Архимедова сила равна весу вытесненной жидкости. Старт в науке. Почему вес тела в воде меньше веса тела в воздухе

Часто научные открытия становятся следствием простой случайности. Но только люди с подготовленным умом могут оценить важность простого совпадения и сделать из него далеко идущие выводы. Именно благодаря цепи случайных событий в физике появился закон Архимеда, объясняющий поведение тел в воде.

Предание

В Сиракузах об Архимеде слагали легенды. Однажды правитель этого славного города усомнился в честности своего ювелира. В короне, изготовленной для правителя, должно было содержаться определенное количество золота. Проверить этот факт поручили Архимеду.

Архимед установил, что в воздухе и в воде тела имеют разный вес, причем разность прямо пропорциональна плотности измеряемого тела. Измерив вес короны в воздухе и в воде, и проведя аналогичный опыт с целым куском золота, Архимед доказал, что в изготовленной короне существовала примесь более легкого металла.

По преданию, Архимед сделал это открытие в ванне, наблюдая за выплеснувшейся водой. Что стало дальше с нечестным ювелиром, история умалчивает, но умозаключение сиракузского ученого легло в основу одного из важнейших законов физики, который известен нам, как закон Архимеда.

Формулировка

Результаты своих опытов Архимед изложил в труде «О плавающих телах», который, к сожалению, дошел до наших дней лишь в виде отрывков. Современная физика закон Архимеда описывает, как совокупную силу, действующую на тело, погруженное в жидкость. Выталкивающая сила тела в жидкости направлена вверх; ее абсолютная величина равна весу вытесненной жидкости.

Действие жидкостей и газов на погруженное тело

Любой предмет, погруженный в жидкость, испытывает на себе силы давления. В каждой точке поверхности тела данные силы направлены перпендикулярно поверхности тела. Если бы эти они были одинаковы, тело испытывало бы только сжатие. Но силы давления увеличиваются пропорционально глубине, поэтому нижняя поверхность тела испытывает больше сжатие, чем верхняя. Можно рассмотреть и сложить все силы, действующие на тело в воде. Итоговый вектор их направления будет устремлен вверх, происходит выталкивание тела из жидкости. Величину этих сил определяет закон Архимеда. Плавание тел всецело основывается на этом законе и на различных следствиях из него. Архимедовы силы действуют и в газах. Именно благодаря этим силам выталкивания в небе летают дирижабли и воздушные шары: благодаря воздухоизмещению они становятся легче воздуха.

Физическая формула

Наглядно силу Архимеда можно продемонстрировать простым взвешиванием. Взвешивая учебную гирю в вакууме, в воздухе и в воде можно видеть, что вес ее существенно меняется. В вакууме вес гири один, в воздухе - чуть ниже, а в воде - еще ниже.

Если принять вес тела в вакууме за Р о, то его вес в воздушной среде может быть описан такой формулой: Р в =Р о - F а;

здесь Р о - вес в вакууме;

Как видно из рисунка, любые действия со взвешиванием в воде значительно облегчают тело, поэтому в таких случаях сила Архимеда обязательно должна учитываться.

Для воздуха эта разность ничтожна, поэтому обычно вес тела, погруженного в воздушную среду, описывается стандартной формулой.

Плотность среды и сила Архимеда

Анализируя простейшие опыты с весом тела в различных средах, можно прийти к выводу, что вес тела в различных средах зависит от массы объекта и плотности среды погружения. Причем чем плотнее среда, тем больше сила Архимеда. Закон Архимеда увязал эту зависимость и плотность жидкости или газа отражается в его итоговой формуле. Что же еще влияет на данную силу? Другими словами, от каких характеристик зависит закон Архимеда?

Формула

Архимедову силу и силы, которые на нее влияют, можно определить при помощи простых логических умозаключений. Предположим, что тело определенного объема, погруженное в жидкость, состоит из тоже же самой жидкости, в которую оно погружено. Это предположение не противоречит никаким другим предпосылкам. Ведь силы, действующие на тело, никоим образом не зависят от плотности этого тела. В этом случае тело, скорее всего, будет находиться в равновесии, а сила выталкивания будет компенсироваться силой тяжести.

Таким образом, равновесие тела в воде будет описываться так.

Но сила тяжести, из условия, равна весу жидкости, которую она вытесняет: масса жидкости равна произведению плотности на объём. Подставляя известные величины, можно узнать вес тела в жидкости. Этот параметр описывается в виде ρV * g.

Подставляя известные значения, получаем:

Это и есть закон Архимеда.

Формула, выведенная нами, описывает плотность, как плотность исследуемого тела. Но в начальных условиях было указано, что плотность тела идентична плотности окружающей его жидкости. Таким образом, в данную формулу можно смело подставлять значение плотности жидкости. Визуальное наблюдение, согласно которому в более плотной среде сила выталкивания больше, получило теоретическое обоснование.

Применение закона Архимеда

Первые опыты, демонстрирующие закон Архимеда, известны еще со школьной скамьи. Металлическая пластинка тонет в воде, но, сложенная в виде коробочки, может не только удерживаться на плаву, но и нести на себе определенный груз. Это правило - важнейший вывод из правила Архимеда, оно определяет возможность построения речных и морских судов с учетом их максимальной вместимости (водоизмещения). Ведь плотность морской и пресной воды различна и суда, и подводные лодки должны учитывать перепады этого параметра при вхождении в устья рек. Неправильный расчет может привести к катастрофе - судно сядет на мель, и для его подъема потребуются значительные усилия.

Закон Архимеда необходим и подводникам. Дело в том, что плотность морской воды меняет свое значение в зависимости от глубины погружения. Правильный расчет плотности позволит подводникам правильно рассчитать давление воздуха внутри скафандра, что повлияет на маневренность водолаза и обеспечит его безопасное погружение и всплытие. Закон Архимеда должен учитываться также и при глубоководном бурении, огромные буровые вышки теряют до 50% своего веса, что делает их транспортировку и эксплуатацию менее затратным мероприятием.

учебный год

Тема урока:Архимедова сила.

Закон Архимеда

Цели урока:

образовательная: о бнаружить наличие силы, выталкивающей тело из жидкости;

развивающая: научить применять закон Архимеда;

воспитательная : формировать интеллектуальные умения анализировать, сравнивать, систематизировать знания. Привить ученикам интерес к науке.

Тип урока: урок усвоения новых знаний.

Оборудование(для учителя) : штатив, стеклянный сосуд с отверстием для вытекания воды, динамометр, набор грузов, стакан

для учащихся: динамометр, нить, набор грузов, сосуды с водой, пластилин, шар.

Демонстрация: опыт по рис 139 учебника, деревянный брусок, мяч, сосуд с водой.

Ход урока

1.Организационный момент.

Сообщение о целях урока.

2.Актуализация знаний.

Ответить на вопросы:

1.Как формулируется закон Паскаля?

2.Как вычисляется давление жидкости на дно и стенки сосуда?

3.Подготовка к усвоению нового материала.

Постановка учебных проблем:

а/ действует ли жидкость на погруженное в неё тело?

б/ всегда ли жидкость действует на погруженное тело?

в/ как теоретически объяснить это действие жидкости на погруженное в неё тело?

Обратимся к опыту. Опускаем в воду дере вянный брусок. Брусок плавает на поверхности воды. Почему деревянный брусок плавает на воде?

Опускаем мяч в воду и убираем руку. Мяч выпрыгивает на поверхность воды. Почему мяч выпрыгивает из воды?

В воде на погруженные тела действует выталкивающая сила.


Всегда ли жидкость действует на погруженное тело? Опущенный в воду цилиндр из металла тонет. Заметно ли действие воды на это тело?

4. Объяснение нового материала:

Проведем опыт. Подвесим цилиндр к динамометру, и наблюдаем растяжение пружины в воздухе, а затем в воде.

1.Опыт по обнаружению выталкивающей силы:

1. Определите вес груза в воздухе Р1.

2. Определите вес груза в воде Р2.

3.Сравните результаты измерений и сделайте вывод.

Вывод: вес тела в воде меньше веса тела в воздухе: Р1 > Р2.

- Почему вес тела в воде меньше веса тела в воздухе?

Ответ : жидкость действует на любое тело, погруженное в неё. Эта сила направленная вертикально вверх.

- А как можно найти величину выталкивающей силы?

Ответ: из веса тела в воздухе надо вычесть вес тела в воде.

Мы пришли к следующему выводу. На тело, погруженное в жидкость, действуют две силы: одна сила – сила тяжести, направленная вниз, другая – выталкивающая, направленная вверх.

https://pandia.ru/text/78/176/images/image003_168.gif" width="12" height="75"> 2

Сегодня мы с вами будем изучать выталкивающую силу, действующую на тела, погруженные в жидкость. Выясним, от каких факторов зависит эта сила. Научимся вычислять эту силу. Она называется выталкивающей, или архимедовой силой в честь древнегреческого ученого Архимеда, который впервые указал на её существование и рассчитал её значение.

Архимед (287-212 гг. до нашей эры)-

Древнегреческий ученый, физик и математик. Установил правило рычага, открыл закон гидростатики. Материал об Архимеде прилагается в конце разработки урока.

5. Работа в группах.

Отчего зависит Архимедова сила?

Чтобы ответить на этот вопрос проведем работу в группах. Каждая группа получает задание и отвечает на поставленный вопрос.

Задание первой группе

Определите зависимость архимедовой силы от плотности тела.

Оборудование: сосуд с водой, динамометр, тела одинакового объема и разной плотности (алюминиевый и медный цилиндры), нить.

1.Определите вес алюминиевого цилиндра в воздухе. Р1= …….. Н

2.Определите вес алюминиевого цилиндра в воде. Р2= …....... Н

3.Найдите архимедову силу, действующую на алюминиевый цилиндр. Р1 - Р2=………. Н

4.Определите вес медного цилиндра в воздухе. Р3=………. Н

5.Определите вес медного цилиндра в воде. Р4= ………Н

6.Найдите архимедову силу, действующую на медный цилиндр. Р3 - Р4 = ……..Н

7.Сделайте вывод о зависимости (независимости) архимедовой силы от плотности тела.

Ответ: архимедова сила …………………………………от плотности тела.

Задание второй группе

Определите зависимость архимедовой силы от объема тела.

Оборудование: сосуд с водой, тела разного объема (алюминиевые цилиндры), динамометр, нить.

1.Определите вес большого цилиндра в воздухе. Р1= Н

2. Определите вес большого цилиндра в воде. Р2= Н

3.Найдите архимедову силу, действующую на большой цилиндр. Р1 –Р2= Н

4.Определите вес маленького цилиндра в воздухе. Р3= Н

5. Определите вес маленького цилиндра в воде. Р4= Н

6.Найдите архимедову силу, действующую на маленький цилиндр. Р3 –Р4= Н

7.Сделайте вывод о зависимости (независимости ) архимедовой силы от объема тела.


Ответ: архимедова сила …………………………………от объема тела.

Задание третьей группе

Определите зависимость архимедовой силы от плотности жидкости.

Оборудование: динамометр, нить, сосуды с пресной водой и соленой водой, шар.

1.Определите вес шара в воздухе. Р1= Н

2. Определите вес шара в пресной воде. Р2= Н

3.Найдите архимедову силу, действующую на шар в пресной воде. Р1 – Р2 = Н

4.Определите вес шара в воздухе. Р1= Н

5. Определите вес шара в соленой воде. Р3= Н

6.Найдите архимедову силу, действующую на шар в соленой воде. Р1- Р2 = Н

7.Сделайте вывод о зависимости (независимости ) архимедовой силы от плотности жидкости.

Ответ: архимедова сила …………………………………от плотности жидкости.

Задание четвертой группе

Определите зависимость архимедовой силы от глубины погружения.

Оборудование: динамометр, нить, мензурка с водой, алюминиевый цилиндр.

1.Определите вес алюминиевого цилиндра в воздухе. Р1= Н

2. Определите вес алюминиевого цилиндра в воде на глубине 5 см. Р2= Н

3.Найдите архимедову силу, действующую на алюминиевый цилиндр в воде.

Р1 – Р2 = Н

4.Определите вес алюминиевого цилиндра в воздухе. Р1= Н

5. Определите вес алюминиевого цилиндра в воде на глубине 10 см. Р3= Н

6.Найдите архимедову силу, действующую на алюминиевый цилиндр во втором случае.

Р1 – Р3 = Н

7.Сделайте вывод о зависимости (независимости ) архимедовой силы от глубины погружения тела.

Ответ: архимедова сила …………………………………от глубины погружения тела.

Задание пятой группе

Определите зависимость архимедовой силы от формы тела.

Оборудование: динамометр, нить, сосуд с водой, кусочек пластилина.

1.Кусочку пластилина придайте форму куба.

2. Определите вес пластилина в воздухе. Р1= Н

3. Определите вес пластилина воде. Р2 = Н

4.Найдите архимедову силу, действующую на кусочек пластилина. Р1 – Р2 = Н

5.Кусочку пластилина придайте форму шара.

6. Определите вес пластилина в воздухе. Р3= Н

7. Определите вес пластилина воде. Р4= Н

8.Найдите архимедову силу, действующую на кусочек пластилина. Р3-Р4= Н

9.Сравните эти силы и сделайте вывод о зависимости (независимости ) архимедовой силы от формы тела.

Ответ: архимедова сила …………………………………от формы тела.

После получения результатов каждая группа устно отчитывается о своей работе и сообщает свои выводы. Выводы записываются учащимися в тетрадях, а учителем – на доске в виде таблицы:

Архимедова сила

Не зависит от:

зависит от:

1)формы тела;

2)плотности тела

3)глубины погружения.

1)объема тела;

2)плотности жидкости.

Мы узнали о том, что архимедова сила зависит от объема тела и плотности жидкости. Как теоретически объяснить действие жидкости на погруженное в неё тело. Опыты показывают, что действие жидкости направлено вверх.

Значение выталкивающей силы можно определить используя прибор, который находится перед вами.

Прибор носит название "ведерко Архимеда". Это пружина с указателем, шкала, ведерко, цилиндр, того же объема, отливной сосуд, стакан.

Здесь пружина выполняет роль динамометра.

1. Показать, что объем ведерки равен объему цилиндра.

2. В отливной сосуд наливаем воду чуть выше уровня отливной трубки. Лишняя вода выльется в стакан. Сливаем воду.

3. Подвесим ведерко к пружине, а к нему - цилиндр. Отмечаем растяжение пружины с помощью указателя. Стрелка показывает вес тела в воздухе.

4. Приподняв тело, под него подставляем отливной сосуд. После погружения в отливной сосуд, часть воды выльется в стакан. Указатель пружины поднимется вверх, пружина сокращается, показывая уменьшение веса тела в жидкости.

Почему пружина сокращается?

В данном случае на тело, кроме силы тяжести, действует ещё и сила выталкивающая его из жидкости.

В какую сторону направлена выталкивающая сила?

Выталкивающая сила направлена вверх.

5. Перельем воду из стакана в ведерко.

Обратите внимание на указатель пружины. Где остановился указатель пружины, после того как мы перелили воду из стакана в ведерко?

Указатель вернулся на прежнее место.

Почему указатель пружины вернулся в прежнее положение?

На пружину кроме силы тяжести и выталкивающей силы действует вес воды в ведерке.

Вес воды равен выталкивающей силе.

Обратите внимание, сколько вытекло воды?

Полное ведерко.

Сравните объем налитой в ведерко воды и объем цилиндра.

Они одинаковы.

На основании этого опыта делаем вывод: выталкивающая сила равна весу жидкости, вытесненной телом.

6. Формулируется закон Архимеда: на тело, погруженное в жидкость, действует выталкивающая сила, равная по величине весу жидкости, вытесненной телом.

На основании этого опыта можно заключить, что сила, выталкивающая целиком погруженное в жидкость тело, равна весу жидкости в объеме этого тела.

Если бы подобный опыт проделать с телом, погруженное в газ, то показал бы, что сила, выталкивающая тело из газа, также равна весу газа, взятого в объеме тела .

Итак, опыт подтвердил, что архимедова (или выталкивающая) сила равна весу жидкости в объеме тела, т. е. FA=РЖ= g m ж.

Массу жидкости m ж, вытесняемую телом, можно выразить через её плотность (ρж) и объем тела (Vт) погруженного в жидкость (так как Vж – объем вытесненной телом жидкости равен Vт – объему тела, погруженного в жидкость, Vж = Vт), т. е. mж = ρжVт.

Тогда получим FА =gρжVт.

Как было установлено, архимедова сила зависит от плотности жидкости, в которую погружено тело, и от объема этого тела. Но она не зависит, например, от плотности вещества тела, погружаемого в жидкость, так как эта величина не входит в полученную формулу.

Определим теперь вес тела, погруженного в жидкость (или газ). Так как две силы, действующие на тело в этом случае, направлены в противоположные стороны (сила тяжести вниз, а архимедова сила вверх) то вес тела в жидкости Р1 будет меньше веса тела в вакууме Р=g m (m - масса тела) на архимедову силу FA= g m ж (m ж – масса жидкости, вытесненной телом) т. е. Р1 =Р - FA, или Р1 = g m - g m ж.

Таким образом, если тело погружено в жидкость (или газ), то оно теряет в своем весе столько, сколько весит вытесненная им жидкость (или газ).

Следует помнить, что при расчете силы Архимеда под V понимают только ту часть объема тела, которая полностью находится в жидкости.

Это может быть и часть объема тела (если оно плавает на поверхности, не полностью погрузившись), и весь объем (если тело утонуло).

На рисунке 2 этот объем закрашен.

https://pandia.ru/text/78/176/images/image007_112.gif" width="673" height="348 src=">

Закон Архимеда можно получить математическим путем.

Для объяснения используем представление о давлении жидкости на тело. Давление внутри жидкости: p=gρжh. Рассмотрим рисунок 3. В жидкости находится параллелепипед. Если верхняя грань находится на глубине h1 , а нижняя на глубине h2, то р2 >р1. Давление на боковые грани компенсируются, так как, по закону Паскаля, (на боковые грани) давление на одном уровне по всем направлениям одинаково.

https://pandia.ru/text/78/176/images/image009_99.gif" width="673" height="298">

Вывод: выталкивание тела происходит в результате действия разного давления на нижнюю и верхнюю грани:

Рнижн > Рверх.

Находим силы с которыми жидкость действует на верхний и нижний грани параллелепипеда.

F1=p1S= gρж h1.

F2=p2S= gρж h2.

F2 - F1=gρж h2- gρжh1=gρж (h2 –h1).

Так как (h2 –h1)= h – высота параллелепипеда, то Sh=V –объем параллелепипеда. В итоге F2 - F1 =gρжV.

Окончательно: FА =gρжV.

Что такое gρжV? По формуле это вес жидкости вытесненной данным телам.

5. Пример решения задачи

Определить выталкивающую силу, действующую в морской воде на камень объемом 1,6 м3.

Дано: Решение:

https://pandia.ru/text/78/176/images/image010_85.gif" width="2 height=86" height="86">V= 1,6 м3 FА =gρжV. FА=9,8 м/кг. 1030 кг/м3. 1,6 м3 =Н ≈ 16,5 кН.

ρж =1030 кг/м3

DIV_ADBLOCK800">

18.К коромыслу весов подвешены два стальных цилиндра одинаковой массы. Нарушится ли равновесие весов, если один цилиндр погрузить в воду, а второй цилиндр - в керосин. Плотность воды 1000 кг/м3, а плотность керосина 800 кг/м3.

7. Работа по книге.

Решение задач из упражнения 32 (3,4) учебника.

8. Проверка усвоения учащимися пройденного материала.

Учащиеся получают карточки с задачами разного уровня сложности:

Первая задача - на определение выталкивающей силы, вторая – на определение объема, третья – комбинированная.

Карточка 1.

2.Каков объем стального цилиндра, если разность веса цилиндра в воздухе и в воде составляет 4 Н? Плотность воды 1000 кг/м3.

3.Гранитная плита размером 1,2 х 0,6 х 0,3 м на половину своего объема погружена в воду. На сколько плита стала легче? Плотность воды 1000 кг/м3.

Карточка 2.

1.Объем мяча 0,002 м3. Какая выталкивающая сила действует на мяч при его погружении в воду? Плотность воды 1000 кг/м3.

3.Свинцовый цилиндр массой 200 г подвешен к пружинным весам. Затем цилиндр погружают в воду. Каковы показания весов в первом и во втором случаях? Плотность воды 1000 кг/м3. плотность свинца 11300 кг/м3.

Карточка 3.

1.С какой силой выталкивается из керосина пробковый брусок размером 4 х 5 х 10 см? Плотность 800 кг/м3.

2. Архимедова сила действующая на деталь в воде равна 1000 Н. найти объем детали. Плотность воды 1000 кг/м3.

Карточка 4.

1.Чему равна выталкивающая сила, действующая на металлический брусок объемом 0,8 дм3 при полном его погружении в воду? Плотность воды 1000 кг/м3.

2. Архимедова сила действующая на балку в воде равна 1000 Н. найти объем детали. Плотность воды 1000 кг/м3.

3. Какую силу надо приложить, чтобы удержать в воде гранитную плиту, на которую действует сила тяжести 27000 Н? Объем плиты – 1 м3. плотность воды – 1000 кг/м3.

Карточка 5.

1.Объем стального бруска 6 дм3 . Какая выталкивающая сила действует на брусок? Плотность воды 1000 кг/м3.

2.Стальная плита весила в воздухе 1960 Н, после погружения в воду плита стала весить 1708,7 Н. Каков объем стальной плиты? Плотность воды 1000 кг/м3.

3. Деревянный шар, плотность которого 500 кг/м3, плавает в воде. Какая часть объема шара погружена в воду, если плотность воды - 1000 кг/м3.

9. Подведение итогов урока.

Мы на этом уроке изучили закон Архимеда. Что мы узнали? Достигли ли мы цели урока?

Оцениваются отличившиеся. Большое спасибо за урок!

10.Домашнее задание:§ 49,упр 32(1,2)

§8.Легенда об Архимеде. Стр. 163.

Для способных учащихся выполнить задание 29.

Дополнительный материал к уроку

На странице 106 книги «Занимательная физика» имеются статьи «Вечный» водяной двигатель», «Как был поднят «Садко»? Советую прочитать.

Архимед и его изобретения.

Несомненно, Архимед (около 287-212 до н. э.) - самый гениальный учёный Древней Греции. Он стоит в одном ряду с Ньютоном, Гауссом, Эйлером, Лобачевским и другими величайшими математиками всех времён. Его труды посвящены не только математике. Он сделал замечательные открытия в механике, хорошо знал астрономию , оптику, гидравлику и был поистине легендарной личностью.

Сын астронома Фидия, написавшего сочинение о диаметрах Солнца и Луны, Архимед родился и жил в греческом городе Сиракузы на Сицилии. Он был приближён ко двору царя Гиерона II и его сына-наследника.

Хорошо известен рассказ о жертвенном венце Гиерона. Архимеду поручили проверить честность ювелира и определить, сделан венец из чистого золота или с примесями других металлов и нет ли внутри него пустот. Однажды, размышляя об этом, Архимед погрузился в ванну, и заметил, что вытесненная его телом вода пролилась через край. Гениального учёного тут же осенила яркая идея, и с криком “Эврика, эврика!” он, как был нагой, бросился проводить эксперимент.

Идея Архимеда очень проста. Тело, погружённое в воду, вытесняет столько жидкости, каков объём самого тела. Поместив венец в цилиндрический сосуд с водой, можно определить, какое количество жидкости он вытеснит, т. е. узнать его объём. А, зная объём и взвесив венец, легко вычислить удельную массу. Это и даст возможность установить истину: ведь золото - очень тяжёлый металл, а более лёгкие примеси, и тем более пустоты, уменьшают удельную массу изделия.

Но Архимед на этом не остановился. В труде “О плавающих телах” он сформулировал закон, который гласит: “Тело, погружённое в жидкость, теряет в своём весе столько, каков вес вытесненной жидкости” . Закон Архимеда является (наряду с другими, позже открытыми фактами) основой гидравлики - науки, изучающей законы движения и равновесия жидкостей. Именно этот закон объясняет, почему стальной шар (без пустот) тонет в воде, тогда как деревянное тело всплывает. В первом случае вес вытесненной воды меньше веса самого шара, т. е. архимедова “выталкивающая” сила недостаточна для того, чтобы удержать его на поверхности. А тяжело гружёный корабль, корпус которого сделан из металла, не тонет, погружаясь только до так называемой ватерлинии. Поскольку внутри корпуса корабля много пространства, заполненного воздухом, средняя удельная масса судна меньше плотности воды и выталкивающая сила удерживает его на плаву. Закон Архимеда объясняет также, почему воздушный шар , заполненный тёплым воздухом или газом, который легче воздуха (водородом , гелием) , улетает ввысь.

Знание гидравлики позволило Архимеду изобрести винтовой насос для выкачивания воды. Такой насос (кохля) до недавнего времени применялся на испанских и мексиканских серебряных рудниках.

Из курса физики всем знакомо Архимедово правило рычага. Согласно преданию, учёный произнёс крылатую фразу: “Дайте мне точку опоры, и я подниму Землю!” . Конечно, Архимед имел в виду применение рычага, но, он был несколько самоуверен: кроме точки опоры ему понадобился бы и совершенно фантастический рычаг - невероятно длинный и при этом несгибаемый стержень.

Достоверные факты и многочисленные легенды говорят о том, что Архимед изобрёл немало интересных машин и приспособлений.

Список использованной литературы:

Самостоятельные работы по физике.

Занимательные опыты по физике.

VI класста физикадан проблемалы дәресләр.

Книга для чтения по физике.

Сборник задач по физике 7-8 класс.

Тематическое и поурочное планирование.

Заниательная физика. Книга 2.(стр.106).

Поурочные разработки по физике.

А. В Постников. Проверка знаний учащихся по физике.

Качественные задачи по физике.

Самостоятельные работы учащихся по физике.

Дидактический материал по физике.

Дополнительные задания по теме

Задачи:

Задачи первого уровня сложности.

На определение выталкивающей силы.

1.Объем стального бруска 0,2 м3. Какая выталкивающая сила действует на брусок при его погружении в воду? Плотность воды 1000 кг/м3.

2.Объем мяча 0,002 м3. Какая выталкивающая сила действует на мяч при его погружении в воду? Плотность воды 1000 кг/м3.

3.С какой силой выталкивается из керосина пробковый брусок размером 4 х 5 х 10 см? Плотность 800 кг/м3.

4.Чему равна выталкивающая сила, действующая на металлический брусок объемом 0,8 дм3 при полном его погружении в воду? Плотность воды 1000 кг/м3.

5.Объем стального бруска 6 дм3 . Какая выталкивающая сила действует на брусок? Плотность воды 1000 кг/м3.

6.Цилиндр объемом 0,02 м3опущен в воду. Найти архимедову силу. Плотность воды 1000 кг/м3.

7. Вычислите выталкивающую силу, действующую на гранитную глыбу, которая при полном погружении в воду вытесняет некоторую её часть. Объем вытесненной воды равен 0,8 м3. Плотность воды 1000 кг/м3.

8.Железобетонная плита размером 3,5 х 1,5 х 0,2 м полностью погружена в воду. Вычислите архимедову силу, действующую на плиту. Плотность воды 1000 кг/м3.

Задачи второго уровня сложности.

На определение объема:

1.Каков объем стального цилиндра, если разность веса цилиндра в воздухе и в воде составляет

4 Н? Плотность воды 1000 кг/м3.

2.Определите объем полностью погруженного в воду тела, если выталкивающая сила, действующая на него, равна 29,4 Н. Плотность воды 1000 кг/м3.

3. Архимедова сила действующая на деталь в воде равна 1000 Н. найти объем детали. Плотность воды 1000 кг/м3.

4. Архимедова сила действующая на балку в воде равна 1000 Н. найти объем детали. Плотность воды 1000 кг/м3.

5.Стальная плита весила в воздухе 1960 Н, после погружения в воду плита стала весить 1708,7 Н. Каков объем стальной плиты? Плотность воды 1000 кг/м3.

Задачи третьего уровня.

1.Гранитная плита размером 1,2 х 0,6 х 0,3 м на половину своего объема погружена в воду. На сколько плита стала легче? Плотность воды 1000 кг/м3.

2.Свинцовый цилиндр массой 200 г подвешен к пружинным весам. Затем цилиндр погружают в воду. Каковы показания весов в первом и во втором случаях? Плотность воды 1000 кг/м3. плотность свинца 11300 кг/м3.

3.Какую силу необходимо приложить к мячу объемом 5 дм3 и массой 0,5 кг для удержания его под водой? Плотность воды 1000 кг/м3. Куда направлена эта сила?

4. Какую силу надо приложить, чтобы удержать в воде гранитную плиту, на которую действует сила тяжести 27000 Н? Объем плиты – 1 м3. плотность воды – 1000 кг/м3.

5. Деревянный шар, плотность которого 500 кг/м3, плавает в воде. Какая часть объема шара погружена в воду, если плотность воды - 1000 кг/м3.

Задачи:

задачи практической направленности.

работа по карточкам:

1. На концах коромысла рычажных весов подвешены алюминиевый и железный бруски (см. рис.). Массы их подобраны так, что весы в воде находятся в равновесии. Какой брусок перевесит, если вылить воду их сосуда?

2. На концах коромысла рычажных весов подвешены два одинаковых стальных шарика. Сохранятся ли равновесие, если шарики опустить в разные жидкости (см. рис.)?

Керосин Вода

3.На рисунке изображены два тела шарообразной формы, плавающие в воде. Какое тело имеет большую плотность?

4. На поверхности воды плавает тело. Графически изобразите силы, действующие на это тело (см. рис.).

5. На рычажных весах уравновешены стеклянный шар без воздуха и свинцовый шарик (см. рис.) нарушится ли равновесие весов, если весы вместе с шарами переместить на вершину горы?

6.К одинаковым пружинам подвешены шарики равной массы, но разного объема. Снизу к шарикам подносят сосуд с водой и поднимают его до такого уровня, пока шарики полностью погрузятся в воду (см. рис.).Какая пружина сократится больше?

7.К одинаковым по упругости пружинам подвешены тела равной массы и равного объема (см. рис.). Какая пружина станет самой короткой, если погрузить в жидкость?

8.На какой из опущенных в воду стальных шаров действует наибольшая выталкивающая сила? Почему?

9.Подвешенные к коромыслу весов одинаковые шары погрузили в жидкость как показано на рисунке а , а затем, так как показано на рисунке б. В каком случае равновесии весов нарушится? Почему?

Плотность некоторых веществ, необходимых при решении задач.

Название вещества

Плотность, кг/м3

Алюминий

Казалось бы, нет ничего проще, чем закон Архимеда. Но когда-то сам Архимед здорово поломал голову над его открытием. Как это было?

С открытием основного закона гидростатики связана интересная история.

Интересные факты и легенды из жизни и смерти Архимеда

Помимо такого гигантского прорыва, как открытие собственно закона Архимеда, ученый имеет еще целый список заслуг и достижений. Вообще, он был гением, трудившимся в областях механики, астрономии, математики. Им написаны такие труды, как трактат «о плавающих телах», «о шаре и цилиндре», «о спиралях», «о коноидах и сфероидах» и даже «о песчинках». В последнем труде была предпринята попытка измерить количество песчинок, необходимых для того, чтобы заполнить Вселенную.


Роль Архимеда в осаде Сиракуз

В 212 году до нашей эры Сиракузы были осаждены римлянами. 75-летний Архимед сконструировал мощные катапульты и легкие метательные машины ближнего действия, а также так называемые "когти Архимеда". С их помощью можно было буквально переворачивать вражеские корабли. Столкнувшись со столь мощным и технологичным сопротивлением, римляне не смогли взять город штурмом и вынуждены были начать осаду. По другой легенде Архимед при помощи зеркал сумел поджечь римский флот, фокусируя солнечные лучи на кораблях. Правдивость данной легенды представляется сомнительной, т.к. ни у одного из историков того времени упоминаний об этом нет.

Смерть Архимеда

Согласно многим свидетельствам, Архимед был убит римлянами, когда те все-таки взяли Сиракузы. Вот одна из возможных версий гибели великого инженера.

На крыльце своего дома ученый размышлял над схемами, которые чертил рукой прямо на песке. Проходящий мимо солдат наступил на рисунок, а Архимед, погруженный в раздумья, закричал: «Прочь от моих чертежей». В ответ на это спешивший куда-то солдат просто пронзил старика мечом.

Ну а теперь о наболевшем: о законе и силе Архимеда...

Как был открыт закон Архимеда и происхождение знаменитой "Эврика!"

Античность. Третий век до нашей эры. Сицилия, на которой еще и подавно нет мафии, но есть древние греки.

Изобретатель, инженер и ученый-теоретик из Сиракуз (греческая колония на Сицилии) Архимед служил у царя Гиерона второго. Однажды ювелиры изготовили для царя золотую корону. Царь, как человек подозрительный, вызвал ученого к себе и поручил узнать, не содержит ли корона примесей серебра. Тут нужно сказать, что в то далекое время никто не решал подобных вопросов и случай был беспрецедентным.


Архимед долго размышлял, ничего не придумал и однажды решил сходить в баню. Там, садясь в тазик с водой, ученый и нашел решение вопроса. Архимед обратил внимание на совершенно очевидную вещь: тело, погружаясь в воду, вытесняет объем воды, равный собственному объему тела.

Именно тогда, даже не потрудившийся одеться, Архимед выскочил из бани и кричал свое знаменитое «эврика», что означает «нашел». Явившись к царю, Архимед попросил выдать ему слитки серебра и золота, равные по массе короне. Измеряя и сравнивая объем воды, вытесняемой короной и слитками, Архимед обнаружил, что корона изготовлена не из чистого золота, а имеет примеси серебра. Это и есть история открытия закона Архимеда.

Суть закона Архимеда

Если Вы спрашиваете себя, как понять закон Архимеда, мы ответим. Просто сесть, подумать, и понимание придет. Собственно, этот закон гласит:

На тело, погруженное в газ или жидкость действует выталкивающая сила, равная весу жидкости (газа) в объеме погруженной части тела. Эта сила называется силой Архимеда.


Как видим, сила Архимеда действует не только на тела, погруженные в воду, но и на тела в атмосфере. Сила, которая заставляет воздушный шар подниматься вверх – та же сила Архимеда. Высчитывается Архимедова сила по формуле:

Здесь первый член - плотность жидкости (газа), второй - ускорение свободного падения, третий - объем тела. Если сила тяжести равна силе Архимеда, тело плавает, если больше – тонет, а если меньше – всплывает до тех пор, пока не начнет плавать.


В данной статье мы рассмотрели закон Архимеда для чайников. Если Вы хотите узнать, как как решать задачи, где есть закон Архимеда, обращайтесь к . Лучшие авторы с удовольствием поделятся знаниями и разложат решение самой сложной задачи «по полочкам».

Наблюдения и опыты показывают, что на тела, помещенные в жидкость и газ оказывается давление. Давление жидкости и газа на одной высоте одинаково во всех направлениях. С изменением высоты происходит изменение давления. По этой причине возникает выталкивающая сила, которую называют архимедовой силой. Узнаем чему равна архимедова сила в жидкости и газе.

Чему равно давление в газах и жидкостях

Напомним определение давления. Давлением p называют физическую величину, равную отношению силы F , направленной перпендикулярно поверхности с площадью S :

$p={F\over S}$ (1)

Французский исследователь Блез Паскаль открыл закон, названный в последствии его именем, который звучит так: жидкости и газы передают производимое на них давление во все стороны одинаково.

На основании закона Паскаля и формулы (1) можно вычислить давление столба жидкости:

$p={F\over S}={m*g\over S}$ (2)

где: m — масса жидкости, g = 9,8 Н/кг — ускорение свободного падения.

Тогда, если выразить массу жидкости через плотность ρ и объем V , получим:

$p={ρ*V*g\over S}$ (3)

Выразив объем V через площадь S и высоту h , получим окончательную формулу для давления:

$p={ρ*g*h}$ (4)

В физике всегда необходимо знать в чем измеряется физическая величина. В честь Паскаля назван не только закон, но и единица измерения давления. Так как сила измеряется в ньютонах, а площадь в метрах квадратных, то:

$$={ \over }$$

Часто используются кратные единицы давления: килопаскаль (кПа) и мегапаскаль (МПа).

Закон Архимеда

Тяжелый предмет, который мы с огромным трудом отрываем от земли, удается довольно легко поднять, когда он находится в воде. Если взять пустую пластиковую бутылку с закрытой пробкой, погрузить ее полностью в воду и отпустить, то бутылка всплывет. Почему это происходит?

Для объяснения этих явлений достаточно взглянуть на последнюю формулу (4). Зависимость давления p в жидкости или газе от глубины h (высоты), приводит к появлению выталкивающей силы, действующей на любое тело, погруженное в жидкость или газ. Эта сила называется архимедовой силой.

Рис. 1. Портрет, изображение Архимеда

Древнегреческий математик, инженер и физик Архимед (287-212 г.г. до н.э.) не только обнаружил это явление, но смог найти ему объяснение и вывел формулу для расчета выталкивающей силы. Кроме закона Архимеда он открыл знаменитое правило рычага, первым вывел математические формулы для вычисления площадей и объемов сложных геометрических поверхностей, открыл первый планетарий, изобрел много полезных приспособлений.

Рис. 2. Действие выталкивающей силы на тело, погруженное в воду

Рисунок, на котором изображен прямоугольный параллелепипед (высотой h и площадью основания S ), помещенный в жидкость, поможет ответить на вопрос: как найти архимедову силу. Силы давления на боковые грани уравновешивают друг друга, а силы F 2 и F 1 отличаются, поскольку согласно формулы (4) давление на верхнюю и нижнюю грани будут разными из-за того, что h 2 > h 1 :

Получим формулу для результирующей силы F A , равную разности F 2 и F 1 :

$F_А=F_2−F_1=p_2*S−p_1*S=ρ*g*h_2*S−ρ*g*h_1*S=$
$ρ*g*S*{(h_2− h_1)}=ρ*g*S*h$ (5)

где: $S*h=V$ — объем, а $ρ*V=m$ — масса жидкости, которую вытеснило тело. Тогда, поскольку m * g — это вес вытесненной жидкости, то получаем окончательную формулу архимедовой силы F A :

$F_A =m*g=ρ*V*g$ (6)

Полученная формула позволяет сформулировать закон Архимеда:

Сила, выталкивающая погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной телом.

Погружение, равновесие, всплытие

Теперь становится понятно почему в воде мы запросто поднимаем тяжелые камни: нам “помогает” архимедова сила, т.к. она направлена противоположно силе тяжести. По этой же причине вес тела при взвешивании в жидкости будет всегда меньше веса, измеренного в воздухе.

Из формулы (6) следует, что величина архимедовой силы зависит прямо пропорционально от плотности жидкости ρ и от объема погруженного тела V . Плотность вещества, из которого изготовлено тело, может быть любой — на величину выталкивающей силы она не влияет. В зависимости от соотношения архимедовой силы F A и силы тяжести F g возможно три положения тела в жидкости:

  • Если FA > Fg, то тело будет выталкиваться наверх — “всплывать”;
  • Если FA
  • Если FA = Fg, то тело может находиться в жидкости на любой глубине в состоянии равновесия.

Закон Архимеда положен в основу ареометра — прибора для измерения плотности жидкости. Ареометр представляет собой стеклянную, герметичную колбу, утяжеленную с нижнего конца грузиком. Верхняя часть выполнена в виде длинного отростка, на котором нанесена измерительная шкала. При помещении в жидкость ареометр погружается на большую или меньшую глубину в зависимости от плотности жидкости. Чем больше плотность жидкости, тем меньше погружается ареометр. Показания на шкале указывают на плотность данной жидкости, когда ареометр занимает равновесное положение.

Рис. 3. Ареометр

Что мы узнали?

Итак, мы узнали, почему возникает архимедова сила в газах и жидкостях, и от каких величин зависит ее значение. На тело, погруженное в жидкость (или газ) действует выталкивающая сила. Сила, выталкивающая погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной телом. Для более подробного доклада об архимедовой силе можно подготовить интересные примеры с разными жидкостями, отличными от воды, например с керосином или ртутью. Тема этой статьи тесно связана с особенностями плавания и воздухоплавания тел, которые мы рассмотрим в следующих главах курса физики за 7 класс.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 72.

В ходе этого урока экспериментальным путем устанавливается, от чего зависит, а от чего не зависит величина выталкивающей силы, возникающей при погружении тела в жидкость.

Древнегреческий ученый Архимед (рис. 1) прославился многочисленными открытиями.

Рис. 1. Архимед (287–212 гг. до н. э.)

Именно он первым обнаружил, объяснил и сумел рассчитать выталкивающую силу. На прошлом уроке мы выяснили, что эта сила действует на любое тело, погруженное в жидкость или газ (рис. 2).

Рис. 2. Сила Архимеда

В честь Архимеда эта сила называется также архимедовой силой. Расчетным путем мы получили формулу для вычисления этой силы. На данном уроке мы воспользуемся экспериментальным методом, чтобы выяснить, от каких факторов зависит выталкивающая сила, а от каких факторов она не зависит.

Для проведения эксперимента мы будем использовать тела различного объема, сосуд с жидкостью и динамометр.

Прикрепим груз меньшего объема к динамометру и измерим вес этого груза сначала в воздухе: , а затем опустив груз в жидкость: . При этом можно заметить, что величина деформации пружины после опускания груза в жидкость практически не изменилась. Это говорит о том, что выталкивающая сила, действующая на груз, невелика.

Рис 3. Эксперимент с грузом малого объема

Теперь прикрепим к пружине динамометра груз большего объема и погрузим его в жидкость. Мы увидим, что деформация пружины уменьшилась значительнее.

Это произошло благодаря тому, что величина выталкивающей силы стала больше.

Рис 4. Эксперимент с грузом большего объема

По результату данного эксперимента можно сделать промежуточный вывод.

Чем больше объем погруженной в жидкость части тела, тем больше выталкивающая сила, действующая на тело.

Возьмем два тела одинакового объема, но изготовленные из разных материалов. Это значит, что у них различная плотность. Подвесим к динамометру сначала один груз и опустим его в жидкость. По изменению показаний динамометра найдем выталкивающую силу.

Рис. 5 Эксперимент с первым грузиком

Затем такую же операцию проведем со вторым грузом.

Рис. 6 Эксперимент со вторым грузиком

Хотя вес первого и второго груза разные, но при погружении в жидкость показания динамометра уменьшатся на одну и ту же величину.

Это означает, что в обоих случаях значение выталкивающей силы одно и то же, хотя грузы выполнены из разного материала.

Таким образом, можно сделать еще один промежуточный вывод.

Величина выталкивающей силы не зависит от плотности тел, погруженных в жидкость.

Прикрепим груз к пружине динамометра и опустим его в воду таким образом, чтобы он был полностью погружен в жидкость. Отметим показания динамометра . Теперь будем медленно подливать жидкость в сосуд. Мы заметим, что показания динамометра практически не изменяются . А значит, не меняется и выталкивающая сила.

Рис. 7 Эксперимент № 3

Третий промежуточный вывод.

Величина выталкивающей силы не зависит от высоты столба жидкости над погруженным в жидкость телом.

Прикрепим груз к пружине динамометра. Заметив показания динамометра, когда тело находится в воздухе: , погрузим тело сначала в воду: , а затем в масло: . По изменению показаний динамометра можно судить, что выталкивающая сила, действующая на тело в воде, больше, чем выталкивающая сила, действующая на то же самое тело в масле.

Рис. 8 Эксперимент № 4

Отметим, что плотность воды равна , а плотность масла меньше и составляет только . Это приводит к следующему выводу.

Чем больше плотность жидкости, в которую погружено тело, тем больше выталкивающая сила, действующая на тело со стороны данной жидкости.

Итак, обобщив результаты проделанных экспериментов, можно заключить, что величина выталкивающей силы

зависит:

1) от плотности жидкости ;

2) от объема погруженной части тела ;

не зависит:

1) от плотности тела;

2) от формы тела;

3) от высоты столба жидкости над телом;

Полученные результаты находятся в полном соответствии с формулой для величины выталкивающей силы, полученной на предыдущем уроке:

В эту формулу, кроме ускорения свободного падения, входят только две величины, описывающие условия проведенных экспериментов: плотность жидкости и объем погруженной части тела.

Список литературы

  1. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  2. А.В. Перышкин Физика 7 кл.: учеб. для общеобразоват. учреждений. - 2-е изд., стереотип. - М.: Дрофа, 2013. - 221 с.
  3. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  1. Интернет-портал «eduspb.com» ()
  2. Интернет-портал «class-fizika.narod.ru» ()
  3. Интернет-портал «krugosvet.ru» ()

Домашнее задание

  1. Что такое выталкивающая сила? Запишите формулу для нее.
  2. Куб определенного объема поместили в воду. Как изменится выталкивающая сила, которая действует на куб, если его объем уменьшить в 2 раза?
  3. Одинаковые тела поместили в разные жидкости: одно поместили в масло, а второе - в воду. В каком случае выталкивающая сила, действующая на тела, будет больше?