Что такое сетевой элемент окс 7. Лекция. Система сигнализации ОКС7. Биты - индикаторы

Основными подсистемами ОКС7 являются:

o Подсистема переноса сообщений (MTP - Message Transfer Part)

o Подсистемы-пользователи услугами MTP:

· SCCP - подсистема управления соединением сигнализации;

· TUP - подсистема пользователя телефонии;

· ISUP - подсистема пользователя ISDN;

· MUP - подсистема пользователя подвижной связи (NMT);

· HUP - подсистема эстафетной передачи сигналов управления в процессе разговора (NMT);

· TCAP - подсистема возможностей транзакций;

· MAP - прикладная подсистема пользователя подвижной связи (GSM);

· INAP - прикладная подсистема интеллектуальной сети;

· OMAP - подсистема технического обслуживания и эксплуатации.

MTP формирует и предоставляет услуги переноса сигнальной информации (в виде сигнальных сообщений) от пункта-отправителя через сеть ОКС к пункту-адресату.

Пользователи услугами MTP - это подсистемы, которые предоставляют свои услуги либо подсистемам, расположенным выше (как это делает SCCP), либо (как это делает ISUP) прямо пользователям системы ОКС7, каковыми являются разнообразные прикладные процессы (это, в частности, процесс управления коммутацией, процессы управления предоставлением тех или иных дополнительных услуг, процессы эксплуатационного управления и др.).

На рис. 48 представлена архитектура протоколов ОКС7.

сигнальный сеть алгоритм телефонный

Рис. 48.

Сеть связи, использующая ОКС7, состоит из множества узлов коммутации, связанных между собой цифровыми ИКМ-трактами.

Для использования услуг ОКС7, каждый из узлов коммутации должен содержать встроенные средства, позволяющие выполнять функции пункта сигнализации (SP - Signalling Point). Пункт сигнализации способен формировать, передавать, принимать и интерпретировать сигнальную информацию.

Каждому пункту сигнализации присваивается свой уникальный адрес в сети ОКС-7 - код пункта сигнализации (SPC, signalling point code).

Пункты сигнализации SP должны быть связаны между собой цифровыми каналами, выполняющими функции сигнальных звеньев.

Совокупность пунктов сигнализации и звеньев сигнализации образуют сеть общеканальной сигнализации - сеть ОКС7.

В качестве основных понятий следует выделить следующие:

Пункты сигнализации (SP-signalling point) - узлы сети связи, использующие ОКС-7, которые могут передавать и/или принимать сигнальный трафик, т.е. генерировать и/или обрабатывать сигнальные сообщения.

Транзитный пункт сигнализации (STP-signalling transfer point) - пункт сигнализации, который передает принятые сигналы на другой SP или STP, не обрабатывая при этом сигнальные сообщения.

Код пункта сигнализации (SPC - Signalling Point Code) - это уникальный номер пункта сигнализации в сети ОКС-7.

Звено сигнализации (signalling link) - звено сигнализации в системе ОКС-7 используется для передачи сигнальных сообщений между двумя пунктами сигнализации.

Пучок звеньев сигнализации (signalling link set) - представляет собой несколько звеньев сигнализации между двумя соединенными напрямую пунктами сигнализации.

Группа звеньев сигнализации (group of links) - это группа сигнальных звеньев в пучке, имеющих идентичные характеристики. Пучок звеньев может включать одну или более групп звеньев.

В ОКС7 сигнальная информация организуется в виде пакетов, которые передаются между пунктами сигнализации в виде сообщений переменной длины, называемых сигнальными единицами. Существует три типа сигнальных единиц:

· значащая сигнальная единица (MSU) - используется для передачи сигнальной информации, формируемой подсистемами-пользователями или SCCP; повторяется в случае ошибки;

· сигнальная единица состояния звена (LSSU) - используется для контроля состояния звена сигнализации; не повторяется в случае ошибки;

· заполняющая сигнальная единица (FISU) - используется для обеспечения фазирования звена при отсутствии сигнального трафика; не повторяется в случае ошибки.

Рис. 49. Структура MSU

Рис. 50. Структура LSSU

Рис. 51. Структура FISU

Флаг - ограничитель сигнальных единиц - 8-битовая последовательность вида: 01111110. Обычно закрывающий флаг одной сигнальной единицы является открывающим флагом следующей сигнальной единицы.

Индикатор длины указывает на число октетов между полем LI и полем CK. Тип сигнальной единицы идентифицируется индикатором длины (LI) следующим образом:

LI = 0 (FISU), заполняющая сигнальная единица;

LI = 1 или 2 (LSSU), сигнальная единица состояния звена;

LI > 2 (MSU), значащая сигнальная единица.

Индикатор длины может принимать значения в интервале от 0 до 63.

Прямой порядковый номер (FSN) - это порядковый номер сигнальной единицы, в составе которой он передается на противоположный пункт сигнализации.

Обратный порядковый номер (BSN) - это номер подтверждаемой сигнальной единицы. Прямой и обратный порядковые номера - это двоичные числа в циклически повторяющейся последовательности от 0 до 127.

Биты индикации прямого (FIB) и обратного (BIB) направления вместе с прямым и обратным порядковыми номерами используются в базовом методе исправления ошибок, для осуществления контроля последовательности сигнальных единиц и функций подтверждения.

Проверочные биты (СК) формируются пунктом сигнализации, передающим сигнальную единицу. Каждая сигнальная единица содержит 16 проверочных битов для обнаружения ошибок.

Байт служебной информации (SIO):

Рис. 52. Структура SIO

o Индикатор службы (SI):

· 0000- управление сетью сигнализации;

· 0001- тест звена сигнализации;

· 0010- резерв;

· 0011- подсистема SCCP;

· 0100- подсистема TUP;

· 0101- подсистема ISUP;

· 0110- подсистема DUP (вызовы/каналы);

· 0111- подсистема DUP (регистрация/дерегистрация);

· остальные - резерв.

o Поле подвида службы (SSF):

· 00хх- международная сеть;

· 01хх- резерв (для международного применения);

· 10хх- национальная сеть;

· 11хх- резерв (для национального применения).

Индикатор службы SI занимает 4 старших бита SIO, содержится только в значащих сигнальных единицах MSU и указывает, к какой подсистеме пользователя относится сообщение.

Поле подвида службы SSF занимает 4 младших бита SIO и содержит индикатор сети NI и два резервных бита. Индикатор сети позволяет отличить, какой сети принадлежат сообщения: международной национальной.

Поле сигнальной информации (SIF) предназначено для передачи полезной информации по сети сигнализации и может состоять максимум из 272 байтов, форматы и коды которых определяются подсистемой пользователей. Поле SIF содержит информацию, которая должна передаваться между подсистемами пользователей двух пунктов сигнализации. Поле SIF содержит этикетку, которая позволяет:

· осуществлять маршрутизацию сообщений при помощи функций уровня 3 MTP по сети сигнализации к определенному пункту назначения; эта часть этикетки называется этикеткой маршрутизации.

· ассоциировать сообщение на приемной стороне конкретной подсистемы пользователя с определенным каналом, вызовом, управлением или другими транзакциями, к которым относится сообщение.

МТР не распознает содержимое SIF, кроме этикетки маршрутизации, т.е. прозрачно передает содержащуюся в SIF информацию от уровня 4 одного пункта сигнализации к уровню 4 другого.

Структура поля SIF в общем случае:

Рис. 53. Структура поля SIF

Для некоторых подсистем пользователя, кроме этикетки маршрутизации, в состав этикетки входит дополнительная информация, при этом поле SIF будет выглядеть следующим образом:

Структура поля SIF для сообщений ISUP (этикетка типа С):

Рис. 54. Этикетка типа С

Структура поля SIF для сообщений управления MTP (этикетка типа А):

Рис. 55. Этикетка типа А

Код пункта назначения (DPC) указывает пункт назначения сообщения.

Код исходящего пункта (OPC) определяет исходящий пункт сообщения. Поле выбора звена сигнализации (SLS) используется, в случае необходимости, для осуществления разделения нагрузки. Это поле существует во всех типах сообщений и всегда в одном и том же месте. Единственное исключение из этого правила касается некоторых сообщений подсистемы передачи сообщений уровня 3 (например, команда перехода на резерв), для которых функция маршрутизации сообщений в исходящем пункте сигнализации не зависит от поля SLC: в этом случае поля, как такового, не существует, оно заменено другой информацией (например, в случае команды перехода на резерв, идентификация отказавшего звена сигнализации). Код идентификации канала (CIC) используется в качестве этикетки для сообщений сигнализации, ориентированных на соединение.

Поле информации управления МТР выглядит следующим образом

Рис. 56. Структура поля информации управления МТР

Поле состояния (SF) не рассматривается, т.к. оно находится только в сигнальных единицах состояния звена (LSSU) и интереса в данном случае не представляет.

В основе ОКС-7 лежит использование аналоговых или цифровых каналов для передачи данных и соответствующей управляющей информации.

Систему обычно называют ОКС-7, в Европе говорят об SS7 (англ. Signaling System #7 ), а в Северной Америке её называют CCS7 (англ. Common Channel Signaling System 7 ). В некоторых европейских странах, особенно в Великобритании , говорят о C7 (CCITT номер 7) или о номере 7 и о CCITT7. В Германии её называют N7 от немецкого Signalisierungssystem Nummer 7.

Энциклопедичный YouTube

    1 / 3

    ✪ Обнаружение вторжений в мобильных сетях SS7

    ✪ Стек протоколов

    ✪ Основы сетей передачи данных. Модель OSI и стек протоколов TCP IP. Основы Ethernet.

    Субтитры

История

Телефонная сеть общего пользования начиная с 80-x годов XX века модернизировалась из простой сети, обеспечивающей передачу голоса с ограниченными возможности передачи данных, к более интеллектуальному транспортному средству с высокой пропускной способностью и возможностью быстрого восстановления при аппаратных отказах.

В процессе перемещения некоторых некритичных функций за пределы основных протоколов сигнализации и для сохранения гибкости ОКС-7 появилась концепция разделённых сервисных уровней, реализованная в интеллектуальных телефонных сетях . Сервис, предоставляемый интеллектуальными сетями - это прежде всего услуга преобразования телефонного номера (например, когда бесплатный номер преобразуется в обычный абонентский номер телефонной сети общего пользования). Другие услуги - это АОН , то есть автоматическое определение номера вызывающего абонента, блокирование номеров абонентов, автоматическая переадресация вызова (звонка), удержание вызова (звонка), конференция, предоплаченные звонки. Разные поставщики оборудования предоставляют разные сервисы для абонентов.

ОКС-7 также важен при стыковке VoIP -сетей и телефонной сети общего пользования . В настоящее время сигнализация ОКС-7 нашла реализацию в популярной платформе IP-телефонии Asterisk версии 13 и выше.

Физическая реализация

ОКС-7 полностью разделяет голосовые каналы и сигнальные пучки (сигнальные каналы или линксеты). Сеть ОКС-7 состоит из нескольких типов соединения (A, B, C, E и F) и трёх сигнальных узлов - точек коммутации (SSP), точек передачи сигнализации (STP) и точек контроля сигнализации (SCP). Каждый узел идентифицируется сетью ОКС-7 по номеру, так называемому).

MTP описывает транспортные протоколы, включая сетевые интерфейсы, обмен данными, обработка сообщений и маршрутизация их на верхний уровень. SCCP - это подуровень из других протоколов 4 уровня, и вместе с MTP 3 может быть назван Network Service Part (NSP). NSP обеспечивает адресацию и маршрутизацию сообщений и сервис управления для других частей 4 уровня. TUP - это система сигнализации точка-точка для обслуживания вызовов (в России не применялась). ISUP - это ключевой протокол, предоставляющий канально-ориентированный протокол для установки, подключения и завершения соединения при звонке. Выполняет все функции TUP и множество дополнительных. TCAP используется для создания запросов к базе данных и используется при расширенной функциональности сети или как связующий протокол с интеллектуальными сетями (

Система сигнализации №7 (Signaling System 7, SS7) была разработана в целях замены предыдущих систем сигнализации по информационным каналам (inband signaling). (В российской технической литературе SS7 называют также общеканальной системой сигнализации, или ОКС-7.) Она служит для обмена информацией управления вызовами между цифровыми коммутирующими станциями для поддержки как голосовых, так и не голосовых служб. Благодаря введению баз данных, SS7 позволяет также предоставлять компаниям и частным лицам такие дополнительные услуги, как звонки с оплатой вызываемым абонентом, идентификация вызывающего абонента и т. п. Сигнальная система №7 образует свою собственную сеть параллельно цифровой сети связи.

Сигнальные точки SS7

Система сигнализации №7 образует свою собственную сеть, сигналы которой передаются по иным путям, нежели голос и данные. До ее появления установление телефонного соединения происходило по тем же физическим каналам, что и разговор между абонентами. Это было возможно благодаря тому, что служебные сигналы никогда не передавались одновременно с пользовательской информацией.

При сигнализации по внешним каналам служебная информация передается по независимым цифровым - так называемым сигнальным - каналам с пропускной способностью 56 или 64 Кбит/с (в США сигнальные каналы имеют пропускную способность преимущественно в 56 Кбит/с, а в России - исключительно в 64 Кбит/с).

В отличие от ISDN, где абоненты и коммутаторы могут посылать друг другу служебные сигналы по каналу D, система сигнализации 7 предусматривает обмен служебной информацией по общим каналам только между компонентами сети. Она используется при взаимодействии между тремя классами устройств: точками коммутации сервиса (Service Switching Point, SSP), точками передачи сигнала (Signal Transfer Point, STP) и точками управления сервисом (Service Control Point, SCP). (Отметим, что как русские, так и английские расшифровки перечисленных аббревиатур могут отличаться.) Обобщенно данные устройства называются сигнальными точками, или узлами SS7.

SSP - это телефонные коммутаторы с SS7-совместимым программным обеспечением; они являются начальными (и конечными) точками сигнальных каналов. STP представляют собой коммутаторы пакетов сети SS7; они принимают поступающие сигнальные сообщения и маршрутизируют их к конечному адресату. SCP содержат базы данных; они предоставляют необходимую информацию для обработки вызовов. Каждое из устройств изображается на диаграммах своим стандартным символом.

Сообщения SS7 формируются на получившей вызов абонента SSP. Как правило, такой коммутатор располагается на телефонной станции оператора связи. Однако это может быть и корпоративная УАТС. Если SSP на вызывающем конце знает, куда маршрутизировать вызов, то он обращается к ближайшему STP с запросом на установление соединения с SSP на принимающем конце (см. Рисунок 1). Так, при междугородном звонке начальный SSP может определить конечный SSP по первым шести цифрам десятизначного номера. Например, в номере 095-253-92-28 первые три цифры - код Москвы, а три следующие - код АТС. В случае, если маршрут неизвестен, как с 800-ми номерами для бесплатных звонков в США, STP обращается к базе данных SCP для получения информации о маршрутизации вызова. 800-е телефонные номера являются, так сказать, виртуальными, они не привязаны к конкретной абонентской линии. Поэтому для определения реального номера STP и вынужден обращаться к базе данных.

Базы данных используются для выполнения функции под названием «трансляция глобального заголовка» (global title translation), с помощью которой STP определяет целевой SSP посредством преобразования глобального цифрового заголовка (набираемого звонящим номера, в том числе номера с оплатой вызываемым абонентом, номера телефонной карты или номера сотового телефона) в соответствующий маршрут. В случае сотовых телефонов процесс трансляции заголовка позволяет установить также идентификационный номер вызываемого мобильного телефона, так как, вообще говоря, сотовые телефоны не имеют телефонных номеров как таковых. Кроме того, с помощью SS7 коммутаторы с SSP могут передавать на SCP информацию об оплате.

Не все STP похожи друг на друга. Местные STP обслуживают только внутренний трафик в пределах локальной области доступа и передачи (Local Access and Transport Area, LATA), в то время как межсетевые STP обеспечивают взаимодействие между LATA. Международные STP осуществляют преобразование несколько отличной американской версии SS7, определенной ANSI в Т1.111, в международную версию, стандартизованную ITU-T в Q.700-Q.741. Шлюзовые STP предоставляют интерфейс между телефонными сетями общего пользования и другими службами, например с операторами сотовой связи.

Своей надежностью телефонная сеть обязана во многом наличию множества резервных каналов между узлами SS7. Практически все STP и SCP реализуются парами, а большинство SSP связаны с двумя и более STP. Во многих случаях соединения проходят по различным физическим путям.

Сигнальные каналы SS7

Сигнальные каналы SS7 характеризуются в соответствии с их ролью в сигнальной сети. Фактически все каналы идентичны в том смысле, что они представляют собой двунаправленные каналы передачи данных, имеют одинаковую пропускную способность и поддерживают одни и те же низкоуровневые протоколы. Главное отличие состоит в их назначении.

Каналы A (от английского access, т. е. «доступ») связывают STP с SSP и SCP. Последние две обобщенно называются конечными сигнальными точками. Каналы A предназначаются исключительно для доставки сигналов от и к конечным точкам. При необходимости, например, передать информацию другому узлу, SSP (или SCP) отправляет ее ближайшему STP по каналу A, а тот уже занимается дальнейшей маршрутизацией сообщения.

Каналы C (от английского cross, т. е. «перекрестный») соединяют между собой образующие пару STP. Они позволяют увеличить надежность сигнальной сети в случаях, когда другие каналы становятся недоступными.

Каналы B, D или B/D (от английского bridge, т. е. «мост», и diagonal, т. е. «диагональ») связывают две пары STP между собой. Их основная функция состоит в передаче сигналов по сигнальной сети. Каналы B связывают STP одного уровня, а каналы D - STP на различных уровнях иерархии. Однако из-за отсутствия четкой иерархии такие каналы маркируются иногда как B/D.

Каналы E (от английского extended, т. е. «расширенный») обеспечивают резервные соединения конечных точек сигнальной сети с другой парой STP на случай, если ближайшая пара STP окажется недоступна по каналам А. Каналы E могут и отсутствовать, все зависит от реализованного уровня избыточности.

Каналы F (от английского fully associated, т. е. «полностью ассоциированные») реализуют прямое соединение между двумя конечными сигнальными точками. Однако их применение ограничено из-за того, что они обходят предусматриваемые STP функции защиты.

Формат сигнальных пакетов

Информация передается по сигнальным каналам в виде сообщений, называемых сигнальными пакетами (Signal Unit, SU). Протокол SS7 определяет три типа сигнальных пакетов:

  • сигнальный пакет с сообщением (Message Signal Unit, MSU);
  • сигнальный пакет с состоянием канала (Link Status Signal Unit, LSSU);
  • сигнальный пакет с заполнением (Fill-in Signal Unit, FISU).

Сигнальные пакеты передаются по любому действующиму каналу в обоих направлениях. При отсутствии MSU или LSSU для передачи сигнальная точка будет передавать по каналу FISU. В соответствии со своим названием, FISU «заполняют» сигнальный канал в отсутствии полезной информации.

Передаваемая информация разбивается на блоки длиной по восемь бит, называемые октетами. Сигнальные пакеты отделяются друг от друга ограничителем «01111110». Этот флаг сигнализирует одновременно о конце предыдущего пакета и о начале следующего.

Все три типа сигнальных пакетов имеют ряд общих полей (см. Рисунок 2). Кроме флага, это поля контрольной суммы, указателя длины, а также BSN/BIB и FSN/FIB.

Контрольная сумма служит для проверки наличия в передаваемом пакете ошибок. При наличии ошибок принимающая сторона запрашивает повторную передачу.

Указатель длины сообщает о числе октетов между данным полем и контрольной суммой. Он служит, в частности, для установления типа сигнального пакета. Как видно из Рисунка 2, указатель длины для пакета FISU равен 0, для LSSU - 1 или 2, а для MSU он больше 2.

BSN/BIB и FSN/FIB содержат обратные порядковый номер и сигнальный бит (BSN/BIB) и прямые порядковый номер и сигнальный бит (FSN/FIB). Эти поля предназначены для подтверждения приема SU и для обеспечения приема пакетов в том же порядке, в каком они были переданы. Они также служат для обеспечения контроля за потоками.

FISU не имеют никаких других полей, кроме перечисленных. Как уже говорилось, их назначение состоит в заполнении канала в отсутствии LSSU или MSU для передачи. Они позволяют, кроме того, осуществлять непрерывный мониторинг качества связи посредством проверки правильности контрольной суммы в отсутствии сигнального трафика.

LSSU служит для передачи информации о состоянии канала между узлами по обеим сторонам канала. Эта информация размещается в поле состояния. Она сообщает о качестве принимаемого сигнального трафика, о состоянии процессоров и т. п. LSSU не содержат никакой адресной информации, так как они пересылаются только между двумя соседними точками.

Вся сигнальная информация об установлении и разрыве соединений, о запросах и ответах базы данных и управлении сетью SS7 передается в пакетах MSU. В свою очередь, MSU делятся на несколько видов в соответствии с их функцией и содержимым: управление сигнальной сетью, тестирование и эксплуатация сигнальной сети, SSCP и ISUP. Тип содержимого пакета указывается в октете служебной информации. Само же содержимое размещается в поле сигнальной информации.

Стек протоколов SS7

Стек протоколов SS7 состоит из четырех слоев, или уровней (см. Рисунок 3). Нижние три уровня объединены под общим названием «блок передачи сообщений» (Message Transfer Part, MTP). Три уровня MTP соответствуют трем нижним уровням семиуровневой модели OSI.

MTP уровень 1 аналогичен физическому уровню модели OSI. Он определяет различные физические интерфейсы между сигнальными точками. Физические каналы между STP и их локальными SSP и SCP имеют, как правило, пропускную способность 56 или 64 Кбит/с; физические же каналы между самими STP имеют обычно пропускную способность 1,544 Мбит/с и выше.

MTP уровень 2 соответствует канальному уровню модели OSI. Он обеспечивает обнаружение и исправление ошибок с использованием 16-разрядного циклического избыточного кода. При обнаружении ошибки он запрашивает повторную передачу.

MTP уровень 3 выполняет те же функции, что и сетевой уровень модели OSI. Он осуществляет разбор сообщения для определения того, кому оно предназначено. Если адресат сообщения находится в сфере действия местной сигнальной точки, то третий уровень доставляет сообщение по назначению; в противном случае, он осуществляет маршрутизацию сообщения для определения следующего узла на пути к адресату.

Кроме того, третий уровень отвечает за определение состояния узлов и каналов: наступления аварии, надежности функционирования, состояния перегрузки, факта отключения/включения. Он выбирает альтернативные маршруты и посылает управляющие сообщения об изменениях в состоянии каналов на соседние сигнальные точки.

Четвертый уровень стека SS7 охватывает с четвертого по седьмой уровни модели OSI. Он состоит из двух параллельных комплектов протоколов: пользовательского блока ISDN (ISDN User Part, ISUP) и блока управления сигнальным соединением/прикладного блока поддержки транзакций (Signaling Connection Control Part/Transaction Capabilities Application Part, SCCP/TCAP).

ISUP порождает, управляет и завершает как ISDN-, так и не-ISDN-соединения между устройствами в телефонной сети общего пользования. Таким образом, несмотря на свое название, ISUP служит для осуществления как ISDN-, так и не-ISDN-вызовов. Однако в случае ISDN он поддерживает такие дополнительные виды услуг, как переадресация вызова, идентификация вызывающей линии, закрытые пользовательские группы, межпользовательская сигнализация и т. п. В качестве транспорта ISUP использует непосредственно MTP. В случае, если вызов порождается и завершается на одном и том же коммутаторе, сигнализация ISUP не применяется.

SCCP служит для поддержки сервисов между STP и базами данных. Соответствующий транспортному уровню модели OSI, SCCP предоставляет более подробную адресную информацию, нежели MTP, так как последний идентифицирует только конечную сигнальную точку. SCCP же позволяет идентифицировать конкретную базу данных на SCP.

Адресуемый с помощью SCCP, сам запрос к базе данных передается и возвращается TCAP. В сообщениях TCAP размещается такая информация, как сведения о маршруте, чтобы ISUP мог узнать, кому адресовать вызов. После завершения разговора TCAP может передать требуемую информацию об оплате в соответствующую учетную базу данных. В случае, например, мобильных пользователей TCAP передает идентификационные сообщения и извещает базу данных SCP о местонахождении сотовых телефонов.

ОКС-7 В России

С переводом международных сетей связи в цифровой формат задача внедрения соответствующих систем и, как следствие, ОКС-7 встала и перед российской отраслью связи. Принципы построения национальной сигнальной сети заложены в «Основных положениях по структуре сети ОКС-7 РФ». Вместе с тем создаваемая сеть отличается как от американского, так и от международного стандартов наличием ряда дополнительных сообщений и другими особенностями.


Дмитрий Ганьжа - ответственный редактор LAN. С ним можно связаться по адресу: [email protected] .

Ресурсы

Хорошее интерактивное введение в SS7 с описанием протоколов MTP, ISUP, SSCP и TCAP можно найти на сервере компании Microlegend http://www.microlegend.com/whatss7.htm .

Краткий курс для самостоятельного изучения с контрольными вопросами имеется на сервере Bell Atlantic http://www.webproforum.com/bell-atlantic2/full.html .

Принципы внедрения и построения сети ОКС-7 в России изложены в докладе «Система общеканальной сигнализации №7» http://www.astu.astranet.ru/rus/astu/ library/telecom/netcomm/seti/index.htm .

Подробное изложение SS7 дается в книге Тревиса Рассела «Signaling System #7», 2-е издание, изд-во McGraw-Hill, 1998 г.

Для обмена информацией между функциональными элементами на интерфейсах A, B, C, D, E, F, G принята система общеканальной сигнализации №7 (ОКС-7 или SS7).

ОКС-7 является специализированной сетью передачи данных с коммутацией пакетов переменной длины (до 274 байтов). Пакеты называют сигнальными единицами.

Узлы сети ОКС-7 принято называть сигнальными пунктами (SP – Signaling Point). Атрибутами сигнального пункта являются:

  • SPC – Signaling Point Code – код сигнального пункта (14 бит)
  • NI – Network Indicator – идентификатор сети (2 бита)

NI=10 – национальная сеть

NI=11 – ведомственная или региональная сеть

NI=00 – международная сеть

Код SPC позволяет адресовать сигнальные сообщения между узлами в пределах одной сети ОКС-7, например в пределах одной национальной сети. Его недостаточно для адресации сообщений между сигнальными пунктами различных сетей ОКС-7.

Три нижних уровня протоколов ОКС-7 образуют часть передачи сообщений (MTP ). Выше расположены пользователи MTP:

ISUP и SCCP . Они подготавливают и передают в MTP сообщения (User Information). MTP дополняет эти сообщения соответствующей служебной информацией. В результате формируется сигнальная единица сообщения (MSU – Message Signaling Unit).

В функции 3-го уровня MTP входит маршрутизация сигнальных единиц. С этой целью к пользовательскому сообщению добавляют метку маршрутизации (Routing Label ) и информационный октет (SIO ). Тем самым указывают коды сигнальных пунктов отправителя (OPC ) и получателя (DPC ) сообщения, пользователя MTP и идентификатор сети (NI ).

Уровень 2 MTP обеспечивает достоверной обмен информацией между двумя сигнальными пунктами. С этой целью в сигнальную единицу включают проверочные биты (CK ). Номера сигнальных единиц, передаваемых в прямом и обратном направлениях (FSN и BSN ) и соответствующие биты-индикаторы (FIB и BIB ) обеспечивают повторную передачу сигнальных единиц при выявлении ошибок на приемной стороне.

Уровень 1 определяет физические, электрические и функциональные характеристики тракта передачи сигнализации и устройств доступа. Для передачи сигнализации используют цифровой канал со скоростью передачи 64 кбит/с. Часто для ОКС-7 выделяют 16-й канал 32-х канального тракта E1, однако это не является обязательным.

Рис. 1.

Структура протоколов ОКС -7

MTP – Message Transfer Part – часть передачи сообщений

ISUP – Integrated Services Digital Network (ISDN) User Part – пользователькая часть сети ISDN

SCCP – Signaling Connection Control Part – часть управления сигнальными соединениями

TCAP – Transaction Capabilities Application Part – прикладная часть возможностей транзакций

BSSAP – Base Station System Application Part – прикладная часть подсистемы базовых станций GSM. Состоит из:

  • DTAP (Direct Transfer Part) - прикладной части обмена сигнализацией между MS и MSC,
  • BSSMAP (BSS Management Application Part) – прикладной части взаимодействия BSC и MSC

RANAP – Radio Access Network Application Part – прикладная часть подсистемы радиодоступа в сетях UMTS

MAP – Mobile Application Part – прикладная часть поддержки мобильности сетей GSM

INAP – Intelligent Network Application Part – прикладная часть интеллектуальных сетей (фиксированная связь)

CAP – CAMEL Application Part – прикладная часть интеллектуальных сетей (подвижная связь)


Рис. 2.

Формат сигнальной единицы сообщений представлен на рис. 3.


Рис. 3.

F – Flag (01111110) – флаг начала и конца сигнальной единицы

BSN – Backward Sequence Number – обратный порядковый номер

BIB – Backward Indicator Bit – обратный бит-индикатор

FSN – Forward Sequence Number – прямой порядковый номер

FIB – Forward Indicator Bit – прямой бит-индикатор

LI – Length indicator – указывает число байт, следующих за LI; идентифицирует тип сигнальной единицы:

0 – Fill-In Signal Unit (FISU) –заполняющая сигнальная единица

1 или 2 – Link Status Signal Unit (LSSU) – сигнальная единица сигнального звена

более 2 – Message Signal Unit (MSU) – сигнальная единица сообщения

SIO – Service information octet – октет информации о сервисе

SI – Service Indicator: ISUP SCCP Link Status

NI – Network Indicator (идентификатор сети): 00; 10; 11.

DPC – destination point code – код пункта назначения

OPC – originating point code – код пункта отправления

SLS – signaling link selection field – поле выбора тракта сигнализации

CK – Check bits – проверочные биты

ISUP реализует функции управления вызовами с возможностью предоставления абонентам услуг ISDN.

Подсистема ISUP использует стандартные сообщения, формат которых определен спецификациями Q.767.

Сообщения, используемые при установлении и окончании вызова:

  • IAM – Initial Address Мessage – начальное адресное сообщение
  • SAM – Subsequent Address Message – последующее адресное сообщени
  • ACM – Address Complete Message – адрес полный
  • ANM – Answer Message – ответ
  • REL – Release Message – освобождение
  • RCM – Release Complete Message – освобождение выполнено

Сообщения ISUP передают по принципу «от звена к звену».

Помимо метки маршрутизации, в поле SIF включаются идентификатор канала (CIC – Circuit Identification Code), однозначно связывающий данное сигнальное сообщение с определенным каналом трафика.


Рис. 4.

Последовательность установления вызова SCCP реализует обмен сигнализацией, несвязанной непосредственно с вызовами и каналами трафика.

В отличие от ISUP SCCP позволяет устанавливать сквозные сигнальные соединения по принципу «из конца в конец».

Формат поля SIF при передаче сообщения SCCP:


Рис. 5.

SCCP обеспечивает передачу сообщений двух типов:

1) Без установления логического соединения (Connection less). Используют MAP, INAP, CAP и др. через TCAP, BSSAP (часть BSSMAP), рис. 6.

2) C установлением логического соединения (Connection oriented). Использует BSSAP (DTAP и часть BSSMAP), RANAP (рис. 7).


Рис. 6.


Рис. 7.

SCCP обеспечивает дополнительные возможности адресации сообщений.

Получателя и отправителя сообщений можно адресовать, используя:

  • номер подсистемы (SSN – Subsystem Number);
  • глобальный заголовок (GT – Global Title).

Номер подсистемы позволяет адресовать сообщения различным сетевым элементам, имеющим одинаковый SPC.

Можно дифференцировать сообщения, адресованные MSC, VLR, HLR, EIR, находящимся в одном узле.

Номера некоторых подсистем:

Глобальный заголовок (GT) используют для адресации SCCP сообщений, направляемых в другие сети ОКС-7.

Например, HLR сети X (NI=10) посылает SCCP сообщение VLR сети Y (NI=10), через транзитную сеть Z (NI=00). Непосредственно адресовать сообщение с использованием только SPC нельзя, так как код сигнального пункта не является уникальным. Однако можно использовать ISDN номер VLR, который и образует GT.

Сигнальную единицу на исходящем узле посредством SPC адресуют не непосредственно в узел-получатель, а в пограничный шлюзовый узел. При этом указывают, что в сообщении содержится информация о GT, например в виде ISDN номера VLR. Шлюзовый узел, принадлежащий двум сетям (NI=10 и NI=00), распаковывает SCCP сообщение, извлекает из него GT, анализирует его и определяет SPC следующего пограничного узла (в своей сети).

В сообщение, отправляемое из одного шлюза в другой, опять вкладывают GT.

Второй шлюз также распаковывает сообщение, извлекает из него GT, и на основании его анализа формирует SCCP сообщение в узел-получатель, используя SPC этого узла. GT в это сообщение уже не вкладывают.


Рис. 8.

DTAP (Direct Transfer Part)


BSSMAP (BSS Management Application Part)





MAP – Mobile Application Part

Служит для обновления данных о местоположении в VLR, HLR, SIM. Инициируется MS в 3-х случаях:

  • при смене локальной зоны,
  • при включении,
  • при истечении таймера периодической локализации.

1. MS инициирует процедуру локализации, посылая сообщение Location_Update_Request (TMSI, LAISIM).

BSS передает в MSC сообщение: BSSAP: LOCATION_UPDATING_Request (TMSI, LAISIM, LAIBCCH).

В новом MSC нет данных, позволяющих преобразовать LAISIM – Адрес старого VLR:

2. MSC запрашивает у MS IMSI: BSSAP: IDENTITY_Request .

3. MS возвращает IMSI в открытом виде:BSSAP: IDENTITY_Response (IMSI).

4. VLR преобразует первые цифры IMSI (MCC+MNC+HLRID) в адрес HLR в сети ОКС-7.

5. VLR запрашивает у HLR аутентификационные триплеты: MAP: SEND_AUTHENTICATION_INFO_Request (IMSI).

6. HLR пересылает запрос в AC, AC генерирует триплеты, возвращает их в HLR, а тот пересылает их в VLR:

MAP: SEND_AUTHENTICATION_INFO_Response (5 триплетов).

В новом MSC есть данные, позволяющих преобразовать LAISIM – Адрес старого VLRN:

7. Новый VLR определяет адрес старого VLR в сети ОКС.

8. Новый VLR делает запрос в старый VLR: MAP: SEND_IDENTIFICATION_Request (TMSI).

9. Старый VLR возвращает IMSI и аутентификационные триплеты: MAP: SEND_IDENTIFICATION_Response (IMSI, триплеты).

10. Проводится аутентификация абонента.

11. VLR информирует HLR о регистрации MS: MAP: UPDATE_LOCATION_Request (IMSI, MSC-ISDN, VLR-ISDN).

12. HLR дает команду старому VLR об удалении абонента из базы данных: MAP: CANCEL_LOCATION_Request (IMSI).

13. Старый VLR удаляет абонента и подтверждает удаление: MAP: CANCEL_LOCATION_Response.

14. HLR принимает решение об обслуживании абонента в новом коммутаторе. При положительном решении информирует новый

VLR об услугах, доступных абоненту: MAP: INSERT_SUBSCRIBER_DATA_Request (MSISDN, данные об основных и

дополнительных услугах абонента, о контролируемых VLR запретах, о подписке CAMEL и т.д.).

15. VLR подтверждает полученную абонентскую информацию: MAP: INSERT_SUBSCRIBER_DATA_Response

16. HLR подтверждает регистрацию абонента: MAP: UPDATE_LOCATION_Response (HLR-ISDN).

17. VLR возвращает MS подтверждение регистрации: BSSAP: LOCATION_UPDATING_ACCEPT (TMSI, LAI).

В результате проведенного обмена сигнальной информацией:

  • В SIM-карте MS записано новое значение LAI и новый TMSI.
  • В новом VLR создана запись об абоненте, включая данные о LA, в которой абонент находится.
  • В старом VLR запись об абоненте ликвидирована.
  • В HLR обновлены данные о местоположении MS – сохранены адреса MSC и VLR.

Исходящий вызов

Рис. 9

Входящий вызов

Доставка вызова в обслуживающий коммутатор:


Рис. 10.

MSRN – Mobile Station Roaming Number

1. В GMSC поступает начальное адресное сообщение: ISUP: IAM (MSISDN-B).

2. GMSC преобразует первые цифры MSISDN-B в адрес HLR-B в сети ОКС-7.

3. GMSC направляет в HLR-B запрос о маршрутизации вызова: MAP: SEND_ROUTING_INFO_Request (MSISDN-B).

4. HLR проверяет: - нахождение абонента в разрешенной сети;

Подписку на услугу;

Отсутствие запретов;

Необходимость переадресации.

5. HLR преобразует VLR-ISDN в адрес VLR в сети ОКС-7.

6. HLR направляет в VLR запрос о предоставлении роумингового номера: MAP: PROVIDE_ROAMING_NUMBER_Request (IMSI).

7. VLR проверяет, подключен ли абонент в данный момент (IMSI Attached/Detached). При положительном результате – ассоциирует

IMSI с одним из MSRN из диапазона номеров (например, присваивает абоненту MSRN 7-495-xyz-3333).

8. VLR возвращает в HLR выделенный роуминговый номер: MAP: PROVIDE_ROAMING_NUMBER_Response (MSRN).

9. HLR пересылает MSRN в GMSC: MAP: SEND_ROUTING_INFO_Response (MSRN).

10.GMSC анализирует первые цифры MSRN и определяет маршрут, формирует и отправляет IAM, в которое включает MSRN. IAM

поступает в MSC: ISUP: IAM (MSRN).

11.MSC ассоциирует поступивший вызов с определенным абонентом (с IMSI) и освобождает MSRN. MSC запрашивает у VLR

значения LAI и TMSI. Преобразует LAI в адрес того BSC, который обслуживает соты данной LA.

12.MSC дает команду BSC послать пейджинговые сообщения по всем сотам локальной области: BSSAP: Paging (TMSI, LAI, IMSI).

BSC организует передачу пейджинга на радиоинтерфейсе Paging Request (TMSI).

Установление входящего вызова (обслуживающий MSC – MS):

Рис. 11.

Подробную информацию об эволюции сетей мобильной связи, текущем состоянии, трендах и перспективах ее развития читайте в новейшей книге-справочнике "Мобильная связь на пути к 6G ".

ответствующих услуг связи. Подсистема пользователей может быть реализована в нескольких версиях в зависимости от протоколов верхних уровней, которые предоставляют пользователям, возможно имеющим различные технические устройства, средства связи друг с другом. Подсистемы пользователей получают в свое распоряжение услуги подсистемы передачи сообщений МТР по доставке информации в сети без установления соединения с упорядоченной последовательностью передачи.

Рис. 2.6. Архитектура ОКС №7:

MTP – подсистема передачи сообщений;

SCCP – подсистема управления установлением сигнализации;

TCAP – обработка транзакций;

MAP – подсистема пользователя подвижной связи;

ISUP – подсистема пользователя ЦСИС;

TUP – подсистема пользователя телефонии;

MUP – подсистема пользователя подвижной связи (NMT);

HUP – подсистема передачи сигналов управления в процессе разговора (NMT);

INAP – подсистема пользователя интеллектуальной сети (IN);

OMAP – подсистема техобслуживания и эксплуатации.

2.3. Функциональные уровни ОКС №7

Функциональная архитектура ОКС №7 включает четыре уровня, три из которых входят в состав подсистемы передачи сообщений МТР. Подсистемы пользователей образуют параллельные элементы на четвертом функциональном уровне (рис. 2.7).

Рис. 2.7. Функциональные уровни ОКС

Уровень 1 (функции звена данных сигнализации) определяет физические, элек-

трические и функциональные характеристики звена данных сигнализации и средства доступа к нему. Элементом уровня 1 является канал связи для звена сигнализации. Детальные требования к звену данных сигнализации приведены в рекомендации МСЭ

Уровень 2 (функции звена сигнализации) определяет функции и процедуры, от-

носящиеся к передаче сигнальных сообщений по отдельному звену сигнализации. Функции уровней 1 и 2 образуют звено сигнализации, обеспечивающее надежную передачу сигнальных сообщений между двумя пунктами сети сигнализации.

Сигнальное сообщение, поступающее от верхних уровней, проходит по звену сигнализации в виде сигнальных единиц (Signal Unit - SU) переменной длины. Для надежной работы звена сигнализации сигнальная единица включает, помимо информации сигнального сообщения, информацию для управления передачей.

Функциями звена сигнализации являются деление сигнальных сообщений на сигнальные единицы, обнаружение ошибок в сигнальных единицах, исправление ошибок, обнаружение отказа звена сигнализации, восстановление звена сигнализации и др. Подробные спецификации функций звена сигнализации приведены в рекомендации МСЭ Q.703.

Уровень 3 (функции сети сигнализации) определяет функции и процедуры передачи, общие для различных типов звеньев сигнализации и независимые от работы каждого из них. Эти функции подразделяются на две большие категории:

функции обработки сигнальных сообщений, которые при правильной передаче сообщения направляют его по звену сигнализации или в соответствующую подсистему пользователя;

функции управления сетью сигнализации, которые на основе заранее определенных данных и информации о состоянии сети сигнализации управляют маршрутизацией сообщений и конфигурацией средств сети сигнализации. В случае изменения состояний они обеспечивают также изменение конфигурации сети и другие меры, необходимые для обеспечения или восстановления нормальной работы сети сигнализации.

Различные функции уровня 3 взаимодействуют друг с другом и с функциями других уровней посредством команд и индикаций. Детальные требования к функциям сети сигнализации приведены в рекомендации МСЭ Q.704.

Уровень 4 (функции подсистемы пользователя) состоит из различных подсис-

тем пользователей, каждая из которых определяет функции и процедуры сигнализации, характерные для определенного типа пользователя системы. Набор функций

подсистемы пользователя может значительно различаться для разных категорий пользователей системы сигнализации. В общем виде можно выделить две группы пользователей:

пользователи, для которых большинство функций связи определено в системе сигнализации. Например, функции управления вызовами телефонии с соответствующей подсистемой пользователя телефонии;

пользователи, для которых большинство функций связи определено вне системы сигнализации. Например, использование системы сигнализации для передачи информации, касающейся управления и техобслуживания. Для таких "внешних пользователей" подсистема пользователя может рассматриваться как интерфейс типа"почтовый ящик" между подсистемой внешнего пользователя и функцией передачи сообщений,

(разбирается) в соответствующие форматы сигнальных сообщений. Основными подсистемами пользователя ОКС №7 являются:

подсистема пользователя телефонии (TUP);

подсистема пользователя ISDN (ISUP);

подсистема управления соединением сигнализации(SCCP), предоставляющая услу-

ги сети, связанные или не связанные с установлением соединений для передачи сигнальной информации, относящейся или не относящейся к речевым каналам. Эта под-

система используется совместно с другими подсистемами пользователей(см.

подсистема пользователей мобильной связи стандартаNMT-450 (MUP);

подсистема пользователей процедуры передачи управления в процессе разговора сети мобильной связи NMT-450 (HUP);

подсистема пользователей мобильной связи стандартаGSM (MAP);

подсистема пользователя интеллектуальной сети(INAP);

подсистема возможностей транзакций(ТСАР);

подсистема эксплуатации, технического обслуживания и административного управления (ОМАР).

2.4. Примитивы услуг ОКС №7

Интерфейсы между функциональными элементами системы сигнализации ОКС №7 описываются с помощью примитивов. Примитивами являются блоки данных определенного вида, которые передаются между уровнями системы для вызова различных процедур. Определение примитива не предполагает конкретной реализации услуги. Когда функциональный элемент ОКС №7 моделируется согласно семиуровневой эталонной модели ВОС (например, SCCP, ТСАР), примитивы услуг определяются согласно рекомендации МСЭ-Т Х.210. В соответствии с этой рекомендацией на рис. 2.8 показана связь между терминами"услуга", "граница", "примитивы услуг",

"протокол равноправия" и "равноправные объекты". Термин "граница" относится к границам между уровнями и подуровнями.

Рис. 2.8. Взаимодействие примитивов услуг:

a – услуга; b – примитив услуги; c – протокол равноправия;

d – равноправные объекты.

В соответствии с направлением потока примитивов определено четыре типа примитивов (рис. 2.9):

запрос - примитив, выдаваемый пользователем для вызова элемента услуги;

индикация - примитив, выдаваемый поставщиком услуги для указания, что элемент услуги вызван пользователем услуги в точке доступа равноправной услуги или поставщиком услуги;

ответ - примитив, выдаваемый пользователем для завершения формирования в конкретной точке доступа к услуге некоторого элемента услуги, вызов которого ранее был указан в этой точке;

подтверждение - примитив, выдаваемый поставщиком услуги для завершения формирования в конкретной точке доступа к услуге некоторого элемента услуги, вызванного ранее запросом в этой точке.

Рис. 2.9. Типы примитивов услуг

Примитив услуги состоит из имени и одного или нескольких параметров, перемещаемых в направлении примитива услуги. Имя примитива услуги содержит три элемента: тип примитива; имя, описывающее выполняемое действие; инициал (или инициалы) описания (под)уровня услуги.

Используются следующие инициалы описания уровня услуги:

ОМ - для примитивов управления эксплуатацией, связанных с подсистемой ОМАР;

ТС - для подуровня компонента ТСАР;

TR - для подуровня транзакций ТСАР;

Р - для уровня представления в подсистемеISUP;

S - для сеансового уровня в подсистемеISUP;

Т - для транспортного уровня в подсистемеISUP;

N - для подсистемы обслуживания сети(МТР +SCCP).