Алгоритм решения квадратного неравенства с помощью графика. Решение систем линейных неравенств графически

Цели:

1. Повторить знания о квадратичной функции.

2. Познакомиться с методом решения квадратного неравенства на основе свойств квадратичной функции.

Оборудование: мультимедиа, презентация “Решение квадратных неравенств”, карточки для самостоятельной работы, таблица “Алгоритм решения квадратного неравенства”, листы контроля с копировальной бумагой.

ХОД УРОКА

I. Организационный момент (1 мин).

II. Актуализация опорных знаний (10 мин).

1. Построение графика квадратичной функции у=х 2 -6х+8 <Рисунок 1. Приложение >

  • определение направления ветвей параболы;
  • определение координат вершины параболы;
  • определение оси симметрии;
  • определение точек пересечения с осями координат;
  • нахождение дополнительных точек.

2. Определить по чертежу знак коэффициента a и количество корней уравнения ах 2 +вх+с=0. <Рисунок 2. Приложение >

3. По графику функции у=х 2 -4х+3 определить:

  • Чему равны нули функции;
  • Найти промежутки, на которых функция принимает положительные значения;
  • Найти промежутки, на которых функция принимает отрицательные значения;
  • При каких значениях х функция возрастает, а при каких убывает? <Рисунок 3>

4. Изучение новых знаний (12 мин.)

Задача 1: Решить неравенство: х 2 +4х-5> 0.

Неравенству удовлетворяют значения х, при которых значения функции у=х 2 +4х-5 равны нулю или положительны, то есть те значения х при которых точки параболы лежат на оси ох или выше этой оси.

Построим график функции у=х 2 +4х-5.

С осью ох: Х 2 +4х-5=0. По теореме Виета: х 1 =1, х 2 =-5. Точки(1;0),(-5;0).

С осью оу: у(0)=-5. Точка (0;-5).

Дополнительные точки: у(-1)=-8, у(2)=7. <Рисунок 4>

Итог: Значения функции положительны и равны нулю (неотрицательны) при

  • Необходимо ли каждый раз для решения неравенства подробно строить график квадратичной функции?
  • Нужно ли находить координаты вершины параболы?
  • А что важно? (а, х 1 ,х 2)

Вывод: Для решения квадратного неравенства достаточно определить нули функции, направление ветвей параболы и построить эскиз графика.

Задача 2: Решить неравенство: х 2 -6х+8< 0.

Решение: Определим корни уравнения х 2 -6х+8=0.

По теореме Виета: х 1 =2, х 2 =4.

а>0 – ветви параболы направлены вверх.

Построим эскиз графика. <Рисунок 5>

Отметим знаками “+” и “–” интервалы, на которых функция принимает положительные и отрицательные значения. Выберем необходимый нам интервал.

Ответ: Х€.

5. Закрепление нового материала (7 мин).

№ 660 (3). Ученик решает на доске.

Решить неравенство-х 2 -3х-2<0.

Х 2 -3х-2=0; х 2 +3х+2=0;

корни уравнения: х 1 =-1, х 2 =-2.

а<0 – ветви вниз. <Рисунок 6>

№ 660 (1) - Работа со скрытой доской.

Решить неравенство х 2 -3х+2< 0.

Решение: х 2 -3х+2=0.

Найдем корни: ; х 1 =1, х 2 =2.

а>0 – ветви вверх. Строим эскиз графика функции. <Рисунок 7>

Алгоритм:

  1. Найти корни уравнения ах 2 +вх+с=0.
  2. Отметить их на координатной плоскости.
  3. Определить направление ветвей параболы.
  4. Построить эскиз графика.
  5. Отметить знаками “+” и “ - ”, интервалы на которых функция принимает положительные и отрицательные значения.
  6. Выбрать необходимый интервал.

6. Самостоятельная работа (10 мин.).

(Прием - копировальная бумага).

Лист-контроль подписывается и сдается учителю для проверки и определения коррекции.

Самопроверка по доске.

Дополнительное задание:

№ 670. Найти значения х, при которых функция принимает значения не большие нуля: у=х 2 +6х-9.

7. Домашнее задание (2 мин).

№ 660 (2, 4), № 661 (2, 4).

Заполнить таблицу:

D Неравенство a Чертеж Решение
D>0 ах 2 +вх+с> 0 a>0
D>0 ах 2 +вх+с> 0 a<0
D>0 ах 2 +вх+с< 0 a>0
D>0 ах 2 +вх+с< 0 a<0

8. Итог урока (3 мин).

  1. Воспроизведите алгоритм решения неравенств.
  2. Кто справился с работой на отлично?
  3. Что показалось сложным?

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения). Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости. С помощью математических операций и знака неравенства можно определить множество решений неравенства.

Шаги

Графическое изображение линейного неравенства на числовой прямой

  1. Решите неравенство. Для этого изолируйте переменную при помощи тех же алгебраических приемов, которыми пользуетесь при решении любого уравнения. Помните, что при умножении или делении неравенства на отрицательное число (или член), поменяйте знак неравенства на противоположный.

    • Например, дано неравенство 3 y + 9 > 12 {\displaystyle 3y+9>12} . Чтобы изолировать переменную, из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
      3 y + 9 > 12 {\displaystyle 3y+9>12}
      3 y + 9 − 9 > 12 − 9 {\displaystyle 3y+9-9>12-9}
      3 y > 3 {\displaystyle 3y>3}
      3 y 3 > 3 3 {\displaystyle {\frac {3y}{3}}>{\frac {3}{3}}}
      y > 1 {\displaystyle y>1}
    • Неравенство должно иметь только одну переменную. Если неравенство имеет две переменные, график лучше строить на координатной плоскости.
  2. Нарисуйте числовую прямую. На числовой прямой отметьте найденное значение (переменная может быть меньше, больше или равна этому значению). Числовую прямую рисуйте соответствующей длины (длинную или короткую).

    • Например, если вы вычислили, что y > 1 {\displaystyle y>1} , на числовой прямой отметьте значение 1.
  3. Нарисуйте кружок, обозначающий найденное значение. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) этого значения, кружок не закрашивается, потому что множество решений не включает это значение. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) этому значению, кружок закрашивается, потому что множество решений включает это значение.

    • y > 1 {\displaystyle y>1} , на числовой прямой нарисуйте незакрашенный кружок в точке 1, потому что 1 не входит в множество решений.
  4. На числовой прямой заштрихуйте область, определяющую множество решений. Если переменная больше найденного значения, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если переменная меньше найденного значения, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного.

    • Например, если дано неравенство y > 1 {\displaystyle y>1} , на числовой прямой заштрихуйте область справа от 1, потому что множество решений включает все значения больше 1.

    Графическое изображение линейного неравенства на координатной плоскости

    1. Решите неравенство (найдите значение y {\displaystyle y} ). Чтобы получить линейное уравнение, изолируйте переменную на левой стороне при помощи известных алгебраических методов. В правой части должна остаться переменная x {\displaystyle x} и, возможно, некоторая постоянная.

      • Например, дано неравенство 3 y + 9 > 9 x {\displaystyle 3y+9>9x} . Чтобы изолировать переменную y {\displaystyle y} , из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
        3 y + 9 > 9 x {\displaystyle 3y+9>9x}
        3 y + 9 − 9 > 9 x − 9 {\displaystyle 3y+9-9>9x-9}
        3 y > 9 x − 9 {\displaystyle 3y>9x-9}
        3 y 3 > 9 x − 9 3 {\displaystyle {\frac {3y}{3}}>{\frac {9x-9}{3}}}
        y > 3 x − 3 {\displaystyle y>3x-3}
    2. На координатной плоскости постройте график линейного уравнения. постройте график , как строите график любого линейного уравнения. Нанесите точку пересечения с осью Y, а затем при помощи углового коэффициента нанесите другие точки.

      • y > 3 x − 3 {\displaystyle y>3x-3} постройте график уравнения y = 3 x − 3 {\displaystyle y=3x-3} . Точка пересечения с осью Y имеет координаты , а угловой коэффициент равен 3 (или 3 1 {\displaystyle {\frac {3}{1}}} ). Таким образом, сначала нанесите точку с координатами (0 , − 3) {\displaystyle (0,-3)} ; точка над точкой пересечения с осью Y имеет координаты (1 , 0) {\displaystyle (1,0)} ; точка под точкой пересечения с осью Y имеет координаты (− 1 , − 6) {\displaystyle (-1,-6)}
    3. Проведите прямую. Если неравенство строгое (включает знак < {\displaystyle <} или > {\displaystyle >} ), проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой. Если неравенство нестрогое (включает знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } ), проведите сплошную прямую, потому что множество решений включает значения, лежащие на прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой.
    4. Заштрихуйте соответствующую область. Если неравенство имеет вид y > m x + b {\displaystyle y>mx+b} , заштрихуйте область над прямой. Если неравенство имеет вид y < m x + b {\displaystyle y, заштрихуйте область под прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} заштрихуйте область над прямой.

    Графическое изображение квадратного неравенства на координатной плоскости

    1. Определите, что данное неравенство является квадратным. Квадратное неравенство имеет вид a x 2 + b x + c {\displaystyle ax^{2}+bx+c} . Иногда неравенство не содержит переменную первого порядка ( x {\displaystyle x} ) и/или свободный член (постоянную), но обязательно включает переменную второго порядка ( x 2 {\displaystyle x^{2}} ). Переменные x {\displaystyle x} и y {\displaystyle y} должны быть изолированы на разных сторонах неравенства.

      • Например, нужно построить график неравенства y < x 2 − 10 x + 16 {\displaystyle y.
    2. На координатной плоскости постройте график. Для этого преобразуйте неравенство в уравнение и постройте график , как строите график любого квадратного уравнения. Помните, что график квадратного уравнения является параболой.

      • Например, в случае неравенства y < x 2 − 10 x + 16 {\displaystyle y постройте график квадратного уравнения y = x 2 − 10 x + 16 {\displaystyle y=x^{2}-10x+16} . Вершина параболы находится в точке (5 , − 9) {\displaystyle (5,-9)} , и парабола пересекает ось Х в точках (2 , 0) {\displaystyle (2,0)} и (8 , 0) {\displaystyle (8,0)} .

Тип урока:

Вид урока: Лекция, урок решения задач.

Продолжительность: 2 часа.

Цели:1) Изучить графический метод.

2) Показать применение программы Maple при решении систем неравенств графическим методом.

3) Развить восприятие и мышление по данной теме.

План занятия:

Ход занятия.

1 этап: Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

1. На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:

Так как и графики и область допустимых решении находятся в первой четверти. Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).

Как видно из иллюстрации многогранник ABCDE образует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max(f)=+ ?, либо min(f)= -?.

2. Теперь можно перейти к непосредственному нахождению максимума функции f.

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что f(C)=f(4;1)=19 - максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа a от -? до +? прямые f=a смещаются по вектору нормали Вектор нормали имеет координаты (С1;С2), где C1 и C2 коэффициенты при неизвестных в целевой функции f=C1?X1+C2?X2+C0.. Если при таком перемещении линии уровня существует некоторая точка X - первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X)- минимум f на множестве ABCDE. Если X- последняя точка пересечения линии уровня и множества ABCDE то f(X)- максимум на множестве допустимых решений. Если при а>-? прямая f=a пересекает множество допустимых решений, то min(f)= -?. Если это происходит при а>+?, то max(f)=+ ?.

В нашем примере прямая f=a пересевает область ABCDE в точке С(4;1). Поскольку это последняя точка пересечения, max(f)=f(C)=f(4;1)=19.

Решить графически систему неравенств. Найти угловые решения.

x1>= 0, x2>=0

> with(plots);

> with(plottools);


> S1:=solve({f1x = X6, f2x = X6}, );

Ответ: Все точки Si где i=1..10 для которых x и y положительна.

Область, ограниченная данными точками: (54/11,2/11) (5/7,60/7) (0,5) (10/3, 10/3)

3 этап. Каждому ученику даётся один из 20 вариантов, в котором ученику предлагается самостоятельно решить неравенство графическим методом, а остальные примеры в качестве домашнего задания.

Занятие №4 Графическое решение задачи линейного программирования

Тип урока: урок изучения нового материала.

Вид урока: Лекция + урок решения задач.

Продолжительность: 2 часа.

Цели: 1) Изучить графическое решение задачи линейного программирования.

2) Научить пользоваться программой Maple при решении задачи линейного программирования.

2) Развить восприятие, мышление.

План занятия: 1 этап: изучение нового материала.

2 этап: Отработка нового материала в математическом пакете Maple.

3 этап: проверка изученного материала и домашнее задание.

Ход занятия.

Графический метод довольно прост и нагляден для решения задач линейного программирования с двумя переменными. Он основан на геометрическом представлении допустимых решений и ЦФ задачи.

Каждое из неравенств задачи линейного программирования (1.2) определяет на координатной плоскости некоторую полуплоскость (рис.2.1), а система неравенств в целом - пересечение соответствующих плоскостей. Множество точек пересечения данных полуплоскостей называется областью допустимых решений (ОДР). ОДР всегда представляет собой выпуклую фигуру, т.е. обладающую следующим свойством: если две точки А и В принадлежат этой фигуре, то и весь отрезок АВ принадлежит ей. ОДР графически может быть представлена выпуклым многоугольником, неограниченной выпуклой многоугольной областью, отрезком, лучом, одной точкой. В случае несовместности системы ограничений задачи (1.2) ОДР является пустым множеством.

Все вышесказанное относится и к случаю, когда система ограничений (1.2) включает равенства, поскольку любое равенство

можно представить в виде системы двух неравенств (см. рис.2.1)

ЦФ при фиксированном значении определяет на плоскости прямую линию. Изменяя значения L, мы получим семейство параллельных прямых, называемых линиями уровня .

Это связано с тем, что изменение значения L повлечет изменение лишь длины отрезка, отсекаемого линией уровня на оси (начальная ордината), а угловой коэффициент прямой останется постоянным (см.рис.2.1). Поэтому для решения будет достаточно построить одну из линий уровня, произвольно выбрав значение L.

Вектор с координатами из коэффициентов ЦФ при и перпендикулярен к каждой из линий уровня (см. рис.2.1). Направление вектора совпадает с направлением возрастания ЦФ, что является важным моментом для решения задач. Направление убывания ЦФ противоположно направлению вектора.

Суть графического метода заключается в следующем. По направлению (против направления) вектора в ОДР производится поиск оптимальной точки. Оптимальной считается точка, через которую проходит линия уровня, соответствующая наибольшему (наименьшему) значению функции. Оптимальное решение всегда находится на границе ОДР, например, в последней вершине многоугольника ОДР, через которую пройдет целевая прямая, или на всей его стороне.

При поиске оптимального решения задач линейного программирования возможны следующие ситуации: существует единственное решение задачи; существует бесконечное множество решений (альтернативный оптиум); ЦФ не ограничена; область допустимых решений - единственная точка; задача не имеет решений.


Рисунок 2.1 Геометрическая интерпретация ограничений и ЦФ задачи.

Методика решения задач ЛП графическим методом

I. В ограничениях задачи (1.2) заменить знаки неравенств знаками точных равенств и построить соответствующие прямые.

II. Найти и заштриховать полуплоскости, разрешенные каждым из ограничений-неравенств задачи (1.2). Для этого нужно подставить в конкретное неравенство координаты какой-либо точки [например, (0;0)], и проверить истинность полученного неравенства.

Если неравенство истинное,

то надо заштриховать полуплоскость, содержащую данную точку;

иначе (неравенство ложное) надо заштриховать полуплоскость, не содержащую данную точку.

Поскольку и должны быть неотрицательными, то их допустимые значения всегда будут находиться выше оси и правее оси, т.е. в I-м квадранте.

Ограничения-равенства разрешают только те точки, которые лежат на соответствующей прямой. Поэтому необходимо выделить на графике такие прямые.

III. Определить ОДР как часть плоскости, принадлежащую одновременно всем разрешенным областям, и выделить ее. При отсутствии ОДР задача не имеет решений.

IV. Если ОДР - не пустое множество, то нужно построить целевую прямую, т.е. любую из линий уровня (где L - произвольное число, например, кратное и, т.е. удобное для проведения расчетов). Способ построения аналогичен построению прямых ограничений.

V. Построить вектор, который начинается в точке (0;0) и заканчивается в точке. Если целевая прямая и вектор построены верно, то они будут перпендикулярны .

VI. При поиске максимума ЦФ необходимо передвигать целевую прямую в направлении вектора, при поиске минимума ЦФ - против направления вектора. Последняя по ходу движения вершина ОДР будет точкой максимума или минимума ЦФ. Если такой точки (точек) не существует, то можно сделать вывод о неограниченности ЦФ на множестве планов сверху (при поиске максимума) или снизу (при поиске минимум).

VII. Определить координаты точки max (min) ЦФ и вычислить значение ЦФ. Для вычисления координат оптимальной точки необходимо решить систему уравнений прямых, на пересечении которых находится.

Решить задачу линейного программирования

1. f(x)=2x1+x2 ->extr

x1>= 0, x2>=0

> plots({a+b<=3,a+3*b<=5,5*a-b<=5,a+b>=0,a>=0,b>=0}, a=-2..5, b=-2..5, optionsfeasible=(color=red),

optionsopen=(color=blue, thickness=2),

optionsclosed=(color=green, thickness=3),

optionsexcluded=(color=yellow));


> with(simplex):

> C:={ x+y <=3, x+3*y <=5, 5*x-y <=5,x+y >=0};

> dp:=setup({ x+y <=3, x+3*y <=5, 5*x-y <=5,x+y >=0});

> n:=basis(dp);

Ш display(C,);

> L:=cterm(C);

Ш X:=dual(f,C,p);

Ш f_max:=subs(R,f);

Ш R1:=minimize(f,C ,NONNEGATIVE);

f_min:=subs(R1,f);

ОТВЕТ: При x 1 =5/4 x 2 =5/4 f_max=15/4; При x 1 =0 x 2 =0 f_min=0;

Урок № 5.Решение матричных игр, используя методы линейного программирования и симплекс метод

Тип урока: урок контроль + урок изучения нового материала. Вид урока : Лекция.

Продолжительность: 2 часа.

Цели:1) Проверить и закрепить знания по прошедшему материалу на прошлых уроках.

2) Изучить новый метод решения матричных игр.

3) развить память, математическое мышление и внимание.

1 этап: проверить домашнее задание в виде самостоятельной работы.

2 этап: дать краткое описание метода зигзага

3 этап: закрепить новый материал и дать домашнее задание.

Ход занятия.

Методы линейного программирования - численные методы решения оптимизационных задач, cводящихся к формальным моделям линейного программирования.

Как известно, любая задача линейного программирования может быть приведена к канонической модели минимизации линейной целевой функции с линейными ограничениями типа равенств. Поскольку число переменных в задаче линейного программирования больше числа ограничений (n > m), то можно получить решение, приравняв нулю (n - m) переменных, называемых свободными . Оставшиеся m переменных, называемых базисными , можно легко определить из системы ограничений-равенств обычными методами линейной алгебры. Если решение существует, то оно называется базисным . Если базисное решение допустимо, то оно называется базисным допустимым . Геометрически, базисные допустимые решения соответствуют вершинам (крайним точкам) выпуклого многогранника, который ограничивает множество допустимых решений. Если задача линейного программирования имеет оптимальные решения, то по крайней мере одно из них является базисным.

Приведенные соображения означают, что при поиске оптимального решения задачи линейного программирования достаточно ограничиться перебором базисных допустимых решений. Число базисных решений равно числу сочетаний из n переменных по m:

С = m n! / n m! * (n - m)!

и может быть достаточно велико для их перечисления прямым перебором за реальное время. То, что не все базисные решения являются допустимыми, существо проблемы не меняет, так как чтобы оценить допустимость базисного решения, его необходимо получить.

Проблема рационального перебора базисных решений задачи линейного программирования была впервые решена Дж. Данцигом. Предложенный им симплекс-метод до настоящего времени является наиболее распространенным общим методом линейного программирования. Симплекс-метод реализует направленный перебор допустимых базисных решений по соответствующим им крайним точкам выпуклого многогранника допустимых решений в виде итеративного процесса, где на каждом шаге значения целевой функции строго убывают. Переход между крайними точками осуществляется по ребрам выпуклого многогранника допустимых решений в соответствии с простыми линейно-алгебраическими преобразованиями системы ограничений. Поскольку число крайних точек конечно, а целевая функция линейна, то перебирая крайние точки в направлении убывания целевой функции, симплекс-метод за конечное число шагов сходится к глобальному минимуму.

Практика показала, что для большинства прикладных задач линейного программирования симплекс-метод позволяет отыскать оптимальное решение за относительно небольшое число шагов по сравнению с общим числом крайних точек допустимого многогранника. В тоже время известно, что для некоторых задач линейного программирования со специально подобранной формой допустимой области, применение симплекс-метода приводит к полному перебору крайних точек. Этот факт в известной мере стимулировал поиск новых эффективных методов решения задачи линейного программирования, построенных на иных, нежели симплекс-метод, идеях, позволяющих решать любую задачу линейного программирования за конечное число шагов, cущественно меньшее числа крайних точек.

Cреди полиномиальных методов линейного программирования, инвариантных к конфигурации области допустимых значений, наиболее распростаненным является метод Л.Г. Хачияна. Однако, хотя этот метод и имеет полиномиальную оценку сложности в зависимости от размерности задачи, тем не менее он оказывается неконкурентноспособным по сравнению с симплекс-методом. Причина этого в том, что зависимость числа итераций симплекс-метода от размерности задачи выражается полиномом 3-го порядка для большинства практических задач, в то время как в методе Хачияна, эта зависимость всегда имеет порядок, не ниже четвертого. Указанный факт имеет решающее значение для практики, где сложные для симплекс-метода прикладные задачи встречаются крайне редко.

Cледует также отметить, что для важных в практическом смысле прикладных задач линейного программирования разработаны специальные методы, учитывающие конкретный характер ограничений задачи. B частности, для однородной транспортной задачи применяются специальные алгоритмы выбора начального базиса, наиболее известными из которых являются метод северо-западного угла и приближенный метод Фогеля, а сама алгоритмическая реализация симплекс-метода приближена к специфике задачи. Для решения задачи линейного назначении (задачи выбора) вместо симплекс-метода обычно применяется либо венгерский алгоритм, основанный на интерпретации задачи в терминах теории графов как задачи поиска максимального по весу совершенного паросочетания в двудольном графе, либо метод Мака.

Решить матричную игру размера 3х3

f(x)=x 1 +x 2 +x 3

x1>= 0, x2>=0, x3>=0

> with(simplex):

> C:={ 0*x+3*y+2*z <=1, 2*x+0*y+1*z <=1, 3*x+0*y+0*z <=1};

Ш display(C,);

> feasible(C, NONNEGATIVE , "NewC", "Transform");

> S:=dual(f,C,p);

ШR:=maximize(f,C ,NONNEGATIVE);

Ш f_max:=subs(R,f);

Ш R1:=minimize(S ,NONNEGATIVE);

> G:=p1+p2+p3;

> f_min:=subs(R1,G);

Найдём цену игры

> V:=1/f_max;

Найдём оптимальную стратегию первого игрока > X:=V*R1;

Найдём оптимальную стратегию второго игрока

ОТВЕТ: При X=(3/7, 3/7,1/7) V=9/7; При Y=(3/7,1/7,3/7) V=9/7;

Каждому ученику даётся один из 20 вариантов, в котором ученику предлагается самостоятельно решить матричную игру 2x2, а остальные примеры в качестве домашнего задания.

Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

1. На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:

Так как и графики и область допустимых решении находятся в первой четверти. Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).

Как видно из иллюстрации многогранник ABCDE образует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max(f)=+ ?, либо min(f)= -?.

2. Теперь можно перейти к непосредственному нахождению максимума функции f.

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что f(C)=f (4; 1)=19 - максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа a от -? до +? прямые f=a смещаются по вектору нормали. Если при таком перемещении линии уровня существует некоторая точка X - первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X) - минимум f на множестве ABCDE. Если X - последняя точка пересечения линии уровня и множества ABCDE то f(X) - максимум на множестве допустимых решений. Если при а>-? прямая f=a пересекает множество допустимых решений, то min(f)= -?. Если это происходит при а>+?, то max(f)=+ ?.

Начальный уровень

Решение уравнений, неравенств, систем с помощью графиков функций. Визуальный гид (2019)

Многие задания, которые мы привыкли вычислять чисто алгебраически, можно намного легче и быстрее решить, в этом нам поможет использование графиков функций. Ты скажешь «как так?» чертить что-то, да и что чертить? Поверь мне, иногда это удобнее и проще. Приступим? Начнем с уравнений!

Графическое решение уравнений

Графическое решение линейных уравнений

Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида. Линейные уравнения достаточно легко решать алгебраическим путем - все неизвестные переносим в одну сторону уравнения, все, что нам известно - в другую и вуаля! Мы нашли корень. Сейчас же я покажу тебе, как это сделать графическим способом.

Итак, у тебя есть уравнение:

Как его решить?
Вариант 1 , и самый распространенный - перенести неизвестные в одну сторону, а известные в другую, получаем:

А теперь строим. Что у тебя получилось?

Как ты думаешь, что является корнем нашего уравнения? Правильно, координата точки пересечения графиков:

Наш ответ -

Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число!

Как я говорила выше, это самый распространенный вариант, приближенный к алгебраическому решению, но можно решать и по-другому. Для рассмотрения альтернативного решения вернемся к нашему уравнению:

В этот раз не будем ничего переносить из стороны в сторону, а построим графики напрямую, так как они сейчас есть:

Построил? Смотрим!

Что является решением на этот раз? Все верно. Тоже самое - координата точки пересечения графиков:

И, снова наш ответ - .

Как ты видишь, с линейными уравнениями все предельно просто. Настало время рассмотреть что-нибудь посложнее... Например, графическое решение квадратных уравнений.

Графическое решение квадратных уравнений

Итак, теперь приступим к решению квадратного уравнения. Допустим, тебе нужно найти корни у этого уравнения:

Конечно, ты можешь сейчас начать считать через дискриминант, либо по теореме Виета, но многие на нервах ошибаются при переумножении или в возведении в квадрат, особенно, если пример с большими числами, а калькулятора, как ты знаешь, у тебя на экзамене не будет… Поэтому, давай попробуем немного расслабиться и порисовать, решая данное уравнение.

Графически найти решения данного уравнения можно различными способами. Рассмотрим различные варианты, а уже ты сам выберешь, какой больше всего тебе понравится.

Способ 1. Напрямую

Просто строим параболу по данному уравнению:

Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

Ты скажешь «Стоп! Формула для очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни. Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

Точно такой же ответ? Молодец! И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, .

Ты знаешь, что парабола симметрична относительно своей вершины, например:

Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:

Возвращаемся к нашей параболе. Для нашего случая точка. Нам необходимо еще две точки, соответственно, можно взять положительные, а можно взять отрицательные? Какие точки тебе удобней? Мне удобней работать с положительными, поэтому я рассчитаю при и.

Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:

Как ты думаешь, что является решением уравнения? Правильно, точки, в которых, то есть и. Потому что.

И если мы говорим, что, то значит, что тоже должен быть равен, или.

Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

Конечно, ты можешь проверить наш ответ алгебраическим путем - посчитаешь корни через теорему Виета или Дискриминант. Что у тебя получилось? То же самое? Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

Способ 2. С разбивкой на несколько функций

Возьмем все тоже наше уравнение: , но запишем его несколько по-другому, а именно:

Можем мы так записать? Можем, так как преобразование равносильно. Смотрим дальше.

Построим отдельно две функции:

  1. - графиком является простая парабола, которую ты с легкостью построишь даже без определения вершины с помощью формул и составления таблицы для определения прочих точек.
  2. - графиком является прямая, которую ты так же легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Построил? Сравним с тем, что вышло у меня:

Как ты считаешь, что в данном случае является корнями уравнения? Правильно! Координаты по, которые получились при пересечении двух графиков и, то есть:

Соответственно, решением данного уравнения являются:

Что скажешь? Согласись, этот способ решения намного легче, чем предыдущий и даже легче, чем искать корни через дискриминант! А если так, попробуй данным способом решить следующее уравнение:

Что у тебя получилось? Сравним наши графики:

По графикам видно, что ответами являются:

Справился? Молодец! Теперь посмотрим уравнения чууууть-чуть посложнее, а именно, решение смешанных уравнений, то есть уравнений, содержащих функции разного вида.

Графическое решение смешанных уравнений

Теперь попробуем решить следующее:

Конечно, можно привести все к общему знаменателю, найти корни получившегося уравнения, не забыв при этом учесть ОДЗ, но мы опять же, попробуем решить графически, как делали во всех предыдущих случаях.

В этот раз давай построим 2 следующих графика:

  1. - графиком является гипербола
  2. - графиком является прямая, которую ты легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Осознал? Теперь займись построением.

Вот что вышло у меня:

Глядя на этот рисунок, скажи, что является корнями нашего уравнения?

Правильно, и. Вот и подтверждение:

Попробуй подставить наши корни в уравнение. Получилось?

Все верно! Согласись, графически решать подобные уравнения одно удовольствие!

Попробуй самостоятельно графическим способом решить уравнение:

Даю подсказку: перенеси часть уравнения в правую сторону, чтобы с обоих сторон оказались простейшие для построения функции. Намек понял? Действуй!

Теперь посмотрим, что у тебя вышло:

Соответственно:

  1. - кубическая парабола.
  2. - обыкновенная прямая.

Ну и строим:

Как ты уже давно у себя записал, корнем данного уравнения является - .

Прорешав такое большое количество примеров, уверена, ты осознал как можно легко и быстро решать уравнения графическим путем. Настало время разобраться, как решать подобным способом системы.

Графическое решение систем

Графическое решение систем по сути ничем не отличается от графического решения уравнений. Мы так же будем строить два графика,и их точки пересечения и будут являться корнями данной системы. Один график - одно уравнение, второй график - другое уравнение. Все предельно просто!

Начнем с самого простого - решение систем линейных уравнений.

Решение систем линейных уравнений

Допустим, у нас есть следующая система:

Для начала преобразуем ее таким образом, чтобы слева было все, что связано с, а справа - что связано с. Иными словами, запишем данные уравнения как функцию в привычном для нас виде:

А теперь просто строим две прямые. Что в нашем случае является решением? Правильно! Точка их пересечения! И здесь необходимо быть очень-очень внимательным! Подумай, почему? Намекну: мы имеем дело с системой: в системе есть и, и … Намек понял?

Все верно! Решая систему, мы должны смотреть обе координаты, а не только, как при решении уравнений! Еще один важный момент - правильно их записать и не перепутать, где у нас значение, а где значение! Записал? Теперь давай все сравним по порядку:

И ответы: и. Сделай проверку - подставь найденные корни в систему и убедись, правильно ли мы ее решили графическим способом?

Решение систем нелинейных уравнений

А что если вместо одной прямой, у нас будет квадратное уравнение? Да ничего страшного! Просто ты вместо прямой построишь параболу! Не веришь? Попробуй решить следующую систему:

Какой наш следующий шаг? Правильно, записать так, чтобы нам было удобно строить графики:

А теперь так вообще дело за малым - построил быстренько и вот тебе решение! Строим:

Графики получились такими же? Теперь отметь на рисунке решения системы и грамотно запиши выявленные ответы!

Все сделал? Сравни с моими записями:

Все верно? Молодец! Ты уже щелкаешь подобные задачи как орешки! А раз так, дадим тебе систему посложнее:

Что мы делаем? Правильно! Записываем систему так, чтобы было удобно строить:

Немного тебе подскажу, так как система выглядит ну очень не простой! Строя графики, строй их «побольше», а главное, не удивляйся количеству точек пересечения.

Итак, поехали! Выдохнул? Теперь начинай строить!

Ну как? Красиво? Сколько точек пересечения у тебя получилось? У меня три! Давай сравнивать наши графики:

Так же? Теперь аккуратно запиши все решения нашей системы:

А теперь еще раз посмотри на систему:

Представляешь, что ты решил это за каких-то 15 минут? Согласись, математика - это все-таки просто, особенно, когда глядя на выражение, не боишься ошибиться, а берешь и решаешь! Ты большой молодец!

Графическое решение неравенств

Графическое решение линейных неравенств

После последнего примера тебе все по плечу! Сейчас выдохни - по сравнению с предыдущими разделами этот будет очень-очень легким!

Начнем мы, как обычно с графического решения линейного неравенства. Например, вот этого:

Для начала проведем простейшие преобразования - раскроем скобки полных квадратов и приведем подобные слагаемые:

Неравенство нестрогое, поэтому - не включается в промежуток, и решением будут являться все точки, которые находятся правее, так как больше, больше и так далее:

Ответ:

Вот и все! Легко? Давай решим простое неравенство с двумя переменными:

Нарисуем в системе координат функцию.

Такой график у тебя получился? А теперь внимательно смотрим, что там у нас в неравенстве? Меньше? Значит, закрашиваем все, что находится левее нашей прямой. А если было бы больше? Правильно, тогда закрашивали бы все, что находится правее нашей прямой. Все просто.

Все решения данного неравенства «затушеваны» оранжевым цветом. Вот и все, неравенство с двумя переменными решено. Это значит, что координаты и любой точки из закрашенной области - и есть решения.

Графическое решение квадратных неравенств

Теперь будем разбираться с тем, как графически решать квадратные неравенства.

Но прежде, чем перейти непосредственно к делу, давай повторим некоторый материал, касающийся квадратной функции.

А за что у нас отвечает дискриминант? Правильно, за положение графика относительно оси (если не помнишь этого, то тогда точно прочти теорию о квадратичных функциях).

В любом случае, вот тебе небольшая табличка-напоминалка:

Теперь, когда мы освежили в памяти весь материал, перейдем к делу - решим графически неравенство.

Сразу тебе скажу, что есть два варианта его решения.

Вариант 1

Записываем нашу параболу как функцию:

По формулам определяем координаты вершины параболы (точно так же, как и при решении квадратных уравнений):

Посчитал? Что у тебя получилось?

Теперь возьмем еще две различных точки и посчитаем для них:

Начинаем строить одну ветвь параболы:

Симметрично отражаем наши точки на другую ветвь параболы:

А теперь возвращаемся к нашему неравенству.

Нам необходимо, чтобы было меньше нуля, соответственно:

Так как в нашем неравенстве стоит знак строго меньше, то конечные точки мы исключаем - «выкалываем».

Ответ:

Долгий способ, правда? Сейчас я покажу тебе более простой вариант графического решения на примере того же неравенства:

Вариант 2

Возвращаемся к нашему неравенству и отмечаем нужные нам промежутки:

Согласись, это намного быстрее.

Запишем теперь ответ:

Рассмотрим еще один способ решения, который упрощает и алгебраическую часть, но главное не запутаться.

Умножим левую и правую части на:

Попробуй самостоятельно решить следующее квадратное неравенство любым понравившимся тебе способом: .

Справился?

Смотри, как график получился у меня:

Ответ: .

Графическое решение смешанных неравенств

Теперь перейдем к более сложным неравенствам!

Как тебе такое:

Жуть, правда? Честно говоря, я понятия не имею, как решить такое алгебраически… Но, оно и не надо. Графически ничего сложного в этом нет! Глаза боятся, а руки делают!

Первое, с чего мы начнем, это с построения двух графиков:

Я не буду расписывать для каждого таблицу - уверена, ты отлично справишься с этим самостоятельно (еще бы, столько прорешать примеров!).

Расписал? Теперь строй два графика.

Сравним наши рисунки?

У тебя так же? Отлично! Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть. Смотри, что получилось в итоге:

А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!

На каких промежутках по оси у нас находится выше, чем? Верно, . Это и есть ответ!

Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

КОРОТКО О ГЛАВНОМ

Алгоритм решения уравнений с использованием графиков функций:

  1. Выразим через
  2. Определим тип функции
  3. Построим графики получившихся функций
  4. Найдем точки пересечения графиков
  5. Корректно запишем ответ (с учетом ОДЗ и знаков неравенств)
  6. Проверим ответ (подставим корни в уравнение или систему)

Более подробно о построении графиков функций, смотри в теме « ».