Акриловые (со)полимеры и дисперсии Латакрил®. Краски и покрытия Акриловый полимер на водной основе

Двадцатый век стал, без преувеличения, веком пластика. Производство недорогого и практичного материала расцвело после Второй мировой войны и с тех пор только набирало обороты.

К 2015 году в мире изготовили свыше 320 миллиардов тонн синтетических полимеров (если не считать волокна).

Долгое время люди не задумывались, что же будет с пластиковыми изделиями после использования. Внимание этой проблеме начали уделять лишь в последние годы, сообщает The Conversation .

Напомним, полимеры – общее название веществ с длинными молекулами (макромолекулами), состоящими из цепочек мономеров. Количество таких «звеньев» может составлять до полумиллиона. Они обладают большой прочностью и стойкостью.

Наиболее распространен термопластик, который может переходить в вязкое состояние при нагреве, а затем вновь застывать в новой форме. Этот процесс можно повторять многократно.

Одним из пионеров современной полимерной индустрии стал Уоллес Карозерс, который в 1930-х годах открыл метод получения нейлона и принимал участие в создании неопрена. Нейлон стал очень востребован в коммерческой деятельности – в частности, заменил редкий и дорогостоящий шелк при производстве чулков.

После Второй мировой войны, в условиях дефицита многих материалов, синтетические полимеры стали настоящим спасением. Так, после японского вторжения в Юго-Восточную Азию прекратились поставки каучука для автомобильных шин, и был создан его синтетический эквивалент. Некоторые материалы, например, тефлон, открыли случайно.

Сейчас в производстве синтетических полимеров во всем мире преобладают полиолефины: полипропилен и полиэтилен высокой и низкой плотности. Их можно изготавливать с использованием относительно недорогого природного газа. Полиолефины устойчивы к воздействию воды, воздуха, жира, чистящих растворителей. Кроме того, это самые легкие синтетические полимеры, производимые в больших масштабах: их плотность настолько низка, что они не тонут в воде.

Но эти материалы имеют и серьезные недостатки, о которых человечество задумалось далеко не сразу. Большая прочность позволяет им не разлагаться десятилетиями, если не сотнями лет. Попадая в морскую воду, они распадаются на микрочастицы и попадают в желудок рыб, морских птиц, черепах, тюленей и планктона, а следом – и в организм человека.

Специалисты подсчитали, что средняя порция мидий может содержать около 90 частиц микропластика, морская соль – до 600 частиц на килограмм, одна креветка – 5-7 частиц.

Вместе с тем отказываться от пластика человечество не спешит. составляют 35-45% всех полимерных изделий. Строительные материалы, такие как трубы ПВХ – 20%. Полиуретаны широко применяются для изоляционных покрытий.

Автомобильная промышленность использует все больше термопластов, в первую очередь, для снижения веса машины.

По оценкам экспертов Евросоюза, 16% веса среднего автомобиля ­составляют пластиковые компоненты, в частности, детали интерьера салона.

Более 70 миллионов тонн термопластов в год используется в текстильной промышленности, в основном при изготовлении одежды и ковровых покрытий. Более 90% , в основном полиэтилентерефталата, производится в Азии.

Синтетические волокна позволяют отказаться от хлопка и шерсти, для которых требуются обширные сельскохозяйственные угодья.

Как и упаковочные материалы, текстильные изделия плохо перерабатываются. Каждый житель США в среднем производит более 90 фунтов (около 40 кг) текстильных отходов в год.

По данным Greenpeace, в 2016 году люди покупали на 60% больше предметов одежды ежегодно, чем еще 15 лет назад, и меньше ее хранили.

- 37.19 Кб

1. Акриловые полимеры и сополимеры и их получение

К этому типу пленкообразующих веществ относятся олигомеры, полимеры и сополимеры акриловой, метакриловой кислот и их производных: эфиров, амидов, нитрилов и др. В зависимости от применяемых мономеров и сомономеров можно получить термопластичные или термореактивные полимеры с разнообразными физическими свойствами.

Сырьем для получения акриловых полимеров и сополимеров служат различные мономеры. Полимеризацию акриловых мономеров можно проводить различными методами. Для изготовления лаков наиболее пригоден лаковый метод; метод эмульсионной полимеризации применяется для получения латекса.

При эмульсионной полимеризации акриловых мономеров инициаторами служат растворимые в воде пероксиды (пероксид аммония, пероксид водорода и т. п.). В реактор загружают дистиллированную воду и мономер в соотношении около 1:3, эмульгатор (около 3% от массы мономера) и инициатор (около 0,5%). В качестве эмульгатора применяют соли жирных высокомолекулярных кислот (олеиновая), соли органических сульфокислот и другие поверхностно-активные вещества. Реакцию ведут в нейтральной или слабокислой среде. Процесс полимеризации протекает при 60–90 °С за 2–4 ч. Окончание процесса определяют по содержанию остаточного мономера в полимере, которое не должно превышать 1 – 2 %. Получаемый латекс может служить полуфабрикатом для производства клеев, водоэмульсионных красок и других композиций.

Если необходимо выделить полимер из эмульсии, к латексу добавляют серную кислоту и отгоняют воду. При этом эмульсия разрушается, и полимер выпадает в осадок в виде дисперсного порошка. Осажденный полимер отфильтровывают и промывают от эмульгатора водой или спиртом и сушат при 40-70 °С.

При лаковой полимеризации акриловых мономеров в качестве растворителей применяют бензол, изопропилбензол, хлорбензол, толуол, циклогексанон и др. Инициаторами служат органические пероксиды и динитрил азобис(изомасляной) кислоты. Процесс полимеризации ведется при температурах около 70 °С. Окончание полимеризации устанавливают по содержанию мономера в полимере, которое не должно превышать 2%. Если процесс получения полимера проводится в среде растворителя, не растворяющего полимер, то последний выпадает в осадок в виде тонкого порошка, подвергаемого затем очистке и сушке.

При лаковой полимеризации акриловых мономеров в качестве растворителей применяют бензол, изопропилбензол, хлорбензол, толуол, циклогексанон и др. Инициаторами служат органические пероксиды и динитрил азобис(изомасляной) кислоты. Процесс полимеризации ведется при температурах около 70 °С. Окончание полимеризации устанавливают по содержанию мономера в полимере, которое не должно превышать 2%. Если процесс получения полимера проводится в среде растворителя, не растворяющего полимер, то последний выпадает в осадок в виде тонкого порошка, подвергаемого затем очистке и сушке.

1.1 Общие свойства

Полимеры могут быть твердыми, растворимыми в органических растворителях или воде, а также в виде эмульсий или дисперсий.

Полиакрилаты, по сравнению с другими пленкообразующими веществами для красок, обладают рядом преимуществ:

1) устойчивостью к воздействию химических веществ;

2) бесцветностью, прозрачностью, устойчивостью к пожелтению даже при длительном воздействии неблагоприятных температур;

3) устойчивостью к поглощению излучения с длиной волны свыше 300 нм (УФ облапь спектра, в том случае, если полиакрилаты не содержат стирол или схожие с ним ароматические соединении);

4) отсутствием двойных связей;

5) способностью к сохранению глянца;

6) стабильностью акрилатов и особенно метакрилатов к гидролизу.

Считается, что наличие перечисленных свойств у покрытий обусловлено свойствами индивидуальных мономеров, из которых получен полимер. Метилметакрилат способствует повышенной атмосфероустойчивости, светопрочности, жесткости и сохранности глянца в течение длительного периода. Стирол увеличивает прочность и устойчивость к воде, химическим веществам, солевому туману, по уменьшает светопрочность и сохранность глянца. Алкилированные акрилаты и метакрилаты придают покрытию гибкость и гидрофобность, а акриловая и метакриловая кислоты способствуют улучшению адгезии с металлами.

В свете того что защита окружающей среды становится псе более актуальной, к смолам красок стали применяться новые требования, что существенно расширило ассортимент лакокрасочных систем. Современные лаки и краски должны содержать малое количество растворителя (высокий сухой остаток) или совсем не содержать растворителя (порошковые покрытия), должны разбавляться водой (водно-дисперсионные краски), быть термопластичными или реакционноспособными. Все эти свойства должны быть получены за счет полимерной структуры пленкообразующих веществ. Ниже описаны наиболее важные технические параметры полимером.

Температура стеклования (Т) влияет на адгезию, хрупкость и отслаивание от подложки, образование трещин и устойчивость к высоким ударным воздействиям. Отрегулировать Т в акрилатах относительно легко, например, при помощи изменения соотношения метилированного метакрилата (Т g гомополимера – 105 °С) к n-бутил-акрилату (Т g гомополимера – 54 °С). Т также влияет им свойства дисперсий и вязкость растворов. При высоких значениях Т увеличивается время сушки. При низких значениях молекулярной массы (< 6000), что весьма важно особенно для красок с высоким содержанием сухого остатка, температура стеклования зависит от молекулярной массы. Последующее структурообразование приводит к повышению температуры стеклования, который не зависит от плотности образования поперечных межмолекулярных связей.

Наличие стирола в составе пленкообразующих веществ снижает устойчивость к УФ-облучению и к атмосферным воздействиям, но при этом повышает устойчивость к воздействию химически активных веществ, улучшает адгезию и смачиваемость пигмента. Поэтому производители стараются не использовать стирол в красках, которые применяются в качестве верхнего слоя при наружной окраске и для получения прозрачных покрытий.

Разработка красок с низким количеством растворителя (с высоким содержанием сухого остатка) напрямую связана с использованием полимеров, обладающих очень низкой вязкостью. Для таких пленкообразующих веществ принципиально важными параметрами, определяющими вязкость, являются молекулярная масса и молекулярно-массовое распределение (ММР). Для изготовления красок с высоким содержанием сухого остатка необходимы олигомеры с молекулярной массой около 1000-3000. Акрилатное пленкообразующее вещество с молекулярной массой 100 000 можно использовать для получения краски с содержанием сухою остатка около 12,5 % и с низкой вязкостью, достаточной для ее нанесения. Пленкообразующее вещество с молекулярной массой около 6000 дает возможность получись краску с содержанием сухого остатка рапным 50 %. Для получения низкой вязкости достаточно минимального ММР. Однако с увеличением молекулярной массы физико-механические свойства краски улучшаются. Поэтому пленкообразующие вещества с низкой молекулярной массой, которые сшиваются после нанесения, используются для изготовления красок с низким содержанием твердого сухого остатка. Исходная краска состоит из низкомолекулярных олигомеров, а прочные полимерные пленки образуются после поперечной сшивки и в процессе высыхания. Дальнейшие возможности по уменьшению вязкости связаны со специфическими взаимодействиями между молекулами пленкообразующего вещества и с выбором низковязкого растворителя, который практически не взаимодействует с полимером. Для порошковых покрытий особенно важна вязкость расплава. В этом отношении акриловые полимеры находятся в невыгодном положении по сравнению с полиэфирами.

Для промышленного производства дисперсий необходимо введение функциональных групп в полимерную цепь. Большинство водно-дисперсионных систем представляют собой полимеры со свободными карбоксильными группами. Способность к разбавлению водой достигается посредством нейтрализации кислотных групп водной щелочью или аминами. Пленкообразующие вещества могут также содержать группы азота. Последующее образование дисперсии может происходить после нейтрализации (например, уксусной или молочной кислотой). Так как вязкость дисперсий очень слабо зависит от молекулярной массы, то обычно используются полимеры с очень высокой молекулярной массой. Поэтому дисперсии идеально подходят для получения покрытий, высыхаемых физическим способом. Структурообразование происходит за счет введения функциональных групп.

При использовании безводных дисперсий можно уменьшить выделение растворителя из красок без понижения молекулярной массы. Акрилаты были описаны выше как пленкообразующие вещества для безводных дисперсий, но кроме низкой вязкости они обладают еще некоторыми преимуществами над обычными покрытиями и, более того, должны конкурировать с красками с высоким содержанием сухого остатка и с порошковыми покрытиями.

1.2 Структурообразование полиакрилатов

В отличие от термопластических полимеров структурированные полимеры нерастворимы, обладают более высокой твердостью и устойчивостью к воздействию химических веществ. Эти свойства чрезвычайно важны для изготовления высококачественных покрытий. Реакции структурообразования приобрели значимость в 1950-х годах после внедрения акриловых смол в автомобильную промышленность.

Следующий импульс и области создания ЛКМ был связан с ужесточением законодательства об охране окружающей среды. Появление требований к понижению содержания растворителей в красках и замене традиционных красок на растворителях красками со средним и высоким сухим остатком означало, что молекулярная масса пленкообразующих веществ может быть снижена до такого уровня, при котором невозможно сохранить требуемые свойства красок (например, получение покрытий с оптимальным пленкообразованием, твердостью и эластичностью). Эти свойства возможно получить путем увеличения молекулярной массы в результате структурообразования после нанесения покрытия. Химическая реакция после нанесения также дает преимущества дисперсиям с высокой молекулярной массой. У них повышается температура стеклования и прочность пленки.

Широко используемый метод структурообразования пленок краски состоит из реакции между гидроксилсодержащими акрилатами и меламинформальдегидными смолами или мочевиноформальдегидными смолами. Гидроксилсодержащие акрилаты получают при помощи сомономеров, таких как гидроксиэтилметакрилат или моноакрилат бутандиола. Аминосмолы являются в некоторой степени самоструктурирующимися, они также образуют межмолекулярные связи с акрилатами через гидроксильные группы. Структурообразование может происходить в процессе отверждения при температуре около 130 °С, либо при наличии кислотных катализаторов. Такие краски обладают замечательным глянцем и устойчивостью к атмосферным воздействиям.

Другой важный метод структурирования - это взаимодействие гидроксилсодержащих акрилатов с полиизоцианатами, которые выступают в качестве отвердителей. Такая смесь структурируется при комнатной температуре и, следовательно, должна изготовляться и храниться как двухкомпонентная система, состоящая из основы и отвердителя. Реакция между ароматическими изоцианатами и гидроксилсодержащими акрилатами происходит очень быстро. Поскольку алифатические изоцианаты вступают в реакцию гораздо медленнее, то реакцию катализируют путем добавления дибутилоловодилаурата, аминов или кислот. Свойства таких полиуретановых красок превосходят свойства большинства других лакокрасочных материалов, и их сфера применения постоянно растет. Имеются также однокомпонентные полиуретановые краски, созданные на основе гидроксилсодержащих акрилатов. В них в качестве отвердителя используются блокированные изоцианаты. Для таких систем обычно требуется относительно высокая температура сушки (более 150 °С).

Третья группа реакций структурообразования затрагивает акриловые смолы, содержащие свободные группы карбоновой кислоты. Полиэпоксиды в основном используются как структурообразующие вещества для производства органорастворимых красок или порошковых покрытий. В отношении стойкости к щелочам и растворителям такие соединения превосходят другие, например, отвержденные изоцианатами, или меламиноформальдегидными смолами. Для этого им требуется очень высокая температура отверждения (более 200 °С). Температуру отверждения можно уменьшить до 120-150 °С, если в качестве катализатора использовать иодид тетрабутиламмония или третичные амины. Однако использование катализаторов снижает стабильность при хранении до нескольких недель.

Если к химической устойчивости, истиранию и прочности предъявляются менее жесткие требования (за это ответственна полнота сшивки), то карбоксилсодержащие акрилаты можно отверждать путем использования диаминов или комплексов металлов. Этот метод широко применяется, особенно при изготовлении водных дисперсий. Сообщалось также о структурообразонлиии с бисоксазолином.

Водные акриловые дисперсии активно применяются в производстве покрытий для дерева или антикоррозийных покрытий. Такие краски чаще не требуют сушки при повышенных температурах и их механические свойства улучшаются, если структурообразование происходит при комнатной температуре. Азиридины или дигидраиты обычно используют в качестве сшивающих агентов, которые смешивают с дисперсиями после окончания производственного процесса.

Существует много других структурообразующих процессов, но они не нашли широкого применения, либо появились лишь недавно как результаты научных разработок. Сообщается о структурообразовании зпоксидсодержащих акрилатов с аминосмолами и реакциях с полисульфоназидами.

Альтернативой отверждаемым краскам является получение самосшивающихся акриловых полимеров, которые реагируют между собой при пониженных темперах без добавления внешних структурирующих веществ. Такие покрытия нашли применение благодаря устойчивости к химическим веществам, прочности и эластичности, но они менее разнообразны по составу и могут создавать проблемы из-за своей нестабильности в процессе хранения. Кроме того, для достижения высокой степени структурообразования необходимо, чтобы минимальная молекулярная масса была больше, чем у смол, которые не являются самоструктурирующимися. Соответственно, при использовании таких систем невозможно получить краски с высоким содержанием сухого остатка.

1.3 Области применения

Акриловые краски и лаки используются в разных областях и их наносят всеми обычно применяемыми методами. Недавние исследования красок с низким содержанием растворителей и водных дисперсий показали, что возникла необходимость в создании новых специальных рецептур.

Описание работы

К этому типу пленкообразующих веществ относятся олигомеры, полимеры и сополимеры акриловой, метакриловой кислот и их производных: эфиров, амидов, нитрилов и др. В зависимости от применяемых мономеров и сомономеров можно получить термо¬пластичные или термореактивные полимеры с разнообразными фи¬зическими свойствами.
Сырьем для получения акриловых полимеров и сополимеров служат различные мономеры. Полимеризацию акриловых мономеров можно проводить раз¬личными методами. Для изготовления лаков наиболее пригоден лаковый метод; метод эмульсионной полимеризации применяет¬ся для получения латекса.

Акриловые полимеры широко используются благодаря их пре­восходным свойствам, таким как прозрачность, прочность, хими­ческая устойчивость и атмосферостойкость. К ним относятся полимеры, содержащие в структуре акриловые и метакриловые сложные эфиры наряду с другими винильными ненасыщенными соединениями. Они могут быть как термопластичными, так и термо­реактивными, причем при получении последних в рецептуру вклю­чают мономеры с дополнительными функциональными группами, способными после образования исходного полимера к дальнейшим реакциям с образованием сшивок. Большое значение имеет сопо - лимеризация винильных и акриловых мономеров, так как в этом случае имеются намного большие возможности, чем при поликон­денсации, управлять строением полимера и придавать ему спе­циальные свойства. В разных публикациях достаточно полно об­суждаются вопросы получения и использования акриловых поли­меров в покрытиях .

В зависимости от свойств, которые мономеры иридают конечно­му полимеру или сополимеру, их. можно классифицировать на «твердые», «мягкие» или «реакционноспособные». Твердыми моно­мерами, например, являются метилметакрилат, стирол, винилаце - іат. Акрнлаты более «мягкие», чем метакрилаты; к «мягким» мономерам относятся: этилакрилат, 2-этилгексилакрилат, а также длинноцепные метакрилаты. Реакционноспособные мономеры мо­гут иметь гидроксильные группы, например, гидроксиэтилакрилат. Достаточной реакционной способностью обладают акриламид и особенно глицидилметакрилат. Реакционноспособны также кислые мономеры; метакриловую кислоту часто вводят в небольших коли­чествах, так как кислотные группы могут улучшить диспергиро­вание пигментов и катализировать отверждение сополимера.

Метилметакрилат как твердый мономер придает стойкость к бензину, УФ-облучению, обеспечивает сохранение блеска. Поэтому его используют в сополимерах для верхних покрытий, особенно при окраске автомобилей. Бутилметакрилат, более мягкий моно­мер, придающий очень хорошую влагостойкость материалам хо­лодной сушки, но его пластифицирующий эффект ограничен. Он придает хорошую межслойную адгезию, стойкость к раство­рителям, превосходную устойчивость к УФ-облучению и сохране­ние блеска. Этилакрилат обладает хорошими пластифицирующими свойствами, но пары мономера весьма токсичны и обладают не­приятным запахом. Его сополимеры довольно устойчивы к"УФ-об - лучению и хорошо сохраняют блеск.

Практически акриловые полимеры для покрытий редко явля­ются гомополимерами, а представляют собой сополимеры твер­дых и мягких мономеров. Твердость полимера характеризуется температурой стеклования (, и для конкретного сополимера его Тс можно рассчитать по уравнению l/TG= W{/TG + W-z/TG-i и т. д., где TGi, TG-i являются температурами TQ гомополимеров составляющих мономеров в К, a Wi, W2 - их массовые доли. Для термоотверждаемых полимеров такая рассчитанная Тс не бу­дет являться Тс конечной пленки, так как сшивание приведет к дальнейшему повышению Тс, и это необходимо иметь в виду.

Хотя при сополимеризации могут быть получены" полимеры раз­личной структуры (статистические, чередующиеся, блочные или привитые), для покрытий в подавляющем большинстве случаев используются статистические сополимеры. Их статистический характер определяет также то, что явления тактичности и кристал­лизации, столь важные для объемных свойств полимеров, в этих полимерах для покрытий практически не проявляются. А наиболее часто встречающиеся структурные эффекты у этих полимеров заключаются в разделении фаз и эффектах доменов, которые про­исходят либо случайно, либо их заранее планируют.

Многие потребители задаются вопросом какие негорючие панели выбрать для внутренней отделки. И тут вам на помошь приходит интернет чего в нем только не найдешь, но мы остановимся на негорючих панелях. Сейчас на рынке появился такой материал как стекломагнезитовый лист или сокращенно СМЛ. Многие компании предлагают уже декорированные листы (окрашенные Акриловой краской, нанесением HPL пластика высокого давления, нанесением полимерного покрытия, пленки ПВХ и т.д). Но давайте остановмся на двух из них сделаем сравнительные характеристики и выводы.

АКРИЛОВОЕ ПОКРЫТИЕ

Негорючие декоративные панели Оптиплит Акрил

Производятся путём нанесения на лицевую сторону стекломагнезитового листа(CМЛ Премиум-Эталон) декоративного покрытия из акриловой краски на водной основе.

При возникновении пожара данные панели не только не горят, но и само покрытие не выделяет ни каких запахов и дыма. Заслуженно этим панелям присвоен класс горючести НГ негорючие, а так же они полностью соответствуют гигиеническим требованиям.

Образец фото негорючей панели ОПТИПЛИТ после прямого воздействия огня при помощи горелки. Все испытанные образцы подвергались горению в течении одной минуты .

ПОЛИМЕРНОЕ ПОКРЫТИЕ

"Негорючие декоративные панели с Полимерным покрытием"

Производятся путём нанесения на лицевую сторону стекломагнезитового листа декоративного покрытия из акриловой краски на водной основе и полимера.

При возникновении пожара данные панели не горят, но само покрытие выделяет очень едкий дым и неприятный запах. Эти панелям не проходят по классу горючести НГ негорючие, и соответственно гигиеническим требованиям не соответствуют.