку ещё на стадии проектирования здания. Должен быть правильно выбран:

  • материал стен и их толщина;
  • материал утеплителя, его толщина;
  • способ утепления стен (снаружи, изнутри);
  • вариант системы отопления и вентиляции, обеспечивающий оптимальный микроклимат (18-23С при 40-50% влажности).

Точку росы можно рассчитать самостоятельно. При этом необходимо учитывать климатические особенности региона проживания. Если вы не надеетесь на собственные силы, то можно обратиться в любую серьёзную строительную компанию. Наверняка там будет специалист, занимающийся подобными расчетами.

Видео телеканала «Усадьба» про важность определения точки росы перед началом строительства:

Для того чтобы понять, к каким последствиям приведёт отсутствие вентилируемого зазора в стенах, выполненных из двух и более слоев разных материалов, и всегда ли нужны зазоры в стенах, необходимо напомнить о физических процессах, происходящих в наружной стене в случае разности температур на её внутренней и наружной поверхностях.

Как известно в воздухе всегда содержатся водяные пары. Парциальное давление пара зависит от температуры воздуха. С повышением температуры парциальное давление водяных паров увеличивается.

В холодное время года парциальное давление паров внутри помещения значительно выше, чем снаружи. Под действием разницы давлений водяные пары стремятся попасть изнутри дома в область меньшего давления, т.е. на сторону слоя материала с меньшей температурой — на наружную поверхность стены.

Также известно, что при охлаждении воздуха водяной пар, содержащийся в нём, достигает предельного насыщения, после чего конденсируется в росу.

Точка росы – это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу.

На приведённой диаграмме, Рис.1., представлено максимально возможное содержание водяного пара в воздухе в зависимости от температуры.

Отношение массовой доли водяного пара в воздухе к максимально возможной доле при данной температуре называется относительной влажностью, измеряемой в процентах.

Например, если температура воздуха составляет 20 °С , а влажность – 50%, это означает, что в воздухе содержится 50% того максимального количества воды, которое может там находится.

Как известно строительные материалы обладают разной способностью пропускать содержащиеся в воздухе водяные пары, под действием разности их парциальных давлений. Это свойство материалов называется сопротивление паропроницанию, измеряется в м2*час*Па/мг .

Кратко резюмируя вышесказанное, в зимний период воздушные массы, в состав которых входят водяные пары, будут проходить сквозь паропроницаемую конструкцию внешней стены изнутри наружу.

Температура воздушной массы будет уменьшаться по мере приближения к внешней поверхности стены.

В сухой стене — пароизоляция и вентилируемый зазор

Точка росы в правильно спроектированной стене без утеплителя окажется в толще стены, ближе к наружной поверхности, где пар будет конденсироваться и увлажнять стену.

Зимой, в результате превращения пара в воду на границе конденсации, наружная поверхность стены будет накапливать влагу.

В теплое время года эта накопленная влага должна иметь возможность испариться.

Необходимо обеспечивать смещение баланса между количеством поступающих в стену паров изнутри помещения и испарением из стены накопившейся влаги в сторону испарения.

Баланс влагонакопления в стене можно смещать в сторону удаления влаги двумя путями:

  1. Уменьшать паропроницаемость внутренних слоев стены, сокращая тем самым количество пара в стене.
  2. И (или) увеличивать испарительную способность наружной поверхности на границе конденсации.

Имеют одинаковое сопротивление паропроницанию по всей толщине, а также равномерное изменение температуры по толщине стены. Граница конденсации водяных паров в правильно спроектированной стене без утеплителя находится в толще стены, ближе к наружной поверхности. Это обеспечивает таким стенам положительный баланс удаления влаги из толщи стены во всех случаях, кроме помещений с повышенной влажностью.

В многослойных стенах с утеплителем используются материалы с разным сопротивлением паропроницанию. Кроме того, распределение температуры в толще многослойной стены не равномерное. На границе слоев в толще стены имеем резкие перепады температуры.

Чтобы обеспечить требуемый баланс перемещения влаги в многослойной стене необходимо, чтобы сопротивление паропроницанию материала в стене уменьшалось по направлению от внутренней поверхности к наружной.

В противном случае, если наружный слой будет иметь большее сопротивление паропроницанию, баланс влагоперемещения сместится в сторону накопления влаги в стене.

Например.

Сопротивление паропроницанию газобетона значительно меньше, чем у керамики. При фасадной отделке дома из газобетона керамическим кирпичом обязателен вентилируемый зазор между слоями. При отсутствии зазора блоки будут накапливать влагу .

Вентилируемый зазор между лицевой кладкой из керамического кирпича и несущей стеной из керамзитобетонных блоков не нужен, т.к. сопротивление паропроницанию кирпичной облицовки меньше, чем у стены из керамзитобетонных блоков.

При неправильном устройстве стены, влага в утеплителе будет накапливаться постепенно.

Уже на второй, максимум третий-пятый отопительный период, можно будет ощутить существенное увеличение расходов на отопление. Связано это, естественно, с тем, что увеличилась влажность теплоизоляционного слоя и всей конструкции в целом, а соответственно существенно снизился показатель термического сопротивления стены.

Влага из утеплителя будет передаваться и в соседние слои стены. На внутренней поверхности наружных стен может образовываться грибок и плесень.

Кроме накопления влаги, в утеплителе стены происходит еще один процесс — замерзание сконденсировавшейся влаги. Известно, что периодическое замерзание и оттаивание большого количества воды в толще материала разрушает его.

Стеновые материалы различаются по своей способности противостоять замерзанию конденсата. Поэтому, в зависимости от паропроницаемости и морозостойкости утеплителя, необходимо ограничивать общее количество конденсата, накапливающегося в утеплителе за зимний период.

Например, минераловатный утеплитель имеет высокую паропроницаемость и очень низкую морозостойкость. В конструкциях с минераловатным утеплителем (стены, чердачные и цокольные перекрытия, мансардные крыши) для уменьшения поступления пара в конструкцию со стороны помещения всегда укладывают паронепроницаемую пленку.

Без пленки стена имела бы слишком малое сопротивление паропроницанию и, как следствие, в толще утеплителя выделялось и замерзало бы большое количество воды. Утеплитель в такой стене через 5-7 лет эксплуатации здания превратился бы в труху и осыпался.

Толщина теплоизоляции должна быть достаточной для того, чтобы удерживать точку росы в толще утеплителя, рис.2а.

При малой толщине утеплителя температура точки росы окажется на внутренней поверхности стены и пары будут конденсироваться уже на внутренней поверхности наружной стены, рис.2б.

Понятно, что количество влаги, сконденсировавшейся в утеплителе, будет увеличиваться с ростом влажности воздуха в помещении и с увеличением суровости зимнего климата в месте строительства.

Количество испаряемой из стены влаги в летнее время также зависит от климатических факторов — температуры и влажности воздуха в зоне строительства.

Как видим, процес перемещения влаги в толще стены зависит от многих факторов. Влажностный режим стен и других ограждений дома можно рассчитать, Рис. 3.

По результатам расчета определяют необходимость уменьшения паропроницаемости внутренних слоев стены или необходимость вентилируемого зазора на границе конденсации.

Результаты проведенных расчетов влажностного режима различных вариантов утепленных стен (кирпичные, ячеистобетонные, керамзитобетонные, деревянные) показывают, что в конструкциях с вентилируемым зазором на границе конденсации накопления влаги в ограждениях жилых зданий не происходит во всех климатических зонах России.

Многослойные стены без вентилируемого зазора необходимо применять, основываясь на расчете влагонакопления. Для принятия решения, следует обратиться за консультацией к местным специалистам, профессионально занимающимся проектированием и строительством жилых зданий. Результаты расчета влагонакопления типовых конструкций стен в месте строительства, местным строителям давно известны.

— это статья об особенностях влагонакопления и утепления стен из кирпича или каменных блоков.

Особенности влагонакопления в стенах с фасадным утеплением пенопластом, пенополистиролом

Утеплители из вспененных полимеров — пенопласта, пенополистирола, пенополиуретана, обладают очень низкой паропроницаемостью. Слой плит утеплителя из этих материалов на фасаде служит барьером для пара. Конденсация пара может происходить только на границе утеплителя и стены. Слой утеплителя препятствует высыханию конденсата в стене.

Для предотвращения накопления влаги в стене с полимерным утеплителем необходимо исключить конденсацию пара на границе стены и утеплителя . Как это сделать? Для этого необходимо сделать так, чтобы на границе стены и утеплителя температура всегда, в любые морозы, была бы выше температуры точки росы.

Указанное выше условие распределения температур в стене обычно легко выполняется, если сопротивление теплопередаче слоя утеплителя будет заметно больше, чем у утепляемой стены. Например, утепление «холодной» кирпичной стены дома пенопластом толщиной 100 мм. в климатических условиях средней полосы России обычно не приводит к накоплению влаги в стене.

Совсем другое дело, если пенопластом утепляется стена из «теплого» бруса, бревна, газобетона или поризованной керамики. А также, если для кирпичной стены выбрать очень тонкий полимерный утеплитель. В этих случаях температура на границе слоев может легко оказаться ниже точки росы и, чтобы убедиться в отсутствии влагонакопления, лучше выполнить соответствующий расчет.

Выше на рисунке показан график распределения температуры в утепленной стене для случая, когда сопротивление теплопередаче стены больше, чем слоя утеплителя. Например, если стену из газобетона с толщиной кладки 400 мм. утеплить пенопластом толщиной 50 мм. , то температура на границе с утеплителем зимой будет отрицательной. В результате будет происходить конденсация пара и накопление влаги в стене.

Толщину полимерного утеплителя выбирают в два этапа:

  1. Выбирают, исходя из необходимости обеспечить требуемое сопротивление теплопередаче наружной стены.
  2. Затем выполняют проверку на отсутствие конденсации пара в толще стены.

Если проверка по п.2. показывает обратное, то приходится увеличивать толщину утеплителя. Чем толще полимерный утеплитель - тем меньше риск конденсации пара и влагонакопления в материале стены. Но, это приводит к увеличению расходов на строительство.

Особенно большая разница в толщине утеплителя, выбранного по двум вышеуказанным условиям, имеет место при утеплении стен с высокой паропроницаемостью и низкой теплопроводностью. Толщина утеплителя для обеспечения энергосбережения получается для таких стен сравнительно маленькой, а для отсутствия конденсации - толщина плит должна быть неоправданно большой.

Поэтому, для утепления стен из материалов с высокой паропроницаемостью и низкой теплопроводностью выгоднее использовать минераловатные утеплители . Это относится прежде всего к стенам из дерева, газобетона, газосиликата, крупнопористого керамзитобетона.

Устройство пароизоляции изнутри обязательно для стен из материалов с высокой паропроницаемостью при любом варианте утепления и облицовки фасада.

Для устройства пароизоляции выполняют из материалов с высоким сопротивлением паропроницанию - на стену наносят грунтовку глубокого проникновения в несколько слоев, цементную штукатурку, виниловые обои или используют паронепроницаемую пленку.Опубликовано

Понятие о точке росы

Точка росы – это температура, при которой происходит выпадение или конденсация влаги из воздуха, до этого находящейся в нем в парообразном состоянии. Другими словами, точка росы в строительстве – это граница перехода от пониженной температуры воздуха снаружи ограждающих конструкций к теплой температуре внутренних обогреваемых помещений, где возможно появление влаги, расположение ее зависит от используемых материалов, их толщины и характеристик, места размещения утепляющего слоя и его свойств.

В нормативном документе СП 23-101-2004 «Проектирование тепловой защиты зданий» (Москва, 2004 г.) и СНиП 23-02 «Тепловая защита зданий» регламентируются условия, касающиеся учета и величины точки росы:

«6.2 В СНиП 23-02 установлены три обязательных взаимно связанных нормируемых показателя по тепловой защите здания, основанные на:

«а» – нормируемых значениях сопротивления теплопередаче для отдельных ограждающих конструкций тепловой защиты здания;

«б» – нормируемых величинах температурного перепада между температурами внутреннего воздуха и на поверхности ограждающей конструкции и температурой на внутренней поверхности ограждающей конструкции выше температуры точки росы;

«в» – нормируемом удельном показателе расхода тепловой энергии на отопление, позволяющем варьировать величинами теплозащитных свойств ограждающих конструкций с учетом выбора систем поддержания нормируемых параметров микроклимата.

Требования СНиП 23-02 будут выполнены, если при проектировании жилых и общественных зданий будут соблюдены требования показателей групп «а» и «б» либо «б» и «в».

Конденсация водяных паров легче всего происходит на какой-то поверхности, однако влага может появляться и внутри толщи конструкций. Применительно к конструкции стен: в том случае, когда точка росы расположена близко или непосредственно на внутренней поверхности, при определенных температурных условиях в холодное время года на поверхностях будет неизбежно выпадать конденсат. Если ограждающие конструкции недостаточно утеплены или сооружены вообще без устройства дополнительного утепляющего слоя, то точка росы всегда будет расположена ближе к внутренним поверхностям помещений.

Появление влаги на поверхностях конструкций чревато неприятными последствиями – это создает благоприятную среду для размножения микроорганизмов, таких как грибок и плесень, споры которых всегда присутствуют в воздухе. Для того чтобы избежать этих негативных явлений, необходимо правильно рассчитать толщину всех элементов, входящих в состав ограждающих конструкций, в том числе рассчитать точку росы.

Согласно указаниям нормативного документа СП 23-101-2004 «Проектирование тепловой защиты зданий» (Москва, 2004 г.):

«5.2.3 Температура внутренних поверхностей наружных ограждений здания, где имеются теплопроводные включения (диафрагмы, сквозные включения цементно-песчаного раствора или бетона, межпанельные стыки, жесткие соединения и гибкие связи в многослойных панелях, оконные обрамления и т. д.), в углах и на оконных откосах не должна быть ниже, чем температура точки росы воздуха внутри здания…».

Если температура поверхности стены внутри помещений или оконных блоков будет ниже, чем расчетная величина точки росы, то конденсат с большой вероятностью будет появляться в холодное время года, когда температура наружного воздуха понизится до отрицательных значений.

Решение задачи – как найти точку росы, ее физической величины, является одним из критериев обеспечения требуемой защиты зданий от потерь тепла и поддержания нормальных параметров микроклимата в помещениях, согласно с условиями СНиП и санитарно-гигиенических нормативов.

Расчет значения точки росы

  • с помощью таблицы нормативного документа;
  • по формуле;
  • с помощью онлайн-калькулятора.

Расчет с помощью таблицы

Расчет точки росы при утеплении дома может быть произведен с помощью таблицы нормативного документа СП 23-101-2004 «Проектирование тепловой защиты зданий» (Москва, 2004 г.)

Для определения значения температуры выпадения конденсата достаточно посмотреть на пересечение величин температуры и влажности, устанавливаемых нормативами для каждой категории помещений.

Расчет по формуле

Другой способ, как определить точку росы в стене, – с помощью упрощенной формулы:
$$\quicklatex{size=25}\boxed{T_{p}= \frac{b\times \lambda (T,RH)}{a — \lambda(T,RH)}}$$

Значения:

Тр – искомая точка росы;

а – постоянная = 17,27;

b – постоянная = 237,7 °C;

λ(Т,RH) – коэффициент, рассчитываемый по формуле:
$$\quicklatex{size=25}\boxed{\lambda(T,RH) = \frac{{(a\times T})}{(b + T) + {\ln RH}}}$$
Где:
Т – температура воздуха внутри помещений в °C;

RH – влажность в долях объема в пределах от 0,01 до 1;

ln – логарифм натуральный.

Для примера рассчитаем искомое значение в помещении, где должна поддерживаться оптимальная температура 20 °C с относительной влажностью 55 %, что установлено нормативами для жилых зданий. В этом случае сначала подсчитываем коэффициент λ(Т,RH):

λ(T,RH) = (17,27 х 20) / (237,7 + 20) + Ln 0,55 = 0,742

Тогда величина температуры выпадения конденсата из воздуха будет равна:

Тр = (237,7 х 0,742)/(17,27 – 0,742) = 176,37/ 16,528 = 10,67 °C

Если сравнить значение температуры, полученной по формуле, и значение, полученной из таблицы (10,69°C), то увидим, что разница составляет всего лишь 0,02°C. Это значит, что обе методики позволяют найти искомое значение с высокой точностью.

Расчет с помощью онлайн-калькулятора

На примерах видно, что такая задача, как определить точку росы, не является особо сложной. На основе таблиц и формул разрабатывают онлайн-калькуляторы, поэтому, если перед вами стоит проблема, как рассчитать точку росы в стене, калькулятор для этого имеется на сайте. Для расчета достаточно заполнить два поля – внести показатели установленной нормативной температуры внутри помещений и относительной влажности.

Определение положения точки росы в стене

Для того чтобы обеспечить нормальные качества ограждающих конструкций по теплозащите, нужно не только знать величину значения температуры выпадения конденсата, но и ее положение в пределах ограждающей конструкции. Сооружение наружных стен сейчас производится в трех основных вариантах, и в каждом случае расположение границы выпадения конденсата может быть разное:

  • конструкция сооружена без устройства дополнительного утепления – из каменной кладки, бетона, древесины и т. п. В этом случае в теплое время года точка росы располагается ближе к наружной грани, но в случае понижения температуры воздуха будет постепенно смещаться в сторону внутренней поверхности, и может наступить момент, когда эта граница окажется внутри помещения, и тогда на внутренних поверхностях выступит конденсат.

Следует отметить, что точка росы в деревянном доме при правильно подобранной толщине стен – из бревна или бруса – будет располагаться ближе к наружным поверхностям, так как древесина является природным материалом с уникальными свойствами, имеющим очень низкую теплопроводность при высокой паропроницаемости. Деревянные стены в большинстве случаев не требуют дополнительного утепления;

  • конструкция возведена с дополнительным слоем утеплителя с наружной стороны. При правильном расчете толщины всех материалов точка росы при утеплении пенопластом или другими видами эффективных утеплителей будет располагаться внутри утепляющего слоя, и конденсат внутри помещений появляться не будет;
  • конструкция утеплена с внутренней стороны. В этом случае граница появления конденсата будет располагаться близко к внутренней стороне и при сильном похолодании может сместиться на внутреннюю поверхность, на стык с утеплителем. В этом случае также с большой вероятностью будет возможно появление влаги внутри помещений, влекущее неприятные последствия. Поэтому такой вариант утепления не рекомендуется и производится только в тех случаях, когда нет других решений. При этом необходимо обеспечить дополнительные мероприятия для предотвращения негативных последствий – предусмотреть между утеплителем и облицовкой воздушный зазор, отверстия для вентиляции, устроить дополнительную вентиляцию помещений для удаления водяных паров, кондиционирование воздуха с уменьшением влажности.

  • толщина стены, включая основной материал (h1, в метрах) и утеплитель (h2, м);
  • коэффициенты теплопроводности для несущей конструкции (λ1, Вт/(м*°C) и утеплителя (λ1, Вт/(м*°C);
  • нормативная температура в помещении (t1, °C);
  • температура воздуха снаружи помещений, принимаемая для наиболее холодного времени года в данном регионе (t2,°C);
  • нормативная относительная влажность в помещении (%);
  • нормативная величина точки росы при данных температуре и влажности (°C)

Условия для расчета примем следующие:

  • стена кирпичная толщиной h1 = 0,51 м, утеплитель – пенополистирол толщиной h2 = 0,1 м;
  • коэффициент теплопроводности, установленный по нормативному документу для силикатного кирпича, укладываемого на цементно-песчаном растворе, согласно таблице приложения «Д» СП 23-101-2004 λ1 = 0,7 Вт/(м*°C);
  • коэффициент теплопроводности для утеплителя ППС – пенополистирола, имеющего плотность 100 кг/м² согласно таблице приложения «Д» СП 23-101-2004 λ2 = 0,041 Вт/(м*°C);
  • температура внутри помещений +22 °C, как установлено нормативами в пределах 20-22 °C по таблице 1 СП 23-101-2004 для жилых помещений;
  • наружная температура воздуха –15 °C для наиболее холодного времени года в условной местности;
  • влажность в помещениях – 50%, также в пределах нормативной (не более 55% согласно таблице 1 СП 23-101-2004 ) для жилых помещений;
  • величина точки росы для приведенных значений температур и влажности, которую берем по вышеприведенной таблице – 12,94 °C.

Вначале определяем тепловые сопротивления каждого слоя, составляющего стену, и отношение этих значений друг к другу. Далее рассчитываем перепад температур в несущем слое кладки и на границе между кладкой и утеплителем:

  • тепловое сопротивление кладки рассчитывается как отношение толщины к коэффициенту теплопроводности: h1/ λ1 = 0,51/0,7 = 0,729 Вт/(м²*°C);
  • тепловое сопротивление утеплителя будет равно: h2/ λ2 = 0,1/0,041 = 2,5 Вт/(м²*°C);
  • отношение тепловых сопротивлений: N = 0,729/2,5 = 0,292;
  • перепад температур в слое кирпичной кладки составит: Т = t1 – t2xN= 22 — (-15) х 0,292 = 37 х 0,292 = 10,8 °C;
  • температура на стыке кладки и утеплителя составит: 24 – 10,8 = 13,2 °C.

По результатам расчета построим график изменения температуры в массиве стены и определим точное положение точки росы.

По графику мы видим, что точка росы, величина которой составляет 12,94 °C, находится в пределах толщины утеплителя, что является оптимальным вариантом, но очень близко к стыку между поверхностью стены и утеплителем. При снижении наружной температуры воздуха граница выпадения конденсата может смещаться на этот стык и далее внутрь стены. В принципе, это не вызовет особых последствий и конденсат на поверхности внутри помещений образовываться не может.

Условия расчета были приняты для средней полосы России. В климатических условиях регионов, расположенных в более северных широтах, принимается большая толщина стены и, соответственно, утеплителя, что позволит обеспечить расположение границы образования конденсата в пределах утепляющего слоя.

В случае утепления с внутренней стороны при всех тех же условиях: толщины несущей конструкции и утеплителя, наружной и внутренней температуры, влажности, принятых в приведенном примере расчета, график температурного изменения в толще стены и на границах будет выглядеть так:

Мы видим, что граница выпадения конденсата из воздуха в этом случае сместится почти на внутреннюю поверхность и вероятность появления влаги в помещении при понижении температуры снаружи намного повысится.

Точка росы и паропроницаемость конструкций

При проектировании ограждающих конструкций, обеспечении нормативной тепловой защиты помещений большое значение имеет учет паропроницаемости материалов. Величина паропроницаемости зависит от объема водяных паров, которые может пропустить данный материал в единицу времени. Практически все материалы, используемые в современном строительстве, – бетон, кирпич, древесина и многие другие – имеют мелкие поры, через которые может циркулировать воздух, несущий водяные пары. Поэтому проектировщики, разрабатывая ограждающие конструкции и подбирая материалы для их сооружения, обязательно учитывают паропроницаемость. При этом должны соблюдаться три принципа:

  • не должно быть препятствий для удаления влаги в случае ее конденсации на одной из поверхностей или внутри материала;
  • паропроницаемость ограждающих конструкций должна увеличиваться со стороны внутренних помещений наружу;
  • тепловое сопротивление материалов, из которых сооружаются наружные стены, также должно возрастать по направлению к внешней стороне.

На схеме мы видим правильный состав конструкции наружных стен, обеспечивающий нормативную тепловую защиту внутренних помещений и удаление влаги из материалов при ее конденсации на поверхностях или внутри толщи стены.

Указанные выше принципы нарушаются при внутреннем утеплении, поэтому такой способ тепловой защиты рекомендуется только в крайнем случае.

Все современные конструкции наружных стен базируются на этих принципах. Однако некоторые утеплители, которые включают в состав конструкции стен, обладают почти нулевой паропроницаемостью. Например, пенополистирол, имеющий замкнутую ячеистую структуру, не пропускает воздух и, соответственно, водяные пары. В этом случае особенно важно точно рассчитать толщину конструкции и утеплителя таким образом, чтобы граница образования конденсата находилась в пределах утеплителя.

Мнение экспертов портала

По мнению экспертов портала сайт, расчет величины точки росы и ее положения в ограждающих конструкциях является одним из определяющих моментов в обеспечении защиты зданий от потерь тепла. Самый оптимальный вариант – это когда граница выпадения конденсата находится в пределах толщины утеплителя в конструкции с наружным утеплением. Необходимо рассчитывать толщину слоев ограждающих конструкций для определенных материалов так, чтобы исключить смещение точки росы в толщу стены и в сторону поверхностей внутри помещений.

Почему потеют окна, двери, стены? Почему покрываются конденсатом вещи, занесенные с холода в теплое помещение? Почему мокреют трубы холодной воды? - ответ один, температура поверхности предмета ниже температуры точки росы .

Точка росы (Температура точки росы ТР ) – это температура, при которой начинает образовываться роса, т.е. температура до которой необходимо охладить воздух, что бы относительная влажность достигла 100%

Со школьного курса физики мы знаем, что влажность воздуха (содержание воды в воздухе) определяется двумя параметрами:

Абсолютная влажность;
Относительная влажность.

С абсолютной влажностью (f ) все понятно – это количество воды, в граммах, содержащейся в одном кубическом метре воздуха, единица измерения – грамм в метре кубическом, г/м3 .

f = m / V

V - объём влажного воздуха;

m - масса водяного пара, содержащегося в этом объёме.

Относительная влажность (RH ) – это количество воды содержащейся в воздухе относительно максимально возможного количества воды при данной температуре и давлении, единица измерения проценты, % .

Причем с увеличением температуры , максимально возможное количество воды содержащейся в воздухе – увеличивается .

Соответственно при уменьшении температуры уменьшается .

При дальнейшем понижении температуры «лишняя » вода начнет конденсироваться в виде капель росы – это и есть точка росы .

Несколько фактов о точке росы.

  • Температура точки росы не может быть выше текущей температуры.
  • Чем выше температура точки росы, тем больше влаги находится в воздухе
  • Высокие температуры точки росы бывают в тропиках, низкие в пустынях, полярных областях.
  • Относительная влажность (RH) около 100 % приводит к выпадению росы, инея(замороженная роса), тумана.
  • Относительная влажность (RH) достигает 100 % в период дождей.
  • Высокие точки росы обычно происходят перед холодными температурными фронтами.

Как определить, рассчитать точку росы?

Ответ очевиден –

1. Для определения точки росы существуют специальные таблицы,

где в столбцах указана Относительная влажность в % , в строках – температура окружающего воздуха в °С , в клетках на пересечении - температура точки росы, для выбранной влажности и температуры.

Для примера выбрана относительная влажность 60 %, комнатная температура 21 °С на пересечении видим значение точки росы 12,9 °С.

Соответственно при данных условиях, конденсация влаги произойдет на холодных поверхностях (например, оконных стеклах) с температурой поверхности ниже, чем 12,9 °С .

На специализированных сайтах существуют более подробные таблицы определения точки росы, но для «домашнего пользования» вполне достаточно, ниже приведенной таблицы, ее можно сохранить, распечатать и использовать при необходимости.

2. При расчете температуры точки росы, используем формулы 1.1 и 1.2 .

Формула для приблизительного расчёта точки росы в градусах Цельсия (только для положительных температур):

Tp = (b f (T, RH)) / (a - f (T, RH)) , (1.1 )

f (T, RH) = a T / (b + T) + ln (RH / 100) , (1.2 )

Тр температура точки росы, °С ;

a = 17.27;

b = 237,7;

Т комнатная температура, °С ;

RH относительная влажность, %;

Ln – натуральный логарифм .

Рассчитаем точку росы для тех же значений температуры и влажности.

Т = 21 °С;

RH = 60 %.

Вначале вычислим функцию f (T, RH)

f (T, RH) = a T / (b + T) + ln (RH / 100),

f (T, RH) = 17,27 * 21 / (237,7+21) + ln (60 / 100) =

= 1,401894 + (-0,51083) = 0,891068

Затем температуру точки росы

Tp = (b f (T, RH)) / (a - f (T, RH)),

Tp = (237,7 * 0,891068) / (17,27 - 0,891068) =

= 211,807 / 16,37893 = 12,93167 °С

Итак, наш результат вычислений Тр = 12,93167 °С .

3. Значительно проще рассчитать точку росы используя «Калькулятор расчета точки росы » на нашем сайте.

Заполняем значения:

Температура воздуха внутри помещения, °С . - 21 ;

Относительная влажность, % . – 60 .

Как видим, значение точки росы для всех трех способов совпадает :

Тр = 12,9 °С;

Тр = 12,93167 °С;

Тр = 12,93 °С.

Разница лишь в количестве знаков после запятой.

Возникают справедливые вопросы – зачем нам нужна эта точка росы , зачем мы уделяем так много времени для определения или расчета, какое практическое применение имеет точка росы?

В местах, где постоянно скапливается влага, создаются, благоприятные условия для развития плесени, грибковых спор, что очень отрицательно влияет на здоровье находящихся вблизи людей .

Зная точку росы, мы можем не допустить образования конденсата на поверхностях нашего помещения.

Температура среды, при которой происходит конденсация имеющейся в воздухе влаги, называется точкой росы. Это не постоянная величина и зависит она от влажности воздуха и фактической температуры окружающей среды. Для каждого значения имеется количества влаги, которое может удержаться в виде пара. При этом чем выше температура воздуха, тем больше воды может содержаться в виде пара. Все, что свыше данного количества, конденсируется. При снижении температуры и неизменном количестве влаги в какой-то момент в воздухе уже не может удерживаться эта влага, конденсируется. Такая температура и называется точкой росы.

Когда в среду с одной температурой, влажностью и значением точки росы попадает материал с температурой ниже точки росы, на поверхности его материала выпадает конденсат, потому как в граничной зоне остывает .

Точка росы в строительстве

В зимний период на улице температура значительно ниже, чем в помещении. Внешняя поверхность стен охлаждается, а внутренняя нагревается. Внутри стены температура материала принимает переходные значения между внешней и внутренней. Важно, чтобы точка, в которой формируется температура, равная значению точки росы для воздуха внутри помещения была как можно дальше от внутренней поверхности и в толще однородного слоя материала стены. Если она близко расположена к внутренней поверхности или внутренняя поверхность холоднее значения точки росы, то на ней будет конденсироваться влага, что сулит немало проблем.

Избыток влаги в слое штукатурки и на ее поверхности может привести к порче внутренней отделки и образованию грибка и плесени. Именно из-за расположения точки росы не следует утеплять стены изнутри помещения. Точка росы сместится ближе к внутренней поверхности, как следствие, образуется конденсат и сырость внутри помещения.

Точка росы и микроклимат

Важными составляющими комфортного микроклимата является температура воздуха 18-24оС и относительная влажность 40-60%. При относительной влажности 100% фактическая температура как раз равна значению точки росы. Для того чтобы поднять влажность, используются различные испарители, увлажнители воздуха. Для понижения влажности можно использовать , у которого теплообменник имеет температуру ниже, чем значение точки росы. Вследствие этого влага конденсируется на радиаторе и отводится из помещения.

Точка росы и антикоррозийные покрытия

При нанесении антикоррозийного покрытия важно, чтобы окрашиваемая поверхность была нагрета до температуры выше точки росы. Иначе образовавшийся конденсат будет препятствовать плотному прилеганию антикоррозийного покрытия.